
Perspectives on 
Artificial lnteaigence Programming 

Programs are judged not only by whether they faithfully 
carry out the intended processing but also by whether 
they are understandable and easily changed. Program- 
ming systems for artificial intelligence applications use 
specialized languages, environments, and knowledge- 
based tools to reduce the complexity of the programming 
task. Language styles based on rocedures, objects, logic, 
rules, and constraints reflect & erent models for organiz- 
ing programs and facilitate program evolution and under- 
standability. To make programming easier, multiple 
styles can be integrated as sublanguages in a program- 
ming environment. Programming environments provide 
tools that analyze programs and create informative dis- 
plays of their structure. Programs can be modified by 
direct interaction with these displays. These tools and 
languages are helping computer scientists to regain a 
sense of control over systems that have become increas- 
ingly complex. 

P EOPLE WHO DEVELOP PROGRAMMING SYSTEMS NEED TO 

organize them in ways that make them comprehensible to 
other people and easy to modify. We will be concerned 

mainly with the practice of artificial intelligence (AI) programming 
and about the arguments and tensions that have shaped the current 
state of the art. An intelligent system should embody and apply 
information about itself so that it can assist in its own continuing 
development. 

The programming culture of the AI community has a somewhat 
different emphasis than most "production" programming. The AI 
programming process is not a sequential progression from specifica- 
tion to implementation, testing, and release. Instead, an exploratory 
approach is used in which specification and implementation evolve 
together as the problem is understood and tested. Another differ- 
ence is the frequent design of experimental specialized sublanguages 
that make it easier to  express solutions to  the problems being 
attacked. 

List processing (1) is fundamental to AI programming (2). As an 
example, the list 

(IBM (A-Kind-Of ComputerCompany)(Headquarters NYC)) 

can be used to represent relations between the thing represented by 
the symbol IBM and other things represented by the symbols 
ComputerCompany or NYC. Manipulations of these list structures 
can deduce implicit relations (3), for example, that IBM produces 
computers (because it is A-Kind-Of ComputerCompany) . Programs 
can use lists to build structures of unpredictable sizes and shapes 
during execution without predetermined or artificial limits. 

List structures are also used to represent programs in A1 systems, 
and hence they are often used to build tools to infer implicit features 

about programs themselves. This contrasts with typical program- 
ming systems that deal with programs as a sequence of characters; 
program changes are made by adding and deleting characters. 
Higher level organizations of programs, such as the module bound- 
aries and the calls between packages and so on, are parsed from these 
characters but made available in very limited ways to the users. AI 
systems provide users with interactive displays that describe systems 
in these terms. A user can understand a system and change it directly 
through these displays rather than indirectly by manipulation of 
text. 

A programming style is a way of organizing programs on the basis 
of some conceptual model of programming and an appropriate 
language to make programs written in the style clear. We will 
describe styles organized around procedures, objects, logic, rules, 
and constraints. Each style is a specialized language or sublanguage 
that shapes the organization of programs written in that style. 

Different styles differ substantially in what can be stated concisely. 
Significant appeal arises from what does not have to be stated. By 
eliminating redundancy, the intent of the code can be more easily 
understood. This is an important virtue of, for example, automatic 
storage management facilities that allow omission of code for 
freeing storage. Different styles facilitate different kinds of program 
change that ensure appropriate properties of the program remain 
invariant. Experiments have led to systems in which a number of 
styles are integrated and to others in which one style dominates. 

Programming Styles 
Proced%re-orientedprgramming. In this style, subroutines and data 

structures are the two (separate) primitive elements. Subroutine calls 
are the primary mechanism for program composition. Subroutines 
have the property that they carry out the same algorithm when 
called from different places. Adding a line to a calling program, and 
thus changing the position of the call to a subroutine, does not 
change the algorithm executed by the subroutine. 

Data structure declarations allow programs to reference parts of a 
complex data structure by name rather than, for example, by index 
position in an array. In the declaration, a programmer can specify 
once the method for looking up the named substructure rather than 
specifying it in every place that the structure is referenced in the 
procedures. To change the lookup process, a programmer need 
only change the specification. AI systems provide automatic storage 
management facilities that ensure that any data structure no longer 
referenced directly or indirectly by the program is reclaimed. This 
avoids problems that occur in systems where a programmer must 
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take responsibility for storage management, such as failure to return 
unused storage or inappropriate deallocation of referenced storage. 

Although programmers do not usually think about the invariants 
associated with subroutine call, data access, or storage management, 
they are essential for the composition of large programs. They 
confine and control the effects of change. To the extent that 
common changes are local, a language provides insulation from 
change-induced bugs. 

Some languages augment the notion of subroutine with features 
intended to support better the sharing of code by several people. 
Modula-2 (4) and Ada (5), for example, provide mechanisms for 
defining modules--collections of related procedures and structure 
definitions-and interfaces-descriptions of elements of a module 
that may be used from outside that module. The interfaces are 
intended to minimize interference as people change different parts of 
a system. 

The interface definition provides information about module data 
types and procedure requirements that can be used for module 
optimization. An implementation of a module is free to change any 
features not "advertised" in the interface. With these restrictions, 
independently developed, debugged, and compiled modules can be 
loaded together. The interface definition is the defined narrow 
pathway of interaction. 

Object-oriented programming. This style (6, 7) has often been 
advocated for simulation programs, systems programming, graph- 
ics, and A1 programming. Although there are variations in exactly 
what is meant by object-oriented programming (8), in all these 
languages there are objects that combine state and behavior. 

There are three major ideas in object-oriented programming: (i) 
objects are defined in terms of classes that determine their structure 
and behavior; (ii) behavior is invoked by sending a message to an 
object; and (iii) descriptions of objects may be inherited from more 
general classes. Uniform use of objects contrasts with the distribu- 
tion of information into separate procedures and data in procedural 
programming. 

A message to an object contains a name for a behavior (often 
called its selector) and some other parameters. For example, in a 
traffic simulation we could have classes of vehicles such as Car and 
Truck. To cause Car-1, an instance of the class Car, to move in the 
simulation, a Loops (9) program would send a "Move" message to 
Car- 1 : 

(send Car-1 Move 400 50) 

Associated with the class Car is a particular method for Move that 
is run for this invocation. The class Truck has a different method, 
since trucks must obey different traffic rules and consume different 
fuel. The "message passing" style allows each class to implement its 
response to a message in its own way. These methods can be 
changed independently. In contrast, procedure-oriented program- 
ming would require that all the variations of Move be incorporated 
into the single procedure that implements Move. 

Classes can inherit description from other classes. PoliceCar can 
be defined as a specialization of the class Car. Then PoliceCar has all 
of the structure and behavior of Car except that which is explicitly 
overridden or added in PoliceCar. For example, PoliceCar can add a 
two-way radio and a method for Move that can exceed the speed 
limit or interact with traffic light control. Such inheritance of a 
specialized class from its "superclass" reduces the need to specify 
redundant information and simplifies updating and modification, 
since information can be entered and changed in one place. 

Specialization and message sending synergize to support program 
extensions that preserve important invariants. For example, splitting 
a class, renaming a class, or adding a new class does not affect simple 

message sending unless a new method is introduced. Instances of a 
specialized class follow exactly the same protocols as a superclass 
until local specialized methods are defined. Similarly, deleting a class 
does not affect message sending if the deleted class does not have a 
local method involved in the protocol. 

Changes to the inheritance network are common in program 
reorganization. Programmers often create new classes and reorga- 
nize their classes as they understand the opportunities for factoring 
parts of their programs. Together, message sending and specializa- 
tion provide a robust framework for extending and modifying 
programs. 

Access-oriented programming. In object-oriented programming, 
when an object is sent a message it may change the values of some 
variables that make up its internal state. In access-oriented program- 
ming (lo), when an object changes the value of a variable a message 
may be sent to another object as a side effect if the value associated 
with that variable is an "annotated value." In terms of actions and 
side effects this is dual to object-oriented programming. The 
annotated value is a specialized object and can contain state other 
than the value. 

Access-oriented programs are factored into parts that compute 
and parts that monitor the computations. For example, suppose one 
were to build a traffic simulation program with an interactive display 
showing the state of the simulation. By dividing it into a simulator 
and a display-controller, one can separate programming concerns. 

The simulator represents the dynamics of traffic. It has objects for 
such things as automobiles, trucks, roads, and traffic lights. These 
objects exchange messages to simulate traffic interactions. For 
example, when a traffic light object turns green, it sends messages to 
start traffic moving. 

The display-controller has objects representing images of the 
traffic and provides an interactive user interface for scaling and 
shifting the views. It has methods for presenting graphics informa- 
tion. The simulator and the display-controller can be developed 
separately, provided that there is agreement on the structure of the 
simulation objects. 

Access-oriented programming provides the "glue" for connecting 
the simulator and display-controller. The process of connection is 
dynamic and reversible. When a user tells the display-controller to 
change the views, it can make and break connections to the 
simulator as needed for its monitoring. Thus at one time a user can 
monitor the simulation as if looking at a map of the town and at 
another time as if looking at the instrument panel of a particular car. 
For the former, active values attached to the positions of each 
vehicle are used to update the display; for the latter, probes on the 
speed of the auto and level of the gas tank can update pictorial 
gauges. Attaching such gauges does not change the behavior of the 
program being monitored. 

Property annotations in annotated values can be used to store 
useful but subsidiary quantities. Some systems store a measure of the 
certainty of that value being correct. A reasoning system can store 
this annotation without having to change the structure of the 
represented object. Other values and rules used in computing this 
value could be stored as annotations, as in truth maintenance 
systems (11). Annotations also provide a place for documentation 
for human readability of data structures. 

Access-oriented programming supports several invariants under 
program change. Annotations can be added to programs without 
causing them to stop working. Annotated values are invisible to 
programs that are not looking for them. They can be added to data 
that are already annotated. The same invariants hold for recursive 
annotated values, that is, for descriptions of descriptions. Nested 
active values enable multiple independent side effects on variable 
access. 
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Lgic programming. There are both declarative and procedural 
interpretations of logic statements (12). The simplest statements in 
Prolog, the most popular logic-based language, is a statement of a 
relation; for example: 

Brother(Danny, Rusty) 
As a declarative statement, it has a truth value; procedurally it is a 

request to check the truth of the statement. Prolog uses a database of 
facts entered by statements of the form 

Assert(Brother(Danny, Rusty)) 

to store this relation in a database. A query Brother(Danny, X) 
searches the database and returns X = Rusty. The same elementary 
fact could also be used to answer the query Brother(X, Rusty). 

In addition to simple statements and queries, Prolog programs 
consist of sets of statements stored in the database. Each statement 
has the form 

consequent :- antecedent-1, . . . , antecedent-n 

This is read declaratively as, consequent is true if (:-) each of 
antecedent-1 to antecedent-n is true. In a procedural reading, the 
consequent is taken as a goal to be achieved, and the antecedents are 
subgoals to be tried in order. The declarative interpretation of the 
statement, 

Uncle(X, Y) :- Brother(X, Z), Father(Z, T) 
is "Xis an Uncle of T if there is some Z, such that X is a Brother of 
Z, and Z is the Father of T." 

This statement can be read as directions for achieving a goal 
Uncle(X, Y): first find a Z such that Brother (X, Z),  and then prove 
that Z is a Father of Y. To  verify the truth of Uncle(Danny, 
Johanna), the system could find Brother(Danny, Rusty) and Fa- 
ther(Rusty, Johanna). 

Unlike ordinary procedures, any number of the inputs to a 
program can be left unspecified. The system searches for one (or 
upon request, more) bindings of the input parameters that make the 
consequent true. By repeated application of the Uncle rule, starting 
with Uncle(Danny, X), the system will find all the nephews and 
nieces of Danny; Uncle(X, Johanna) can be used to find all the 
uncles of Johanna. 

Since the given Uncle rule does not completely specify the Uncle 
relation, a second rule can be added after the first: 

Uncle(X, Y) :- Brother(X, Z), Mother(Z, Y) 

After searching the database (or using other rules) with the first 
rule, Prolog would then "backtrack" to use the second rule. In 
general, any number of ordered rules can be used to specify a 
relation. An advantage of using Prolog is that new rules can be easily 
added to modify the system behavior. The system will perform 
exhaustive search with all the rules, and with all clauses from the 
database, to find appropriate bindings for input parameters that are 
unspecified. 

One of the important features of logic programming is that is 
separates the idea of goals from the statements of how to satisfy 
them. This reification of goals, rather than explicit calls to particular 
methods for achieving them (subroutines), allows new methods to 
be added without the need to change the goal statements. This is an 
advantage in the incremental development of a system, but it may 
make program behavior hard to understand. 

Automatic search through the database of rules rather than 
explicit control has another disadvantage. Some obvious and inno- 
cent-looking rules, such as that expressing the commutativity of the 
Brother relation, 

can cause the system to go into an infinite loop. The problem of 
search control is an area of active research in the logic programming 
community. 

Because Prolog provides simple rules with clear declarative se- 
mantics and a convenient interpretation for database search, it was 
chosen as the starting point for the fifth-generation computer 
project in Japan (13). 

Rule-based programming. The widespread use of the term rule- 
based programming belies the considerable diversity in what it is 
used to mean (14, 15). Rule languages are used to support the 
building of knowledge bases. Rule environments include tools for 
generating explanations of program behavior, tools for answering 
questions, and tools for acquiring and integrating new rules into a 
program. 

Rule languages use if-then statements as shown in this rule from 
Mycin (16): 

If the Gram stain of the organism is Gram-negative, 
the morphology of the organism is rod, and 
the aerobicity of the organism is anaerobic, 

then there is suggestive evidence (0.7) that the identity of the 
organism is bacteriodes. 

This rule can be used by reasoning forward from laboratory tests to 
accumulate evidence about the identity of a disease organism. It is 
also used to reason backward from a goal of finding the identity of 
the invading organism to determine what tests should be run. The 
(0.7) in the above rule is a weighting for the evidence mentioned in 
the preconditions of the rule. Extensive work has been done in the 
context of rule-based systems on techniques for combining multiple 
pieces of evidence (17). Uncertain information is not usually 
handled in logic-based systems. 

Rule-based systems provide explanations of results to users by 
keeping track of which rules were invoked in a consultation. After a 
consultation they can explain the reasoning the system used. A 
fundamental assumption in these systems is that the display of rules 
applied is a reasonable explanation of system behavior. Explanations 
do not reflect assumptions underlying rules, causal mechanisms, or 
the current knowledge of the user. 

For small tasks, rules are viewed as independent, and getting them 
right is easy because rules are small and manageable. For large tasks, 
the interactions of rules must be considered. Some rule languages 
organize rules into hierarchical rule sets that describe how the rules 
are to be applied. Some provide problem-solving frameworks in 
which rules can be organized. For example, each subtask in a 
network can carry its own relevant rules, as in Pride, an expert 
system for aiding in a mechanical design (1 8). In Blackboards (19), 
rules are attached to nodes of a general problem-solving model. In 
structured systems, the programming task of adding new rules also 
requires deciding where to put them. 

In summary, the available rule languages are important in narrow, 
carefully chosen applications, often for expert systems. Their funda- 
mental strength-the construction in terms of independent individ- 
ual rules-is also their limiting factor. 

Constraint-oriented programming. The idea of developing pro- 
gramming languages around the concept of constraint satisfaction 
has appealed to computer scientists for years (20). The idea is that a 
programmer need only declare certain relations among program 
variables without saying precisely how they should be achieved. The 
details of the computation can then be figured out by the system by 
means of implicit, automatic constraint satisfaction techniques. 

For example, the equation x + y = 5 can be viewed as a constraint 
on possible values for the variables x and y. If numeric values for x 
and y are given, we can substitute those values into the equation and 
determine whether the constraint is satisfied. In this example, a 
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Fig. 1. A browser, showing the inheritance of classes for the simulation. On 
the right is an interactive menu for some of the operations that can be done 
by pointing to elements of this browser. The Add item on the menu allows 
addition of structure, methods, or classes. As indicated, the default operation 
is to add a method. Such browsers provide a simple way of specifying 
common changes and maintain an up-to-date display of the program 
structure throughout the process. 

numeric value for either variable together with the constraint is 
enough to determine the value of the other variable. 

The most widely used and practical systems based on constraints 
are the spread-sheet programs that have been popular on personal 
computers. Spread-sheet programs provide a matrix of rows and 
columns for organizing values and constraints among them. For 
example, in a rental income application, columns of the matrix could 
correspond to months of a year and rows could correspond to 
income and categories of expense. Constraints connect dependent 
elements, so that total monthly expense is maintained as the sum of 
the individual expenses in the same column. When monthly rental 
rate, taxes, and utilities variables are filled in. for the first month, 
constraints in a spread-sheet fill in as much of the table as possible, 
including various subtotals. 

The constraints in a spread-sheet program differentiate between 
dependent and independent variables. When the independent varia- 
bles are filled in, values for dependent variables are updated 
immediately. Reasoning in both directions is provided in some 
applications, for example, in graphics and simulation (21). 

Constraint satisfaction systems have always been specialized to 
exploit the nature of the particular kinds of constraints and hence 
have not been considered general purpose. Nonetheless, there are 
several research efforts aimed at increasing the breadth of applicabil- 
ity of constraint languages for specifying the behavior of computers 
(22). 

Use of Multiple Paradigms 
Programming language development has often consisted of the 

honing of a particular paradigm for organizing programs (23). 
Advocates of multiple styles in a single system (24, 25) argue that, 
just as there are many tools in a carpenter's toolbox, each specialized 
to its purpose, there should be many tools in the programmer's kit. 
One should not be forced to pry up nails with a screwdriver. 
However, use of multiple paradigms does involve an additional cost 
of learning more than one style, and programs may be required to 
transform between different representations of the same information 
chosen to optimize processing within a style. 

When a problem does not fit well in a style, resulting programs 
may be both awkward and long. For large applications, the various 
costs for using a particular style can vary across parts of the program. 
In addition to the cost of the initial writing of the program and the 

cost of running the program, the costs of debugging and change as 
the program and its specifications evolve must be considered. The 
total cost of a system can be lower when more than one style is used. 
For example, many expert systems are developed in which object- 
oriented programming is used for representing the basic concepts, 
rules are used to specify the inferences, access-oriented program- 
ming is used to drive the graphics display, and procedures are used 
for the overall control structure. 

Sometimes the search for integration can lead to a language that 
gracefully subsumes the different styles. This is illustrated in the 
deep integration of procedure-oriented programming and object- 
oriented programming in CommonLoops (26). In ordinary proce- 
dure calls, the code to carry out an operation is looked up by using 
only the name of the procedure. In object-oriented programming, 
the code lookup process for message sending uses both an operation 
name (the selector) and also the class of the first argument. 

Procedure call and message sending are generalized in Common- 
Loops, so that code lookup uses the selector and the types of as 
inany arguments as desired (multimethods). Thus, CornmonLoops 
does more than just provide both message sending and procedure 
call. The integration yields a continuum of method definitions from 
simple procedures to methods with many arguments whose types 
are specified. The familiar methods of object-oriented programming 
fall out as a special case where the type (class) of only the first 
argument is used. A programmer using code developed by others 
need not be aware of whether there are multiple implementations 
that depend on the types of multiple arguments. 

Computer scientists are just beginning to develop examples of the 
integration of styles in 1:ybrid or integrated languages and criteria 
for judging them (25). Different programming languages are no 
longer just focusing on a particular style; styles now coexist and are 
beginning to evolve together (27). 

Programming Environments 
Programming languages reduce the complexity of programming 

by simplifying the expression of instructions. Programming envi- 
ronments are the set of tools used to build, change, and debug 
programs. Operating systems have played this role, but now special- 
ized environments (28) that know about the language and program 
structure reduce complexity by taking some responsibility for man- 
aging changes to programs. 

A1 programming environments provide tools that analyze pro- 
gram structure and create informative displays that help program- 
mers to develop mental models of the systems. They also provide 
simplified means for specifying changes to a program that free a 
programmer from specifying many of the details. Tools may also be 
used to compensate for a particular distribution of information 
imposed by one or more styles of programming. These tools are 
particularly important in the exploratory programming style (29) 
used in AI, where the specifications for a task are developed as parts 
of it are implemented. 

Understanding and changing the static structure of a program. 
Traditionally, the main descriptions of programs available to pro- 
grammers have been the text of program instructions. This is useful 
when a program fits on a few pages, but stacks of program listings 
are inadequate for visualizing large programs. Nor is the situation 
much improved by computerizing the same view with text editors 
and window systems. Text editors do not provide a flexible overview 
and are of limited use in making many important kinds of systematic 
changes. 

The primary struggle is often to simplify the organization of a 
system. Simplification may require exploring and changing the 
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boundaries between and within subsystems. It is now possible to 
create automatically more informative views of programs that reflect 
the kinds of questions that programmers ask when they are modify- 
ing or trying to understand a large system. 

For procedure-oriented programming, tools can display interac- 
tive graphs that show where procedures and variables are defined 
and used (30). In object-oriented programming, changes to the 
inheritance network are common in program reorganization. An 
interactive class browser such as that shown in Fig. 1 can make it 
easy to add, delete, and rename classes and methods, examine 
documentation, trace the inheritance of particular methods or 
variables, and move definitions of methods and variables in the 
inheritance lattice. 

Understanding and changing the dynamic structure of a program. 
Testing, debugging, and performance tuning are all important parts 
of the task of programming. In the current state of the art, these 
tasks cannot be done practically by an analysis-of static program 
structure, and so programming environments provide interactive 
tools for them. 

Conventional programming practice has long included means for 
tracing the execution of programs to aid in debugging. In the 
simplest case, tracing is achieved by inserting statements into a 
program to cause printing when various parts of a program are 
activated and to print out indications of the internal state. Other 
capabilities allow interruption of program execution when certain 
conditions arise, such as when a particular procedure is called, a 
variable is accessed, or a value is set that is outside a specified range. 

An improvement on tracing is the use of gauges, as shown in Fig. 
2. Several systems that support access-oriented programming pro- 
vide a suite of gauges that can be attached to the variables of running 
programs to display the monitored values. Attaching a gauge to a 
program variable is analogous to attaching a voltmeter to a circuit. 
The gauge does not interfere with the operation of the program, and 
it is not necessary to search through a long listing to find values for 
variables. A programmer can create an array of gauges on the display 
and watch them while the program runs. 

Modern environments let a programmer examine the state of a 
computation when a program is interrupted, either by an error or by 
a user request. If a bug is found and a fix made, the user can back up 
from a nested computation to a call that invoked it and try the 
computation again from that point. Some systems can also run a 
program at slow speed or one step at a time. The ability to interrupt 
a program's execution to make changes can make a dramatic 
difference in the overall productivity of programming because this 
enables a programmer to identify and correct several errors in a 
single short session. 

Many of these interactive capabilities for controlling execution are 
not new ideas. Some of them have been available in Basic and Lisp 
systems for several years. They are mentioned because they are less 
common in production programming environments for large sys- 
tems, they are important for incremental debugging, and they are 
usefully combined with tools for analyzing and modifying program 
structure. 

AI programming environments tend to do late-binding by de- 
fault. This means that they usually provide the flexibility for 
programmers to change a running program without losing the state 
of the computation. Programmers are concerned about the time it 
takes to complete a cycle of revision: discover a problem, find a bug, 
make a revision, and test again. Late-binding systems tend to speed 
up this cycle. 

Late-binding can slow program execution. Optimization facilities 
in AI systems allow compilation of efficient programs before release 
for wide use. Exploratory programming encourages a style of 
programming in which exploration is followed by analysis, which is 

Fig. 2. Gauges, which can be attached to any object variable at any time to 
view the changing value of a variable. A set of attached gauges allows a 
simultaneous view of the dynamic state of a program. 

then followed by optimization. In this approach, optimization is 
focused where it is needed. This leads to effective optimization 
guided by real measurements rather than being based on preconcep- 
tions (often misconceptions) of system designers. A program's 
performance can be largely determined by the performance profile 
of underlying system facilities, whose performance on particular 
cases may not be known ahead of time. 

A graphical view of timing analysis, as shown in Fig. 3, can be 
useful for understanding the incremental and integrated time spent 
in any part of the system during a particular computation. 

Narrow Knowledge-Based Systems 
Work on programming environments can be understood as an 

application of computer technology to the task of writing and 
maintaining programs. The same theme can be seen in the work on 
compilers. Compilers convert high-level language descriptions into 
specific instructions. They use their knowledge of machine architec- 
ture to yield efficient implementations. Compilers, like program- 
ming environments, are intended to be used for all kinds of 
programming tasks. 

An important strategy for making tools that can give more 
comprehensive kinds of assistance is to incorporate specific knowl- 
edge into them. In the 1960's work on compilers was sometimes 
called automatic programming. Current research on automatic 
programming (31, 32) follows this direction of incorporating 
increasing amounts of knowledge about programming. The most 
successful uses of automatic programming are even more narrowly 
focused; these are the application generators now used commercially 
for creating specially tailored systems for business applications, such 
as accounting and inventory. 

The same trend toward knowledge-intensive systems can be seen 
in the creation of so-called shells for expert systems. An expert 
system shell is a specialized sublanguage and environment designed 
to support a set of closely related applications. Shells are an 
intermediate point between specific applications and general-pur- 
pose "knowledge-engineering" environments. Shells can be built for 
such applications as planning, scheduling, and a variety of special- 
ized office tasks. 

Shells have four things that general programming tools do not: 
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prepackaged representations for important concepts, inference and 
representation tools tuned for efficient and perspicuous use in the 
applications, specialized user interfaces, and generic knowledge 
about the application. For example, a shell for a planning application 
could have representations for modeling goals and agents. Its 
specialized knowledge could include rules, such as one specifying 
that an agent can be only at one place at a time. It would have 
generic categories for things such as time, tasks, serially reusable 
resources (such as a room), and interfaces for interacting with 
alternative plans. 

These knowledge-intensive systems 'blur the boundaries between 
environments and languages, since they combine features of both. 
Domain-specific knowledge enables a system to take on more of the 
responsibility for checking and installing changes. Domain-specific 
knowledge also enables systems to provide specialized user interfaces 
that are intended to be closer to the concepts of the application. 
General-purpose environments have broad applicability; specialized 
systems can do more in a narrower domain. 

Directions and Themes Revisited 
The developments we have discussed in programming languages, 

environments, and knowledge systems provide different perspectives 
on what a program is. Conventionally, a program is a set of 
instructions for a machine that specifies how information is to be 
processed. Programming is the process of translating user intentions 
and requirements into a formal language understandable by a 
computer. 

Variations in programming languages determine what can be 
stated concisely, what must be stated in multiple places, and what 
need not be stated in a program. Objects, rules, procedures, 
constraints, and other programming concepts make different trade- 
offs in the way that they organize information. If a programming 
language allows one to write procedures but not constraints, then 
expressing desired relations among variables requires having state- 
ments in all those parts of the program that can potentially change 
the values of the variables. Inheritance allows structural description 

and methods to be shared by classes without redundant specifica- 
tion. 

When a system makes directly manipulatable the concepts of an 
application, programs become more understandable. For example, 
some bookkeeping and accounting concepts are represented and 
manipulated directly in spread-sheet programs. While the state of 
the art has no dependable cognitive metric for how much this helps, 
the issue is a recurring theme in the design of languages and 
knowledge-based systems. I t  has to do with reducing the levels of 
abstraction that must be penetrated to understand system behavior. 

In contrast, many of the programs for modern physics experi- 
ments have become large and perhaps unmanageable. There are so 
many levels of mathematical technique and abstraction between the 
terminology of physics and the text of the programs that they have 
become unwieldy and hard to understand. Indeed, one important 
role for A1 systems is as an impedance matcher, or natural bridge, 
between mental concepts and program symbols. The Sophie system 
(33) is an example of a program that, among other things, provides 
an interface between descriptions of circuits and Spice, the underly- 
ing simulation program for modeling circuit behavior. Hybrids like 
this suggest ways of using programs in different contexts, thus 
"preserving programming capital." 

Programming environments provide us with another answer to 
what a program is. Environments determine what a programmer 
sees when writing or modifying a program. They include different 
kinds of interactive browsers, as seen in Figs. 1 to 3, that provide 
different views of a program based on automatic analysis. These 
visualizations are designed to help programmers gain perspective on 
their programs, and in doing this they blur the boundary between 
language and environment. 

As browsers are increasingly used for understanding and changing 
systems, they displace program listings. Ultimately they are more 
powerful (because they are active), can employ specialized knowl- 
edge, and can provide alternative views. Today's programs are parts 
of larger complex systems, and the main activity of programming 
has moved from the origination of new programs to the modifica- 
tion of existing ones (34).  Programs are increasingly judged not only 
by whether they faithfully carry out the intended processing but also 

Fig. 3. Spy timing-analysis 
tree in Interlisp-D (35). The 
height of each box is pro- 
portional to the fraction of 
the time spent in the rou- 
tine. Large boxes are associ- 
ated with potential candi- 
dates for optimization. The 
border of each box is used to 
indicate modes, such as 
"time includes called sub- 
routines," "appears else- 
where on display," and so 
forth. 
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by whether they are understandable and easily changed. Thus 
computer tools ;hat bring computational leverage to prigramming 
are helping computer scientists to regain a sense of control over 
systems that have become increasingly complex. 
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Knowledge-Based Systems 

First developed two decades ago, knowledge-based sys- 
tems have seen widespread application in recent years. 
While performance has been a strong focus of attention, 
building such systems has also expanded our conception 
of a computer program from a black box providing an 
answer to something capable of explaining its answers, 
acquiring new knowledge, and transferring knowledge to 
students. These abilities derive from distinguishing clear- 
ly what the program knows from how that knowledge 
will be used, making it possible to use the same knowl- 
edge in different ways. 

W ORK IN ARTIFICIAL INTELLIGENCE (AI) HAS OFTEN 
looked for inspiration to the only easily accessible exam- 
ple of intelligence, human behavior. The earliest attempts 

to design intelligent programs were heavily influenced by the 
observation that people seem to make some progress on virtually 
any task, even those that are unfamiliar. Given problems in symbolic 
logic or algebra, naive subjects displayed a consistent set of widely 
applicable problem-solving methods ( I ) .  Generality came to be seen 
as a keystone of human intelligence; intelligence appeared to reside 
in a small collection of domain-independent problem-solving meth- 
ods. Programs based on such methods displayed encouraging early 
success. 

It became clear that although these methods provided a useful 

foundation, they were soon overwhelmed by the complexity of real- 
world problems. Performance on such problems seemed to require 
large stores of task-specific knowledge (2). 

This observation led to a significant shift in emphasis for the part 
of the field that came to be known as knowledge-based systems, in 
which work has come to focus on the accumulation, representation, 
and use of knowledge specific to a particular task. The term 
knowledge-based is primarily a label for this focus and an indication 
of the source of the systems' power: task-specific knowledge, rather 
than the domain-independent methods used in early A1 programs 
(3). That knowledge is often incomplete and at times involves 
inexact judgments, unlike the knowledge that underlies carefully 
designed algorithms of traditional software. The systems can also be 
characterized by an architecture and a set of capabilities that result 
from it, inclulng explanation, knowledge acquisition, and tutoring, 
as well as problem-solving performance. 

Previous discussions have focused largely on performance, de- 
scribing applications and levels of performance reached (4). This 
discussion considers how these systems have expanded our view of a 
program, an expansion made possible in part by the ability to use the 
same knowledge in several different ways. This is demonstrated in 
the context of a rule-based system, since it is the most familiar 
technology used for constructing these systems. 

Randall Davis is an associate professor at the Sloan School of Management at 
Massachusetts Institute of Technology and a member of the MIT Artificial Intelligence 
Laboratory, Cambridge 02139. 

28 FEBRUARY 1986 ARTICLES 957 




