
Perspectives on
Artificial lnteaigence Programming

Programs are judged not only by whether they faithfully
carry out the intended processing but also by whether
they are understandable and easily changed. Program-
ming systems for artificial intelligence applications use
specialized languages, environments, and knowledge-
based tools to reduce the complexity of the programming
task. Language styles based on rocedures, objects, logic,
rules, and constraints reflect & erent models for organiz-
ing programs and facilitate program evolution and under-
standability. To make programming easier, multiple
styles can be integrated as sublanguages in a program-
ming environment. Programming environments provide
tools that analyze programs and create informative dis-
plays of their structure. Programs can be modified by
direct interaction with these displays. These tools and
languages are helping computer scientists to regain a
sense of control over systems that have become increas-
ingly complex.

P EOPLE WHO DEVELOP PROGRAMMING SYSTEMS NEED TO

organize them in ways that make them comprehensible to
other people and easy to modify. We will be concerned

mainly with the practice of artificial intelligence (AI) programming
and about the arguments and tensions that have shaped the current
state of the art. An intelligent system should embody and apply
information about itself so that it can assist in its own continuing
development.

The programming culture of the AI community has a somewhat
different emphasis than most "production" programming. The AI
programming process is not a sequential progression from specifica-
tion to implementation, testing, and release. Instead, an exploratory
approach is used in which specification and implementation evolve
together as the problem is understood and tested. Another differ-
ence is the frequent design of experimental specialized sublanguages
that make it easier to express solutions to the problems being
attacked.

List processing (1) is fundamental to AI programming (2). As an
example, the list

(IBM (A-Kind-Of ComputerCompany)(Headquarters NYC))

can be used to represent relations between the thing represented by
the symbol IBM and other things represented by the symbols
ComputerCompany or NYC. Manipulations of these list structures
can deduce implicit relations (3), for example, that IBM produces
computers (because it is A-Kind-Of ComputerCompany) . Programs
can use lists to build structures of unpredictable sizes and shapes
during execution without predetermined or artificial limits.

List structures are also used to represent programs in A1 systems,
and hence they are often used to build tools to infer implicit features

about programs themselves. This contrasts with typical program-
ming systems that deal with programs as a sequence of characters;
program changes are made by adding and deleting characters.
Higher level organizations of programs, such as the module bound-
aries and the calls between packages and so on, are parsed from these
characters but made available in very limited ways to the users. AI
systems provide users with interactive displays that describe systems
in these terms. A user can understand a system and change it directly
through these displays rather than indirectly by manipulation of
text.

A programming style is a way of organizing programs on the basis
of some conceptual model of programming and an appropriate
language to make programs written in the style clear. We will
describe styles organized around procedures, objects, logic, rules,
and constraints. Each style is a specialized language or sublanguage
that shapes the organization of programs written in that style.

Different styles differ substantially in what can be stated concisely.
Significant appeal arises from what does not have to be stated. By
eliminating redundancy, the intent of the code can be more easily
understood. This is an important virtue of, for example, automatic
storage management facilities that allow omission of code for
freeing storage. Different styles facilitate different kinds of program
change that ensure appropriate properties of the program remain
invariant. Experiments have led to systems in which a number of
styles are integrated and to others in which one style dominates.

Programming Styles
Proced%re-orientedprgramming. In this style, subroutines and data

structures are the two (separate) primitive elements. Subroutine calls
are the primary mechanism for program composition. Subroutines
have the property that they carry out the same algorithm when
called from different places. Adding a line to a calling program, and
thus changing the position of the call to a subroutine, does not
change the algorithm executed by the subroutine.

Data structure declarations allow programs to reference parts of a
complex data structure by name rather than, for example, by index
position in an array. In the declaration, a programmer can specify
once the method for looking up the named substructure rather than
specifying it in every place that the structure is referenced in the
procedures. To change the lookup process, a programmer need
only change the specification. AI systems provide automatic storage
management facilities that ensure that any data structure no longer
referenced directly or indirectly by the program is reclaimed. This
avoids problems that occur in systems where a programmer must

Daniel G. Bobrow is a research fellow and Mark J . Stefik is a rincipal scientist in the
Intelligent Systems Laboratory of the Xerox Palo Alto ~esea rcg Center, Palo Alto, CA
94304.

28 FEBRUARY 1986 ARTICLES 951

take responsibility for storage management, such as failure to return
unused storage or inappropriate deallocation of referenced storage.

Although programmers do not usually think about the invariants
associated with subroutine call, data access, or storage management,
they are essential for the composition of large programs. They
confine and control the effects of change. To the extent that
common changes are local, a language provides insulation from
change-induced bugs.

Some languages augment the notion of subroutine with features
intended to support better the sharing of code by several people.
Modula-2 (4) and Ada (5), for example, provide mechanisms for
defining modules--collections of related procedures and structure
definitions-and interfaces-descriptions of elements of a module
that may be used from outside that module. The interfaces are
intended to minimize interference as people change different parts of
a system.

The interface definition provides information about module data
types and procedure requirements that can be used for module
optimization. An implementation of a module is free to change any
features not "advertised" in the interface. With these restrictions,
independently developed, debugged, and compiled modules can be
loaded together. The interface definition is the defined narrow
pathway of interaction.

Object-oriented programming. This style (6, 7) has often been
advocated for simulation programs, systems programming, graph-
ics, and A1 programming. Although there are variations in exactly
what is meant by object-oriented programming (8), in all these
languages there are objects that combine state and behavior.

There are three major ideas in object-oriented programming: (i)
objects are defined in terms of classes that determine their structure
and behavior; (ii) behavior is invoked by sending a message to an
object; and (iii) descriptions of objects may be inherited from more
general classes. Uniform use of objects contrasts with the distribu-
tion of information into separate procedures and data in procedural
programming.

A message to an object contains a name for a behavior (often
called its selector) and some other parameters. For example, in a
traffic simulation we could have classes of vehicles such as Car and
Truck. To cause Car-1, an instance of the class Car, to move in the
simulation, a Loops (9) program would send a "Move" message to
Car- 1 :

(send Car-1 Move 400 50)

Associated with the class Car is a particular method for Move that
is run for this invocation. The class Truck has a different method,
since trucks must obey different traffic rules and consume different
fuel. The "message passing" style allows each class to implement its
response to a message in its own way. These methods can be
changed independently. In contrast, procedure-oriented program-
ming would require that all the variations of Move be incorporated
into the single procedure that implements Move.

Classes can inherit description from other classes. PoliceCar can
be defined as a specialization of the class Car. Then PoliceCar has all
of the structure and behavior of Car except that which is explicitly
overridden or added in PoliceCar. For example, PoliceCar can add a
two-way radio and a method for Move that can exceed the speed
limit or interact with traffic light control. Such inheritance of a
specialized class from its "superclass" reduces the need to specify
redundant information and simplifies updating and modification,
since information can be entered and changed in one place.

Specialization and message sending synergize to support program
extensions that preserve important invariants. For example, splitting
a class, renaming a class, or adding a new class does not affect simple

message sending unless a new method is introduced. Instances of a
specialized class follow exactly the same protocols as a superclass
until local specialized methods are defined. Similarly, deleting a class
does not affect message sending if the deleted class does not have a
local method involved in the protocol.

Changes to the inheritance network are common in program
reorganization. Programmers often create new classes and reorga-
nize their classes as they understand the opportunities for factoring
parts of their programs. Together, message sending and specializa-
tion provide a robust framework for extending and modifying
programs.

Access-oriented programming. In object-oriented programming,
when an object is sent a message it may change the values of some
variables that make up its internal state. In access-oriented program-
ming (lo), when an object changes the value of a variable a message
may be sent to another object as a side effect if the value associated
with that variable is an "annotated value." In terms of actions and
side effects this is dual to object-oriented programming. The
annotated value is a specialized object and can contain state other
than the value.

Access-oriented programs are factored into parts that compute
and parts that monitor the computations. For example, suppose one
were to build a traffic simulation program with an interactive display
showing the state of the simulation. By dividing it into a simulator
and a display-controller, one can separate programming concerns.

The simulator represents the dynamics of traffic. It has objects for
such things as automobiles, trucks, roads, and traffic lights. These
objects exchange messages to simulate traffic interactions. For
example, when a traffic light object turns green, it sends messages to
start traffic moving.

The display-controller has objects representing images of the
traffic and provides an interactive user interface for scaling and
shifting the views. It has methods for presenting graphics informa-
tion. The simulator and the display-controller can be developed
separately, provided that there is agreement on the structure of the
simulation objects.

Access-oriented programming provides the "glue" for connecting
the simulator and display-controller. The process of connection is
dynamic and reversible. When a user tells the display-controller to
change the views, it can make and break connections to the
simulator as needed for its monitoring. Thus at one time a user can
monitor the simulation as if looking at a map of the town and at
another time as if looking at the instrument panel of a particular car.
For the former, active values attached to the positions of each
vehicle are used to update the display; for the latter, probes on the
speed of the auto and level of the gas tank can update pictorial
gauges. Attaching such gauges does not change the behavior of the
program being monitored.

Property annotations in annotated values can be used to store
useful but subsidiary quantities. Some systems store a measure of the
certainty of that value being correct. A reasoning system can store
this annotation without having to change the structure of the
represented object. Other values and rules used in computing this
value could be stored as annotations, as in truth maintenance
systems (11). Annotations also provide a place for documentation
for human readability of data structures.

Access-oriented programming supports several invariants under
program change. Annotations can be added to programs without
causing them to stop working. Annotated values are invisible to
programs that are not looking for them. They can be added to data
that are already annotated. The same invariants hold for recursive
annotated values, that is, for descriptions of descriptions. Nested
active values enable multiple independent side effects on variable
access.

SCIENCE, VOL. 231

Lgic programming. There are both declarative and procedural
interpretations of logic statements (12). The simplest statements in
Prolog, the most popular logic-based language, is a statement of a
relation; for example:

Brother(Danny, Rusty)
As a declarative statement, it has a truth value; procedurally it is a

request to check the truth of the statement. Prolog uses a database of
facts entered by statements of the form

Assert(Brother(Danny, Rusty))

to store this relation in a database. A query Brother(Danny, X)
searches the database and returns X = Rusty. The same elementary
fact could also be used to answer the query Brother(X, Rusty).

In addition to simple statements and queries, Prolog programs
consist of sets of statements stored in the database. Each statement
has the form

consequent :- antecedent-1, . . . , antecedent-n

This is read declaratively as, consequent is true if (:-) each of
antecedent-1 to antecedent-n is true. In a procedural reading, the
consequent is taken as a goal to be achieved, and the antecedents are
subgoals to be tried in order. The declarative interpretation of the
statement,

Uncle(X, Y) :- Brother(X, Z), Father(Z, T)
is "Xis an Uncle of T if there is some Z, such that X is a Brother of
Z, and Z is the Father of T."

This statement can be read as directions for achieving a goal
Uncle(X, Y): first find a Z such that Brother (X, Z), and then prove
that Z is a Father of Y. To verify the truth of Uncle(Danny,
Johanna), the system could find Brother(Danny, Rusty) and Fa-
ther(Rusty, Johanna).

Unlike ordinary procedures, any number of the inputs to a
program can be left unspecified. The system searches for one (or
upon request, more) bindings of the input parameters that make the
consequent true. By repeated application of the Uncle rule, starting
with Uncle(Danny, X), the system will find all the nephews and
nieces of Danny; Uncle(X, Johanna) can be used to find all the
uncles of Johanna.

Since the given Uncle rule does not completely specify the Uncle
relation, a second rule can be added after the first:

Uncle(X, Y) :- Brother(X, Z), Mother(Z, Y)

After searching the database (or using other rules) with the first
rule, Prolog would then "backtrack" to use the second rule. In
general, any number of ordered rules can be used to specify a
relation. An advantage of using Prolog is that new rules can be easily
added to modify the system behavior. The system will perform
exhaustive search with all the rules, and with all clauses from the
database, to find appropriate bindings for input parameters that are
unspecified.

One of the important features of logic programming is that is
separates the idea of goals from the statements of how to satisfy
them. This reification of goals, rather than explicit calls to particular
methods for achieving them (subroutines), allows new methods to
be added without the need to change the goal statements. This is an
advantage in the incremental development of a system, but it may
make program behavior hard to understand.

Automatic search through the database of rules rather than
explicit control has another disadvantage. Some obvious and inno-
cent-looking rules, such as that expressing the commutativity of the
Brother relation,

can cause the system to go into an infinite loop. The problem of
search control is an area of active research in the logic programming
community.

Because Prolog provides simple rules with clear declarative se-
mantics and a convenient interpretation for database search, it was
chosen as the starting point for the fifth-generation computer
project in Japan (13).

Rule-based programming. The widespread use of the term rule-
based programming belies the considerable diversity in what it is
used to mean (14, 15). Rule languages are used to support the
building of knowledge bases. Rule environments include tools for
generating explanations of program behavior, tools for answering
questions, and tools for acquiring and integrating new rules into a
program.

Rule languages use if-then statements as shown in this rule from
Mycin (16):

If the Gram stain of the organism is Gram-negative,
the morphology of the organism is rod, and
the aerobicity of the organism is anaerobic,

then there is suggestive evidence (0.7) that the identity of the
organism is bacteriodes.

This rule can be used by reasoning forward from laboratory tests to
accumulate evidence about the identity of a disease organism. It is
also used to reason backward from a goal of finding the identity of
the invading organism to determine what tests should be run. The
(0.7) in the above rule is a weighting for the evidence mentioned in
the preconditions of the rule. Extensive work has been done in the
context of rule-based systems on techniques for combining multiple
pieces of evidence (17). Uncertain information is not usually
handled in logic-based systems.

Rule-based systems provide explanations of results to users by
keeping track of which rules were invoked in a consultation. After a
consultation they can explain the reasoning the system used. A
fundamental assumption in these systems is that the display of rules
applied is a reasonable explanation of system behavior. Explanations
do not reflect assumptions underlying rules, causal mechanisms, or
the current knowledge of the user.

For small tasks, rules are viewed as independent, and getting them
right is easy because rules are small and manageable. For large tasks,
the interactions of rules must be considered. Some rule languages
organize rules into hierarchical rule sets that describe how the rules
are to be applied. Some provide problem-solving frameworks in
which rules can be organized. For example, each subtask in a
network can carry its own relevant rules, as in Pride, an expert
system for aiding in a mechanical design (1 8). In Blackboards (19),
rules are attached to nodes of a general problem-solving model. In
structured systems, the programming task of adding new rules also
requires deciding where to put them.

In summary, the available rule languages are important in narrow,
carefully chosen applications, often for expert systems. Their funda-
mental strength-the construction in terms of independent individ-
ual rules-is also their limiting factor.

Constraint-oriented programming. The idea of developing pro-
gramming languages around the concept of constraint satisfaction
has appealed to computer scientists for years (20). The idea is that a
programmer need only declare certain relations among program
variables without saying precisely how they should be achieved. The
details of the computation can then be figured out by the system by
means of implicit, automatic constraint satisfaction techniques.

For example, the equation x + y = 5 can be viewed as a constraint
on possible values for the variables x and y. If numeric values for x
and y are given, we can substitute those values into the equation and
determine whether the constraint is satisfied. In this example, a

28 FEBRUARY 1986 ARTICLES 953

Fig. 1. A browser, showing the inheritance of classes for the simulation. On
the right is an interactive menu for some of the operations that can be done
by pointing to elements of this browser. The Add item on the menu allows
addition of structure, methods, or classes. As indicated, the default operation
is to add a method. Such browsers provide a simple way of specifying
common changes and maintain an up-to-date display of the program
structure throughout the process.

numeric value for either variable together with the constraint is
enough to determine the value of the other variable.

The most widely used and practical systems based on constraints
are the spread-sheet programs that have been popular on personal
computers. Spread-sheet programs provide a matrix of rows and
columns for organizing values and constraints among them. For
example, in a rental income application, columns of the matrix could
correspond to months of a year and rows could correspond to
income and categories of expense. Constraints connect dependent
elements, so that total monthly expense is maintained as the sum of
the individual expenses in the same column. When monthly rental
rate, taxes, and utilities variables are filled in. for the first month,
constraints in a spread-sheet fill in as much of the table as possible,
including various subtotals.

The constraints in a spread-sheet program differentiate between
dependent and independent variables. When the independent varia-
bles are filled in, values for dependent variables are updated
immediately. Reasoning in both directions is provided in some
applications, for example, in graphics and simulation (21).

Constraint satisfaction systems have always been specialized to
exploit the nature of the particular kinds of constraints and hence
have not been considered general purpose. Nonetheless, there are
several research efforts aimed at increasing the breadth of applicabil-
ity of constraint languages for specifying the behavior of computers
(22).

Use of Multiple Paradigms
Programming language development has often consisted of the

honing of a particular paradigm for organizing programs (23).
Advocates of multiple styles in a single system (24, 25) argue that,
just as there are many tools in a carpenter's toolbox, each specialized
to its purpose, there should be many tools in the programmer's kit.
One should not be forced to pry up nails with a screwdriver.
However, use of multiple paradigms does involve an additional cost
of learning more than one style, and programs may be required to
transform between different representations of the same information
chosen to optimize processing within a style.

When a problem does not fit well in a style, resulting programs
may be both awkward and long. For large applications, the various
costs for using a particular style can vary across parts of the program.
In addition to the cost of the initial writing of the program and the

cost of running the program, the costs of debugging and change as
the program and its specifications evolve must be considered. The
total cost of a system can be lower when more than one style is used.
For example, many expert systems are developed in which object-
oriented programming is used for representing the basic concepts,
rules are used to specify the inferences, access-oriented program-
ming is used to drive the graphics display, and procedures are used
for the overall control structure.

Sometimes the search for integration can lead to a language that
gracefully subsumes the different styles. This is illustrated in the
deep integration of procedure-oriented programming and object-
oriented programming in CommonLoops (26). In ordinary proce-
dure calls, the code to carry out an operation is looked up by using
only the name of the procedure. In object-oriented programming,
the code lookup process for message sending uses both an operation
name (the selector) and also the class of the first argument.

Procedure call and message sending are generalized in Common-
Loops, so that code lookup uses the selector and the types of as
inany arguments as desired (multimethods). Thus, CornmonLoops
does more than just provide both message sending and procedure
call. The integration yields a continuum of method definitions from
simple procedures to methods with many arguments whose types
are specified. The familiar methods of object-oriented programming
fall out as a special case where the type (class) of only the first
argument is used. A programmer using code developed by others
need not be aware of whether there are multiple implementations
that depend on the types of multiple arguments.

Computer scientists are just beginning to develop examples of the
integration of styles in 1:ybrid or integrated languages and criteria
for judging them (25). Different programming languages are no
longer just focusing on a particular style; styles now coexist and are
beginning to evolve together (27).

Programming Environments
Programming languages reduce the complexity of programming

by simplifying the expression of instructions. Programming envi-
ronments are the set of tools used to build, change, and debug
programs. Operating systems have played this role, but now special-
ized environments (28) that know about the language and program
structure reduce complexity by taking some responsibility for man-
aging changes to programs.

A1 programming environments provide tools that analyze pro-
gram structure and create informative displays that help program-
mers to develop mental models of the systems. They also provide
simplified means for specifying changes to a program that free a
programmer from specifying many of the details. Tools may also be
used to compensate for a particular distribution of information
imposed by one or more styles of programming. These tools are
particularly important in the exploratory programming style (29)
used in AI, where the specifications for a task are developed as parts
of it are implemented.

Understanding and changing the static structure of a program.
Traditionally, the main descriptions of programs available to pro-
grammers have been the text of program instructions. This is useful
when a program fits on a few pages, but stacks of program listings
are inadequate for visualizing large programs. Nor is the situation
much improved by computerizing the same view with text editors
and window systems. Text editors do not provide a flexible overview
and are of limited use in making many important kinds of systematic
changes.

The primary struggle is often to simplify the organization of a
system. Simplification may require exploring and changing the

SCIENCE, VOL. 231

boundaries between and within subsystems. It is now possible to
create automatically more informative views of programs that reflect
the kinds of questions that programmers ask when they are modify-
ing or trying to understand a large system.

For procedure-oriented programming, tools can display interac-
tive graphs that show where procedures and variables are defined
and used (30). In object-oriented programming, changes to the
inheritance network are common in program reorganization. An
interactive class browser such as that shown in Fig. 1 can make it
easy to add, delete, and rename classes and methods, examine
documentation, trace the inheritance of particular methods or
variables, and move definitions of methods and variables in the
inheritance lattice.

Understanding and changing the dynamic structure of a program.
Testing, debugging, and performance tuning are all important parts
of the task of programming. In the current state of the art, these
tasks cannot be done practically by an analysis-of static program
structure, and so programming environments provide interactive
tools for them.

Conventional programming practice has long included means for
tracing the execution of programs to aid in debugging. In the
simplest case, tracing is achieved by inserting statements into a
program to cause printing when various parts of a program are
activated and to print out indications of the internal state. Other
capabilities allow interruption of program execution when certain
conditions arise, such as when a particular procedure is called, a
variable is accessed, or a value is set that is outside a specified range.

An improvement on tracing is the use of gauges, as shown in Fig.
2. Several systems that support access-oriented programming pro-
vide a suite of gauges that can be attached to the variables of running
programs to display the monitored values. Attaching a gauge to a
program variable is analogous to attaching a voltmeter to a circuit.
The gauge does not interfere with the operation of the program, and
it is not necessary to search through a long listing to find values for
variables. A programmer can create an array of gauges on the display
and watch them while the program runs.

Modern environments let a programmer examine the state of a
computation when a program is interrupted, either by an error or by
a user request. If a bug is found and a fix made, the user can back up
from a nested computation to a call that invoked it and try the
computation again from that point. Some systems can also run a
program at slow speed or one step at a time. The ability to interrupt
a program's execution to make changes can make a dramatic
difference in the overall productivity of programming because this
enables a programmer to identify and correct several errors in a
single short session.

Many of these interactive capabilities for controlling execution are
not new ideas. Some of them have been available in Basic and Lisp
systems for several years. They are mentioned because they are less
common in production programming environments for large sys-
tems, they are important for incremental debugging, and they are
usefully combined with tools for analyzing and modifying program
structure.

AI programming environments tend to do late-binding by de-
fault. This means that they usually provide the flexibility for
programmers to change a running program without losing the state
of the computation. Programmers are concerned about the time it
takes to complete a cycle of revision: discover a problem, find a bug,
make a revision, and test again. Late-binding systems tend to speed
up this cycle.

Late-binding can slow program execution. Optimization facilities
in AI systems allow compilation of efficient programs before release
for wide use. Exploratory programming encourages a style of
programming in which exploration is followed by analysis, which is

Fig. 2. Gauges, which can be attached to any object variable at any time to
view the changing value of a variable. A set of attached gauges allows a
simultaneous view of the dynamic state of a program.

then followed by optimization. In this approach, optimization is
focused where it is needed. This leads to effective optimization
guided by real measurements rather than being based on preconcep-
tions (often misconceptions) of system designers. A program's
performance can be largely determined by the performance profile
of underlying system facilities, whose performance on particular
cases may not be known ahead of time.

A graphical view of timing analysis, as shown in Fig. 3, can be
useful for understanding the incremental and integrated time spent
in any part of the system during a particular computation.

Narrow Knowledge-Based Systems
Work on programming environments can be understood as an

application of computer technology to the task of writing and
maintaining programs. The same theme can be seen in the work on
compilers. Compilers convert high-level language descriptions into
specific instructions. They use their knowledge of machine architec-
ture to yield efficient implementations. Compilers, like program-
ming environments, are intended to be used for all kinds of
programming tasks.

An important strategy for making tools that can give more
comprehensive kinds of assistance is to incorporate specific knowl-
edge into them. In the 1960's work on compilers was sometimes
called automatic programming. Current research on automatic
programming (31, 32) follows this direction of incorporating
increasing amounts of knowledge about programming. The most
successful uses of automatic programming are even more narrowly
focused; these are the application generators now used commercially
for creating specially tailored systems for business applications, such
as accounting and inventory.

The same trend toward knowledge-intensive systems can be seen
in the creation of so-called shells for expert systems. An expert
system shell is a specialized sublanguage and environment designed
to support a set of closely related applications. Shells are an
intermediate point between specific applications and general-pur-
pose "knowledge-engineering" environments. Shells can be built for
such applications as planning, scheduling, and a variety of special-
ized office tasks.

Shells have four things that general programming tools do not:

28 FEBRUARY 1986 ARTICLES 955

prepackaged representations for important concepts, inference and
representation tools tuned for efficient and perspicuous use in the
applications, specialized user interfaces, and generic knowledge
about the application. For example, a shell for a planning application
could have representations for modeling goals and agents. Its
specialized knowledge could include rules, such as one specifying
that an agent can be only at one place at a time. It would have
generic categories for things such as time, tasks, serially reusable
resources (such as a room), and interfaces for interacting with
alternative plans.

These knowledge-intensive systems 'blur the boundaries between
environments and languages, since they combine features of both.
Domain-specific knowledge enables a system to take on more of the
responsibility for checking and installing changes. Domain-specific
knowledge also enables systems to provide specialized user interfaces
that are intended to be closer to the concepts of the application.
General-purpose environments have broad applicability; specialized
systems can do more in a narrower domain.

Directions and Themes Revisited
The developments we have discussed in programming languages,

environments, and knowledge systems provide different perspectives
on what a program is. Conventionally, a program is a set of
instructions for a machine that specifies how information is to be
processed. Programming is the process of translating user intentions
and requirements into a formal language understandable by a
computer.

Variations in programming languages determine what can be
stated concisely, what must be stated in multiple places, and what
need not be stated in a program. Objects, rules, procedures,
constraints, and other programming concepts make different trade-
offs in the way that they organize information. If a programming
language allows one to write procedures but not constraints, then
expressing desired relations among variables requires having state-
ments in all those parts of the program that can potentially change
the values of the variables. Inheritance allows structural description

and methods to be shared by classes without redundant specifica-
tion.

When a system makes directly manipulatable the concepts of an
application, programs become more understandable. For example,
some bookkeeping and accounting concepts are represented and
manipulated directly in spread-sheet programs. While the state of
the art has no dependable cognitive metric for how much this helps,
the issue is a recurring theme in the design of languages and
knowledge-based systems. I t has to do with reducing the levels of
abstraction that must be penetrated to understand system behavior.

In contrast, many of the programs for modern physics experi-
ments have become large and perhaps unmanageable. There are so
many levels of mathematical technique and abstraction between the
terminology of physics and the text of the programs that they have
become unwieldy and hard to understand. Indeed, one important
role for A1 systems is as an impedance matcher, or natural bridge,
between mental concepts and program symbols. The Sophie system
(33) is an example of a program that, among other things, provides
an interface between descriptions of circuits and Spice, the underly-
ing simulation program for modeling circuit behavior. Hybrids like
this suggest ways of using programs in different contexts, thus
"preserving programming capital."

Programming environments provide us with another answer to
what a program is. Environments determine what a programmer
sees when writing or modifying a program. They include different
kinds of interactive browsers, as seen in Figs. 1 to 3, that provide
different views of a program based on automatic analysis. These
visualizations are designed to help programmers gain perspective on
their programs, and in doing this they blur the boundary between
language and environment.

As browsers are increasingly used for understanding and changing
systems, they displace program listings. Ultimately they are more
powerful (because they are active), can employ specialized knowl-
edge, and can provide alternative views. Today's programs are parts
of larger complex systems, and the main activity of programming
has moved from the origination of new programs to the modifica-
tion of existing ones (34). Programs are increasingly judged not only
by whether they faithfully carry out the intended processing but also

Fig. 3. Spy timing-analysis
tree in Interlisp-D (35). The
height of each box is pro-
portional to the fraction of
the time spent in the rou-
tine. Large boxes are associ-
ated with potential candi-
dates for optimization. The
border of each box is used to
indicate modes, such as
"time includes called sub-
routines," "appears else-
where on display," and so
forth.

SCIENCE, VOL. 231

by whether they are understandable and easily changed. Thus
computer tools ;hat bring computational leverage to prigramming
are helping computer scientists to regain a sense of control over
systems that have become increasingly complex.

-
REFERENCES AND NOTES

I. J. ~McCarth Commun. ACM 3, 185 (1960).
2. E. ~ h a r n i z C. Riesbeck, D. McDermott, Artificial Intelligence Programming

(Erlbaum, Hillsdale, NJ, 1980).
3. R. Davis, Science 231, 957 (1986).
4. N. Prgqramming in Modula-2 (Springer-Verlag, New York, 1985)
5. B. Wichman,Zommun. ACM 27, 98 (1984).
6. G. Birtwistle, 0. Dahl, B. Myhrhaug, K. Nygaard, Simula Begin (Auerbach,

Phiadel hia, 1973).
7. A ~ o l d g e r and D. Robson, SmalltaNs-80, The Langudge and Its Implementation

(~ddison-$eslev, Reading, MA, 1983).
8. M. Stef i and D. G. Bobrow, AIMqpzine 6, 40 (1985).
9. D. G. Bobrow and IM. J. Stefik, The LoopsManud (Xerox Corporation, Palo Alto,

CA, 1983).
10. M. Stefik, D. G. Bobrow, K. Kahn, IEEE Sofhvare 3, 10 (1986).
11. J. Doyle, Artif: Intell. 12, 231 (1979).
12. R. A. Kowalski, Commun. ACM 22, 424 (1979).
17. T. ~Moto-oka. Ed.. Fifch Generation Cornouter Systems (Elseviermorth-Holland,

Amsterdam, i982).' '
14. R Davis and J. King, in Machine Intelligence, E. Elcock and D. ~Michie, Eds.

(Wiley, New York, 1976), vol. 8, p 300 33z
15. D. Waterman and F. I I a y e s - ~ o J , ids.,-Pahem-~irected Injrence Systems (Aca-

demic Press, New York, 1978).

16. B. G. Buchanan and E. H . Shortliffe, Rule-Based Expert Proguams: The MTCIN
Expen'ments o f the Stanford Heuristic Pro~rammin~ Prqect (Addison-Wesley, Read- - - -
ing, MA, I&).

17. J. Gordon and E. H . Shortliffe,Artificial Intelligericc 26, 323 (1985).
18. S. Mittal, C. L. Dym, M. Mojaria, in Applicatwris $Knowledge-Based Systems to

EngineeringAnalysis andDesign, C. L. Dym, Ed. (American Society of Mechanical
En ineers, New York, 1985), p. 99.

19. B. f I a y e s - ~ o t h , ~ m y Intell. 26, 251 (1983).
20. I. E. Sutherland, thesis, Massachusetts Institute of Technology, Cambridge (1963).
21. A. Borning,ACM TOPLAS 3, 353 (1981).
22. G. Steele, thesis, ~Massachusetts Institute of Technology, Cambridge (1980).
23. H . Abelson and G. Sussman, Stnrcture and Inteqretation $Computer Pvograms

(Massachusetts Institute of Technology Press, Cambridge, 1985).
24. R Fikes and T. Kehler, Commun. ACM 28, 904 (1985).
25. D. G. Bobrow, IEEE Tmns. Sofhvare Eng. SE:11, 10 (1985).
26. D. Bobrow, K. Kahn, G. Kiczales, L. masi inter, M. Stefik, CommonLoopr, A

GYacefirlMerger of Common Llsp and Ohect-On'entedProgramming (Xerox Corpora-
tion, Palo Alto, CA, 1985).

27, B. Hail ern IEEE Sofiare 3, 6 (1986).
28. A. ~odber; , in Interactive Pro ramming Environments, D. Barstow, H. Shrobe, E.

Sandewall, Eds. (Mc~raw- if, New York, 19841, p. 141.
29. B. Sheil, ibid., p. 19.
30. W. Teitelman and L. Masinter, ibid., p. 83.
31. D. Barstow, AAAZ Mvazine 5 , 5 (1984).
32. C. Rich and H. Shrobe, in Interactive Progvamming Enviuonments, D. Barstow, H .

Shrobe, E. Sandewall, Eds. (~McGraw-Hill, New York, 1984), p. 443.
33. J , S. Brown, R. Burton, J. de Kleer, in Intelligent Tutoring Systems, D. Sleeman and

J. S. Brown, Eds. (Academic Press, New York, 1983), p. 227.
34. T. Wino rad, Commun. ACM 22, 391 (1979).
35 M. sanefa, Interlisp-D Reference Manual (Xerox Corporation, Palo Alto, CA,

1983).
36. We thank J . S. Brown, J. de Kleer, K. Kahn, G. Kiczales, M. Miller, and J. Shrager

for comments on earlier versions of this paper.

Knowledge-Based Systems

First developed two decades ago, knowledge-based sys-
tems have seen widespread application in recent years.
While performance has been a strong focus of attention,
building such systems has also expanded our conception
of a computer program from a black box providing an
answer to something capable of explaining its answers,
acquiring new knowledge, and transferring knowledge to
students. These abilities derive from distinguishing clear-
ly what the program knows from how that knowledge
will be used, making it possible to use the same knowl-
edge in different ways.

W ORK IN ARTIFICIAL INTELLIGENCE (AI) HAS OFTEN
looked for inspiration to the only easily accessible exam-
ple of intelligence, human behavior. The earliest attempts

to design intelligent programs were heavily influenced by the
observation that people seem to make some progress on virtually
any task, even those that are unfamiliar. Given problems in symbolic
logic or algebra, naive subjects displayed a consistent set of widely
applicable problem-solving methods (I) . Generality came to be seen
as a keystone of human intelligence; intelligence appeared to reside
in a small collection of domain-independent problem-solving meth-
ods. Programs based on such methods displayed encouraging early
success.

It became clear that although these methods provided a useful

foundation, they were soon overwhelmed by the complexity of real-
world problems. Performance on such problems seemed to require
large stores of task-specific knowledge (2).

This observation led to a significant shift in emphasis for the part
of the field that came to be known as knowledge-based systems, in
which work has come to focus on the accumulation, representation,
and use of knowledge specific to a particular task. The term
knowledge-based is primarily a label for this focus and an indication
of the source of the systems' power: task-specific knowledge, rather
than the domain-independent methods used in early A1 programs
(3). That knowledge is often incomplete and at times involves
inexact judgments, unlike the knowledge that underlies carefully
designed algorithms of traditional software. The systems can also be
characterized by an architecture and a set of capabilities that result
from it, inclulng explanation, knowledge acquisition, and tutoring,
as well as problem-solving performance.

Previous discussions have focused largely on performance, de-
scribing applications and levels of performance reached (4). This
discussion considers how these systems have expanded our view of a
program, an expansion made possible in part by the ability to use the
same knowledge in several different ways. This is demonstrated in
the context of a rule-based system, since it is the most familiar
technology used for constructing these systems.

Randall Davis is an associate professor at the Sloan School of Management at
Massachusetts Institute of Technology and a member of the MIT Artificial Intelligence
Laboratory, Cambridge 02139.

28 FEBRUARY 1986 ARTICLES 957

