
The 1985 Nobel Prize in Physics 

T HE 1985 NOBEL PRIZE IN PHYSICS HAS BEEN AWARDED TO 

Klaus von Klitzing for the discovery of the quantized Hall 
effect, a remarkable phenomenon that occurs in certain 

semiconductor devices at low temperatures in very strong magnetic 
fields. The phenomenon was observed in 1980 in experiments by 
von Klitzing at the High-Field Magnet Laboratory of the Max 
Planck Institute, Grenoble, France, and was described in a paper by 
him and two collaborators, G. Dorda of Siemens Research Labora- 
tory and M. Pepper of Cambridge University, who developed the 
samples used in the measurements (1 ) . 

The announcement of the quantized Hall effect came as a great 
surprise to condensed-matter scientists, and the subsequent effort to 
explain the effect has led to a major revision of our understanding of 
electronic conduction in strong magnetic fields. Moreover, the store 
of surprises was not exhausted by von Klitzing's original work. In 
1982, during the coutse of an experiment designed to study the low- 
temperature magnetotransport properties of semiconductor systems 
with lower carrier density and higher mobilities, D. C. Tsui, H. L. 
Stij,,r, and A. C. Gossard, of AT&T Bell Laboratories, discovered 
another remarkable phenomenon, generally denoted the fractional 
quantized Hall effect (2), in contrast to the "integraln effect original- 
ly observed by von Klitzing. Although there is a great similarity 
between the two effects, the new discovery has led to a revision of 
theoretical concepts that may be even more radical than the first. 
h addition to its impact on basic physical concepts, the quantized 

Hall effect has a direct application. As was noted in the original work 
of von Klitzing ct al., the effect can be used to construct a laboratory 
standard of electrical resistance that is much more accurate than the 
standard resistors currently available. Moreover, if the quantized 
Hall effect is combined with a new calibration of an absolute 
resistance standard, one should be able to obtain an improved 
measurement of the fundamental dimensionless constant of quan- 
tum electrodynamics, the he-structure constant a. 

The Quantized Hall Effect 
The quantized Hall effect is observed in artificial structures known 

as two-dimensional electron systems. The conduction electrons in 
these systems are trapped in a very thin layer, such that the electronic 
motion to the layer is frozen into its lowest quantum 
mechanical state and plays no role in the conductivity of the device. 
In vori Klitzing's original experiment, the system used was a silicon 
field effect transistor (MOSFET) of very high quality, similar in 
construction to the standard transistor on integrated circuit chips. 
The electrons here are trapped in a so-called inversion layer near the 
surface of a silicon crvstal that is covered with a film of insulatine w 

silicon oxide, on top of which is deposited a metal "gate electrode," 
used to control the density of conduction electrons in the inversion 
layer. In many recent experiments the electrons have been trapped at 
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the interface between two different semiconductors, such as a 
heterojunction between gallium arsenide and the alloy gallium- 
aluminum arsenide. 

To study the Hall effect, a strong magnetic field B is applied 
perpendicular to the plane of the sample, while a small current I, is 
made to flow within the plane. At the same time, one measures the 
voltage drop V x  parallel to the current and the "Hall voltage" V y  
across the sample in the direction perpendicular to the current. The 
Hall resistance RH is defined as the ratio VY/IX. 

In most electronic systems the Hall resistance increases steadily 
with the strength of the applied magnetic field. The dramatic 
discovery of von Klitzing was the existence, in the two-dimensional 
systems at sufticiently low temperatures, of a series of plateaus in the 
Hall resistance where the value of RH remained constant over a 
range of values of B and which satisfied the following simple 
formula with extremely high accuracy: 

where h is Planck's constant, e is electronic charge, and i is an integer 
that varies from one plateau to another (Fig. 1). 

For the ranges of magnetic field and carrier concentration where 
the quantized Hall effect is observed, the voltage V x  parallel to the 
current is observed to vanish, in the limit of zero temperature, so 
that the current flows without dissipation. Under these conditions 
the Hall resistance is independent of the precise shape or size of the 
sample. The universality of RH on the quantized Hall plateaus is in 
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Fig. 1. Schematic plot of the Hall resistance R H  = Vy/Ix and the ordinary 
resistance R = Vx/Ix as a function of the perpendicular magnetic field B for a 
two-dimensional electron system at very low temperatures. Plateaus in RH 
and vanishing ofR are manifestations of the quantized Hall effect. The point 
Ro is the resistance in zero magnetic field, which depends on the sample 
involved, while the universal quantity hie2 has the value 25,812.80 ohms. 

strong contrast to the ordinary electrical resistance of a wire, which 
is sensitive to the size of the sample and its temperature, chemical 
purity, and density of structural defects. Indeed, for a standard 
calibrating resistor, one must take great care to avoid shape changes 
of any kind. 

In the original measurements of von Klitzing, the accuracy of Eq. 
1 was confirmed at a level of a few parts per million, with the 
principal error arising from the uncertainty of the calibrating 
resistor. More recent experiments have pushed this accuracy to 1 
part in 6 million. The ratio of the values of RH on different Hall 
steps and between silicon and GaAs samples has been measured with 
still greater accuracy, and found to agree with the ratio of integers at 
a level of 3 parts in 10' (3). It is almost without precedent for any 
physical measurement of a solid material except in superconductivity 
to be reproducible at this level of accuracy. 

In samples that exhibit the fractional quantized Hall effect, one 
sees, in addition to the integer plateaus, steps in the Hall resistance 
where i is replaced by a simple rational fraction,plq. There have been 
unmistakable observations of fractional plateaus at values ofplq that 
include 113, 213, 413, 513, 215, and 315, and there is at least some 
indication or indirect evidence for Hall plateaus at a variety of other 
fractions with odd denominators. There is no convincing evidence 
for a Hall plateau at a fraction with an even denominator, although 
there have been published reports of resistance anomalies that could 
be associated with such plateaus. 

The fractional steps are observed only in samples of the highest 
quality, and generally require lower temperatures and stronger 
magnetic fields than the integer quantized Hall effect. The stringent 
conditions necessary for observation of the fractional steps have, in 
fact, been a motivating force to stretch the limits of semiconductor 
materials technology and to extend the experimental capability for 
measurements at very strong fields and low temperatures. 

Historical Setting 
Certain aspects of the integral quantized Hall effect had, in fact, 

been predicted in 1975, 5 years before von Klitzing's experiment, by 
the Japanese theorists T. Ando, Y. Matsumoto, and Y. Uemura (4). 
In an extensive theoretical investigation of the conducting proper- 
ties of two-dimensional electron systems in strong magnetic fields, 
they noted that, under some special conditions, the Hall resistance 
would be given by Eq. 1. They were also aware that the current flow 
should be perpendicular to the direction of the voltage drop under 
these conditions, so that the current would flow without dissipation. 
However, the theoretical methods used by these authors were 
approximate ones and there was no expectation that Eq. 1 would 
hold with any great precision. Moreover, it was not expected that 
the Hall resistance would be constant over such broad intervals of 
magnetic field strength as was eventually found experimentally. 

Several experimental studies of the Hall effect and of electrical 
conduction in MOSFET devices at low temperatures and strong 
magnetic fields were performed during the 1970's, and the results 
obtained were consistent with the approximate theory (5, 6). In 
general, however, there was no attempt to measure the Hall 
resistance with a high degree of accuracy, and the results of von 
Klitzing's 1980 experiment came as a surprise to workers in the 
field. 

Current Theoretical Picture 
The 1980 paper by von Klitzing et al. (1) emphasized not only the 

experimental precision of the effect and its potential importance as a 
standard of electrical resistance, but also the fact that existing 
theories were not adequate to account for this precision. Since then, 
a fairly complete understanding of both the integral and fractional 
quantized Hall effect has been developed. Here, however, I can 
present only a rough outline of the current theoretical picture. 

We may begin by considering a highly idealized model in which a 
collection of noninteracting electrons move in a two-dimensional 
system with an electrostatic potential that is constant, except for a 
small gradient due to a weak, uniform applied electric field. In such a 
system the Hall resistance is simply given by the classical formula 

where n is the density of electrons (per square meter) in the sample. 
If the two-dimensional system is connected to an external reservoir 
of electrons and the magnetic field B is allowed to vary, then the 
density of electrons in the layer will vary with B in such a way as to 
minimize the combined energy of the layer and reservoir, so Eq. 2 
may be nontrivial. 

It has long been known that the allowed states of a two- 
dimensional electron in an applied magnetic field are quantized into 
a series of discrete energy levels known as Landau levels and that the 
maximum density of electrons that can fit into a single Landau level 
is given by the quantity Belh. Because the total energy of the layer 
has a sharp local minimum when the density is chosen to just fill an 
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integral number of Landau levels, the ratio nhtBe will tend to be 
stabilized at each integer value for some range of magnetic field 
strengths. Combined with Eq. 2, this gives a heuristic explanation of 
the integer quantized Hall effect (1). 

In actuality, the electrostatic potential in a two-dimensional 
electron system is never constant on a microscopic scale. In particu- 
lar, there are always random variations in the potential arising from 
impurities in the material, and the classical Hall formula, Eq. 2, is no 
longer accurate under these circumstances. The impurity potential 
also broadens the Landau levels into energy bands, and if the 
potential is strong enough, then the density of electrons in a filled 
band is no longer given precisely by Beth. It appears, moreover, that 
most of the electron states in the Landau band are physically 
localized in space, and these states cannot participate in the conduc- 
tion of electricity by the system. The current is carried entirely by a 
few spatially extended states whose energies are near the center of 
each Landau band. Remarkably, the total Hall conductance of these 
extended states is precisely the same as the Hall conductance of the 
entire Landau level in the absence of impurities. Thus, as long as the 
Fermi energy, which separates the occupied electron states from the 
empty states at higher energy, is not located in a region where the 
states are spatially extended, there will be an integral number of 
occupied bands of extended states, and the Hall resistance remains 
quantized according to Eq. 1. We may say, then, that the noncon- 
ducting localized states act as an internal reservoir for the conduct- 
ing electrons, and an external reservoir is therefore not necessary to 
observe plateaus in the Hall resistance. It is also possible to explain 
why the electrical current flows without dissipation under the 
conditions of the quantized Hall effect. 

A quantum-mechanical derivation of the insensitivity of the Hall 
resistance to the perturbing potential of the impurities emerged 
gradually in a series of papers by various theorists (9, subsequent to 
the publication of von Klitzing's experiments. General arguments 
have been developed that exploit such principles as the "gauge- 
invariance" of quantum mechanics and the topological properties of 
the phase of a wave function in certain geometries as a function of 
magnetic flux. As may be imagined, the development of these ideas 
has led to an increased understanding of some of the hidden 
consequences of quantum mechanics, and there may well be applica- 
tions of this understanding to elementary particle theory or to other 
branches of physics outside the quantized Hall effect. 

A model of noninteracting electrons, with or without the random 
potential of impurities, can never give rise to the fractional quan- 
tized Hall effect. For this, it is necessary to take into account the 
effects of the electron-electron interaction in a fkdamental way. 
The theoretical explanation of the fractional quantized Hall effect, 
developed by R. B. Laughlin in 1983, together with extensions by 
other theorists, required the construction of a new type of quantum- 
mechanical wave function in which the electrons form a highly 

correlated liquid that is stable and incompressible when the ratio 
nbIBe is an ahpropriate rational fraction (8, 9). According to these 
theories, the stable states exist and thus the quantized Hall effect can 
be observed for many fractions with odd denominators but not for 
all such fractions. The stable states have a number of exotic 
properties, including elementary excitations whose charge is a 
fraction ( l l q )  of the electronic charge e. 

Although current theories can explain the general features of both 
the integral and fractional quantized Hall effects, the subject remains 
a very active one for experimental and theoretical study. In particu- 
lar, there are several quantitative measurements, and even qualitative 
features, that remain poorly understood (1 0). 

Biographical Notes 
Klaus von Klitzing was 36 years old at the time of his discovery of 

the quantized Hall effect. He had published his first scientific papers 
9 years earlier, in 1971, together with Professor G. Landwehr at the 
University of Wiirzburg, on the electrical properties of tellurium in 
strong magnetic fields (11). His research contributions during the 
1970's included studies of silicon inversion layers in strong magnetic 
fields (6) and under conditions of uniaxial stress (12). 

Since 1980, von Klitzing has played a leading role in the 
exploitation of the quantized Hall effect as a standard of electrical 
resistance and has investigated many other aspects of the behavior of 
two-dimensional electron systems (13). He is currently a director at 
the Max Planck Institute for Solid-State Research in Stuttgart. 

REFERENCES AND NOTES 

I .  K. v. Klitzing, G. Dorda, M. Pepper, Phys. Rev. Lett. 45, 4 9 4  (1980). 
2. D. C. Tsui, H.  L. Stormer, A. C. Gossard, ibid. 48, 1559 (1982). 
3. L.  Bliek et al., Metrologa 19, 83 (1983). 
4 .  T. Ando, Y. Matsumoto, Y. Uemura, J .  Phys. Soc. Jpn. 39, 279 (1975). 
5. T. Igarashi, J .  Wakabayashi, S. Kawaji, ibid, 38, 1549 (1975); S. Kawaji, Surf: Sci. 73, 

46 (1978). 
6. T. Englert and K. v. Klitzing, Surf: Sci. 73, 70 (1978). 
7. H Aoki and T. Ando, Solid State Commun. 38,1079 (1981); R. E. Prange, Pbys. Rev. 

B 23, 4802 (1981); D. J .  Thouless, J .  Phys. C 14, 3475 (1981); R. B. Laughlin, Pbys. 
Rev. B 23, 5632 (1981); P. Stteda, J.  Pbys. C I S ,  L717 (1982); Q. Niu, D. J .  Thouless, 
Y. S. Wu,Pbys. Rev. B 31, 3372 (1985); Y. Avron, B. Shapiro, R. Seiler,Nucl. Pbys. B, 
in press. 

8. R. B. Laughlin, Pbys. Rev. Lett. 50, 1395 (1983); Surf: Sci. 142, 163 (1984), 
9.  B. I. Halperin, Helv. Phys.Acta 56, 75 (1983); F. D. M. Haldane, Pbys. Rev. Lett. 51, 

605 (1983); B. I. Halperin, ibid. 52, 1583 (1984). 
10. A collection of recent apers on the quantized Hall effect mav be found in the 

Proceedings of the Six2 ~okerence  on Electronic Properties o f~wo-~ imens ion-  
al Electron Systems, Kyoto, 1985, to appear in Su$ie Science. 

11. K, v. Klitzing and G. Landwehr, Phys. Status Solidi B 45, k 1 9  (1971); Solid State 
Commun. 9 ,  1251 (1971). 

12. R. J .  Nicholas, K. v. Klitzing, R. A. Stradling, Solid State Commun. zo,  77 (1976). 
13. D. Stein, K. v. Klitzing, G. Weimann, Pbyss. Rev. Lett. 51, 130 (1983); H. Obloh and 

K. v. Klitzing, Surf: Sci. 142, 236 (1984); G. Ebert et d., J. Pbys. C 17, L775 (1984); 
G. Ebert, K. v. Klitzing, G. Weimann, ibid. 18, Lzj7 (1985); E. Stahl et d., J. Pbys. C 
18, L783 (1985); K. v. Klitzing and G. Ebert, Metroluaia zr, 11 (1985). 

SCIENCE, VOL. 231 




