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Dvnamics of Fractal Networks 

Random structures often exhibit fractal geometry, de- 
fined in terms of the mass scaling exponent, D, the fractal 
dimension. The vibrational dynamics of frwal networks 
are expressed in terms of the exponent a, the fracton 
dimensionality. The eigenstates on a fractal network are 
spatially localized for a less than or equal to 2. The 
implications of fractal geometry are discussed for thermal 
transport on fractal networks. The electron-fracton inter- 
action is developed, with a brief outline given for the time 
dependence of the electronic relaxation on fractal net- 
works. It is suggested that amorphous or glassy materials 
may exhibit fractal properties at short length scales or, 
equivalently, at high energies. The calculations of physical 
properties can be used to test the fractal character of the 
vibrational excitations in these materials. 

T HE CONCEPT OF FRACTAL STRUCTURE, DEVELOPED BY 

Benoit Mandelbrot (I) ,  has potential utility because it is 
possible that structures that appear purely random can be 

described within a geometric mathematical framework. Fractal 
concepts may describe not only the static geometrical properties of 
such structures but also their dynamical properties and interactions 
with external measurement probes. The purpose of this article is to 
introduce the basic concepts behind the use of fractal geometry in 
performing these operations. 

The fractal description of nature has developed so rapidly and so 
broadly in recent years, and fractal geometry has become such a 
powerful tool, that it would be impossible to attempt complete 
coverage of this subject. Therefore, only the more universal aspects 
of the structural properties of fractal networks will be analyzed in 
this article; more specific applications have been described (2). 

The class of fractal structures treated in this article is limited to 
those that exhibit "self-similar" geometry. This means that the 
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structure's geometrical properties are indistinguishable as a function 
of length scale (or resolution). Examining the fractal with ever more 
finely divided "rulers" would not result in any discernable difference 
in geometry. Conversely, the length scale of measurement could not 
be determined solely from observation of the fractal structure. This 
behavior usually breaks down at very short length scales, appropriate 
to the atomic or "building block" regime. In many physical systems 
(such as the percolating network, described later), the structure also 
ceases to be fractal at very long length scales, where it appears 
homogeneous or continuous. Mandelbrot (1) was the first to 
determine that many structures in nature exhibit self-similar geome- 
try. 

The most easily understood fractal concept is that of density. For 
fractal structures, this means that there is no constant relation 
between mass and volume as the length scale is changed. The 
amount of mass inside a sphere of radius r for a homogeneous (or 
Euclidean) structure scales as M(r)  = ~ r ~ ,  where A is a numerical 
constant and d is the spatial or Euclidean dimension (d is 3 in our 
usual world). Analogously, the amount of mass inside a sphere of 
radius r for a fractal structure with self-similar geometry scales as 
M(r)  = ~ r ~ ,  where B varies according to the "lacunarity" (1) and D 
is the fractal dimension. In general, D is less than or equal to d 
because of the "open" character of fractal structures. That is, they 
tend to exhibit inhomogeneous arrangements of particles, with large 
amounts of open spaces (voids) and irregular atomic arrangements. 

We are now in a position to calculate the density (p) of particles 
inside a sphere of radius r (that is, of volume V(r) = c rd ,  where Cis 
a constant) for a fractal structure: 

For self-similar structures, the fractal dimension D does not 
depend on r. This is an extraordinary result, for it implies an order in 
structures that to a casual observer appear to be completely disor- 
dered. I t  is even more remarkable because densities in seemingly 
unrelated phenomena in nature appear to behave in such a manner 
(1). 

Because D is less than or equal to d, the density falls off with 
increasing length scale, implying that fractal objects of large size 
would be extraordinarily light. This must be tempered with the 
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remark that at short length scales the atomic local geometries may 
not be fractal, while at very long length scales the geometry may 
appear to be homogeneous, implying an upper cutoff for r for those 
situations in which Eq. 1 may apply. Beyond this upper cutoff, p(r) 
would simply be a constant. 

An example where only the lower limit is appropriate can be 
found in aggregates of silica particles produced by flame hydrolysis 
of SiC14, known commercially as the products Cab-0-Sil and Alfasil 
(3) (here, the structure is Euclidean for short length scales and 
fractal for long length scales). From the results of electron microsco- 
py studies, these materials are known to consist of ramified aggre- 
gates of very small, nearly spherical Si02 units (R - 25 A) that stick 
together to form clusters measuring approximately 1000 across. 
small angle neutron-scattering studies- (4) on normal, compressed, 
and water-suspended powders, ranging in density from 0.009 to 
0.45 g ~ m - ~ ,  measure particle densities that obey Eq. 1 [the number 
densib of SiOa units & a cluster diminishes with increasing size ( r )  
of the volume sampled by the neutron-scattering study]. The fractal 
dimensionality D is found to be 2.52 ? 0.05 for all the samples 
studied. This is an explicit example where D is less than d (d = 3). 

An example of a siructure thit has an upper limit for thk length 
scale over which the structure is fractal is the much-studied percolat- 
ing network (5) [here, the structure is fractal for short length scales 
(but greater than a fundamental grid dimension) and ~uclidean for 
long length scales]. This model is thought to describe various 
physical structures, such as gels (6 ) ,  polymers (7), and the transverse 
force constants of glassy materials (8 ) .  1t forms the basis for studies 
of the flow of liquids through material aggregates [for example, oil 
and water through sandstone (9)]. There are two kinds of percolat- 
ing networks: site and bond. To create a site-percolation network, 
each intersection of a d-dimensional grid is occupied at random with 
probabilityp. Sites are said to be connected if they are adjacent along 
a principal direction (that is, along a vertical or horizontal direction 
in d = 2 for a square grid, but not along the diagonals). A bond- 
percolation network is created by laying down the elementary 
components that make up the grid at -random with probability p. 
The sites are then those points where the elementary components 
touch. The two kinds of percolation networks are not simply related, 
except for some special cases ( 5 ) .  We shall work with site percolation 
exclusively in this article. 

Remarkably, a critical probability p,  exists such that, for p 2 p,, a 
connected cluster will cross the grid continuouslv from one side to " 
the other. This is referred to as an infinite cluster because, for an 
infinitely large grid, it will be of infinite extent. In contrast, the 
remainder of the occu~ied sites will form clusters of finite size. The 
probability of an occuiied site being on the infinite network, P(p), is 
given by the characteristic exponent P through the scaling formula 

We identifji the lower cutoff for the percolating network to be a 
length a that forms the horizontal and vertical lengths that make up 
the elementary grid. An upper cutoEIength exists for the percolating 
network (5); this is referred to as 5,. This quantity is usually termed 
the percolation correlation length, or the pair connectedness length 
for percolation. For r 3 e,, the percolating network appears homo- 
geneous, and the density p is a constant. The percolating network 
exhibits self-similar geometry for a < r G 6,. The occupied site 
density on the inifinite cluster is given by Eq. 1 (the average 
occupied site density is simply p). We say, therefore, that the 
percolating network is fractal for length scales r between a G r < 6, 
and Euclidean for r 3 tp. The upper cutoff length 6, exhibits the 
scaling relation (5 )  

For a site percolation network in d = 2, up is 413 [this is the so-called 
den Nijs conjecture ( lo),  now thought to be exact], P, is 5136 [also 
thought to be exact ( l l ) ] ,  andp, is 0.5928 [for bond percolation in 
d = 2, p, is 0.5 (5)]. The fractal dimension D is approximately 1.9 
(12). 

For the site percolation networks (d = 2) pictured in Figs. 1 
through 4 (13), the largest cluster is always shown in white, the 
second largest in bright yellow, the third in dull yellow, and 
successively smaller clusters in shades varying from orange to red to 
light blue. The clusters are formed on a square grid, with 3000 
elementary sites on a side. Figure 2 is formed by setting the 
probability that a given site is occupied a tp  = 0.593, just above the 
critical percolation concentration p,. The region within the small 
square drawn on Fig. 2 is expanded to full size in Fig. 3. Figures 2 
and 3 cannot be distinguished geometrically; both obey Eq. 1 for 
the occupied site density on the infinite cluster (shown in white). 
This is an explicit example of self-similarity. Expansion or contrac- 
tion of regions of Fig. 2 will look the same (that is, the site density 
on the infinite cluster will obey Eq. 1) as long as their size falls 
between the length scale limits a s r < 6,. The upper length scale 
5, can be extracted from Fig. 2 as the size of the "largest hole" in the 
infinite network, or the largest cluster (shown in bright yellow). At 
smaller concentrations (p < p,), 5, is the size of the largest cluster 
(shown in white on Fig. 1). At larger concentrations (p > p, as in 
Fig. 4), the infinite network encompasses more and more of the 
occupied sites according to Eq. 2. The correlation length can be 
relevant to other fractal structures. In the subsequent discussion, we 
retain the subscript p only when referring explicitly to the percolat- 
ing network. The notation will be appropriate also for the exponents 
3 and PP. 

The fractal dimension for d = 2 site percolation can be obtained 
from Figs. 1 through 4 by drawing circles of successively increasing 
radii (limited, of course, always to r < T;,) and then counting the 
number of occupied sites of a given color lying within each circle. 
That number, divided by the Euclidean area, .TI.?, will scale accord- 
ing to Eq. 1, giving D directly. The reader should be warned that 
there will be large fluctuations in the value found for p(r), depend- 
ing on where one chooses the origin for the circles. The magnitude 
of these fluctuations is a measure of the lacunarity (1). Averaging 
over a great many origins for a given circle size will result in a unique 
value for D. We denote this "ensemble" average by <. . .>. 

There are other indices besides the fractal dimension that are 
usehl for the description of the purely static geometrical properties 
of fractal networks. An example is the minimum distance 1 traveled 
along the fractal network, restricted to paths between connected 
sites, when traversing the fractal from one point to another (for 
example, the minimum path length benveen two points on the 
infinite cluster for a path confined to the infinite cluster). This is 
termed the chemical length. It is not the same as the length L 
measured between the same two points with a straight edge 
(referred to as the Pythagorean length). The two can be related to 
one another by 1 = Ld,,, (14). In general, dm,, is greater than or 
equal to 1 for fractal networks (the equality holding in the Euclidean 
limit, when L 2 E;,). For a percolating network in d = 3, dm,, is 
1.39. 

Although the concept of fractal geometry is usehl for the 
definition of static structural properties, it can also have utility when 
describing the dynamical properties of fractal nenvorks. These could 
arise either directly, as vibrations of the atoms that make up a fractal 
structure, or in terms of the diffusion or flow of particles along paths 
constrained to fractal geometry. 

The most famous example of dynamics of a fractal network 
originated with de Gennes (15), who posed the following problem. 
An ant is dropped onto an occupied site of the infinite cluster of a 
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percolating network. The ant takes steps at a constant rate of 
elementary length a that are random in direction to adjacent 
(connected) sites on the infinite network. What is the (ensemble) 
average mean square distance that the ant travels in a time t? 

This problem was solved only recently by Gefen and colleagues 
(16). The solution opened the way for a nearly complete description 
of the dynamics of fractal networks. They showed that the mean 
square distance that the ant moves in time t along the fractal 
network (for example, an infinite cluster) could be mapped onto the 
diffision problem in Euclidean space. The price paid is the substitu- 
tion of a (Euclidean) length-dependent diffusion constant [that is, 
D -+ D(r), where r is the Pythagorean length] for the conventional 
diffusion constant. They showed that 

where the constant 0 equals 0 in the Euclidean limit. Inserting Eq. 4 
into the diffusion equation [<r2(t)> = D(r)t] and solving for r, a 
scaling relation 

is found for a fractal network. Here, the length r is the Pythagorean 
distance, but diffusion has been confined to paths between connect- 
ed adjacent sites on the percolating network. The value of 0 has been 
calculated to be approximately 0.8 in d = 2 and 1.5 in d = 3 for 
percolating networks (1 7, 18). Diffusion is distinctly slowed down 
on a percolating network compared to diffusion in Euclidean space: 
<r2(t)> 3: t 0.57 for d = 3 compared to <r2(t)> 3: t, respective- 
ly. 

The fracton dimension, i, first introduced by Alexander and 
Orbach (19) (they initially termed it the spectral dimension), can 
now be defined by rewriting Eq. 5 as 

where 

Further, diffision on a fractal network with < 2 is recurrent (that 
is, there is always a finite probability of return to the origin). This 
enabled Rammal and Toulouse (20) [and later de Gennes (21)] to 
obtain the number of distinct sites visited by the ant, S(t), during its 
random wanderings on the fractal network in time t. De Gennes 
noted that the number of distinct sites contained within a sphere of 
radius r is proportional to 9, so that, from Eq. 6, 

This result has been confirmed by many investigators by means of 
numerical simulations, and it is in fact a method for determining d 
(18, 22). Mandelbrot ( I )  has observed that &'2 is the fractal 
codimension of the recurrences of the ant to a previously visited site. 
The num-ber of distinct sites visited in time t is determined 
solely by d (Eq. 8), whereas the me-an square distance traveled in the 
same time t depends on the ratio d l ~  (Eq. 6). - 

Earlier, Alexander and Orbach noted (19) that d is approximately 
413, to the numerical accuracy then available for percolating net- 
works for all dimensions d greater than or equal to 2 (it is exactly 413 
for d 3 6, the dimensionality at which mean field theory is exact for 
percolation). They suggested that d = 413 may be an exact relation 
for all d greater than or equal to 2. This has become known as the 
"Alexander-Orbach conjecture." It remains rather controversial (17) 
[however, see (18, 23)]. It does, however, provide an excellent first 
approximation and may yet be found to be exact (23). 

There is another reason for the importance of the Alexander- 
Orbach conjecture. Should it be exact, the exponent t, determining 

the dependence of the electrical conductivity a of a random resistor 
network upon concentration 

can be related to the static geometrical exponents v and P defined 
earlier ig Eqs. 2 and 3. Alexander and Orbach (19) showed that 
setting d equal to 413 for a percolating network results in 

As noted before, vp is 413 and Pp is 5136 in d = 2 for a percolating 
network, leading to tp = 91172(= 1.264) in d = 2. Recent numeri- 
cal simulations give values for tp that are closer to 1.3, or a value for 
d of about 1.3 (17). However, Rammal and colleagues (18) find 
d = 413 to within nugerical accuracy. A recent series expansion 
calculation (23) finds d = 1.334 k 0.007. 

The fracton dlimensionality may be most useful for the description 
of the vibrational dynamics of fractal networks. An example is the 
percolating network with each occupied site replaced by an identical 
mass and each bond replaced by an identical spring. Montroll (24) 
showed three decades ago that, if one could solve the problem of 
diffusion on such a network [here, the ant problem posed by de 
Gennes (15)], then the vibration problem of the geometrically 
equivalent network was automatically solved [for a force between 
atoms of the "scalar" type (25)]. 

It has already been noted that the geometry changes from fractal 
at short length scales (a G r s 5) to Euclidean at large length scales 
(r  3 5). Short length scales mean high-frequency vibrations. These 
were termed fractons by Alexander and Orbach (19). Long length 
scales mean low-frequency vibrations. These are conventionally 
termed phonons (26). Thus, fractons are distinguished from pho- 
nons according to whether their wavelengths are short or long 
compared to 6, respectively. We can associate the length 6 with a 
characteristic (or "crossover") frequency w, according to the rela- 
tionship 

Thus, fracton frequencies are greater than o,, and phonon frequen- 
cies are less than o,. 

The vibrational energy density of states N(o)  associated with a 
vibrating fractal network can be obtained easily. This quantity is 
important, for example, for the specific heat and the thermal 
conductivity of a fr_actal network. It is known (26) that N(o)  is 
proportional to od=' for Euclidean structures in the Debye 
(w < o,) regime, aexander and Orbach (19) showed that N(w) is 
proportional to wd-' in the fractal ( o  > o,) regime. The form of 
N(w) as a function of w therefore depends on the excitation 
frequency of the fractal network. Thus, N(w) is proportional to w2 
for a d = 3 Euclidean structure in the Debye limit, whereas N(w) is 
proportional to w1l3 (from the Alexander-Orbach conjecture) for 
any d 2 2 percolating network. This difference of behavior has been 
verified numerically (27) for percolating networks in d = 2 and 
d = 3. The precise shape of N(o)  in the vicinity of o, remains to be 
determined. A recent scaling analysis (28) suggests a bumplike 
structure in the vicinity of w, (Fig. 5). 

Amorphous solids may exhibit fractal geometry at short length 
scales (29). Their vibrational density of states should follow the 
general outlines of Fig. 5. Recent inelastic neutron diffraction 
experiments (30) on vitreous silica (Fig. 6) exhibit N(w) down to 
remarkably low vibrational energies: hw/kB = 1.6 K(kB is Boltz- 
mann's constant). The comparison with Fig. 5 is striking, but it 
should be stated that the shape of N(w) has been attributed to a 
specific collective rotation of Si02 tetrahedra (perhaps the physical 
description of a vibrational excitation on a fractal network) (30). 

In addition to describing the energy of vibrational excitations, 
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Fig. 1 (left). A percolation network, for sites at concentration p = 59.00 
percent, occupied at random on a square grid of 3000 sites on a side, derived 
from periodic boundary conditions. Sites are considered connected if they 
are adjacent along a vertical or horizontal direction, not along the diagonals. 
The arrays of connected sites are clusters. The critical concentration for the 
largest duster to span the grid from one side to another is 59.28 percent, in 
d = 2, so that this network is below the critical concentration. The size of the 
largest cluster (shown in white) is a measure of the percolation correlation 
length 5, at p = 59.00 percent. The structure is fractal for length scales 

a r s Q, where a is the fundamental grid size. [Reprinted with per- 
mission from R. F. Voss, IBM Thomas J. Watson Research Laborato- 
ries] Fig. 2 (right). The same construction as in Fig. 1, but atp = 59.30 
percent, just above the critical concentration for site percolation, p, = 59.28 
percent, in d = 2. The white cluster is now an infinite cluster (spanning the 
grid from one side to the other), and the percolation correlation length 5, is 
of the order of the next largest cluster (colored bright yellow). The structure 
is fractal for length scales a s r s Q. [Reprinted with permission from R. F. 
Voss, IBM Thomas J. Watson Research Laboratories] 
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Fig. 5 .  A sketch of the density of 
vibrational states for a fractal net- 
work [the solid line, denotedNf, (w)] 
plotted against frequency. The ex- 
trapolation of the low-frequency 
(long length scale) phonon density of 
states, Nph(w), is shown by a dotted 
line. The extrapolation of the high- 
frequency (short length scale) fracton w 
density of states, Nf,(w), is shown by 
the dashed line. [From (28)] 

Fig. 6. A plot of the vibrational 
density of states for vitrous silica at = r- I '-1 
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fractal geometry can also be useful for determination of the spatial 
extent of the vibrational wave function. This is particularly useful for 
random systems where explicit calculation of the wave function 
would be very difficult. There are two extremes: extended and 
localized. The former is the condition for homogeneous structures 
(weak disorder), where a plane wave is a useful first approximation. 
The latter is relevant to sufficiently strong disorder, where the wave 
function falls off exponentially (or more rapidly) with distance. 
Ramrnal and Toulouse (20) applied the scaling theory of localization 
(31) to excitations on a fractal network. The key parameter in that 
theory is the exponent p which governs the proportionality of the 
electrical conductance 2 for a random resistor network to the 
distance over which Z is measured: 

For zero or negative p, the wave functions are localized. For positive 
p, they are extended. When applied to fractal networks, Ramrnal 
and Toulouse showed (20) 

For percolating networks, the Alexander-Orbach conjectures gives 
a= 413, leading to a strongly negative value for P. This results in 
localized fracton states. 

The spatial extent of the localized fracton states, A, depends on 
their excitation energy o (19): 

This "dispersion law" depends only on the fracton and fractal 
dimensions. It is an example of how fractal geometry can simplify 
complex relations. 

The form of the localized fracton wave function has been 
hypothesized (32) to be of the form 

This is known (33) as "super-localization" because the exponent dm 
is bounded by unity and dmi, and so in general is greater than unity. 
However, little is known about the precise shape of the fracton wave 

function in random structures (even for the well-studied percolating 
network), so that Eq. 15 should be regarded as a first approxima- 
tion. 

The localized character of fracton excitations can have profound 
implications. Consider, for example, the thermal conductivity of a 
fractal network. The long length scale (low-energy) vibrational 
excitations are pbonons that, in d = 3, can be extended (because in 
Euclidean space a = D = d and P > 0 in Eq. 13). The phonons are 
therefore able to carry heat from one spatial region-to another. 
However, as the temperature increases, higher energy vibrations will 
be excited. Their energy is denoted by no, where thermal excitation 
means fiw - kBT. when o is approximately equal to o,, higher 
temperatures will excite fractons and not phonons (Fig. 5 ) .  Howev- 
er, fractons cannot carry heat from one spatial region to another 
because they are localized for d < 2. This means that kBT will be 
much greater than the energy of those vibrational states that can 
carry heat (the phonons). Assuming a temperature-independent 
mean free path for the phonons then implies a thermal conductivity 
independent of temperature. Such a "plateau" in the thermal 
conductivity is common to nearly all amorphous solids (34). 
However, as the temperature is further increased, eventually the 
thermal conductivity is seen to increase. The origin of this increase 
has been attributed to thermal conductance arising from phonon- 
assisted fracton "hopping" (35) as a consequence of vibrational 
anharmonicity. The thermal conductivity is predicted (35) to in- 
crease linearly with increasing temperature, which is consistent with 
observation (34). Other interpretations (36) have also been offered 
for this behavior. They involve scattering processes off of "two-level 
systems" common to amorphous materials. The fracton-hopping 
picture is a "cleaner" explanation, but the matter is far from settled. 
- There are further implications of fracton localization. Excited 
states of localized electronic centers can relax nonradiatively by 
emitting one or more lattice vibrations (such processes are central to 
laser operation). Localized paramagnetic centers or nuclei relax 
toward thermal equilibrium (the so-called TI spin-lattice relaxation 
process) by inelastic scattering of lattice vibrations. These processes 
involve the interaction of electrons and lattice vibrations. Although " 
the theory is well developed for phonons, an equivalent develop- 
ment has only recently been accomplished for fractons (37). 

The simplest example is the one-vibrational quanta direct relax- 
ation process (38). A localized electronic center relaxes to a lower 
energy state by emitting a lattice vibration, the energy of which is 
equal to the change in electronic energy. However, if the vibrational 
state is also localized, the two may lie farther away from one another 
than the localization length of the vibrational state (given for 
fractons by Eq. 14). The strength of the electron-fracton coupling 
for this particular pair of electron and fracton states would then be 
very small, inhibiting the electronic relaxation process. In general, 
there will be a distribution of distances between the electronic sites 
and the fractons that conserves energy in the relaxation process. This 
will result in an electronic relaxation rate that will vary from site to 
site. The probability density for the relaxation rate can be evaluated 
explicitly (37). The probability P(t) to find the electron in its initial 
state after time t will vary at long times as 

where x = (Did+) - 1. For localized phonons, D = d and d+ = 1, 
s o t h a t x = 2 i n d = 3 .  

The direct-process electronic time relaxation profile (Eq. 16) is 
slower than exponential but faster than any power law. It is a direct 
consequence of localized vibrational states interacting with localized 
electronic sites. Extended vibrational states (phonons) will give rise 
to a single relaxation rate and an exponential time dependence for 
Pdirect(t) in place of Eq. 16 (38). 
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Electronic (or nuclear) spin-lattice relaxation transitions involve 
relatively small changes in energy. The density of vibrational states at 
these small energies is too small to make the direct relaxation process 
effective. Rather, two vibrational states are involved, with the 
change in electronic (or nuclear) energy equaling the difference in 
the vibrational state energies. This is known as the Raman relaxation 
process (38). Extended vibrational states would again generate an 
exponential time dependence for P(t) .  The temperature dependence 
varies as T 9  or T7, depending on whether the electronic transition 
takes place between time-reversed states of half-integral spin (termed 
Kramers transitions) or  not (termed non-Krarners transitions). 
Localized vibrational states again profoundly affect the time depen- 
dence of the Raman relaxation process. In the "near" long-time 
regime, the probability P(t) to find the electron in its initial state 
after time t will vary as 

where a = d ( d + / D )  + 26 or d (d+ /D)  + 26 - 2 for Kramers or 
non-Kramers transitions, respectively. In the "far" long-time re- 
gime, 

PRaman(t) " t-([n f)2D'da (18) 

which is similar to the time dependence of the direct process. 
The calculation of the temperature dependence of the Raman 

relaxation process is greatly complicated by the nonexponential time 
dependence of both Eqs. 17  and 18. However, a simplification 
results when the (dipole-dipole or exchange) coupling between 
spins is sufficiently strong that the spins relax as a unit (that is, 
strong cross-relaxation). The time profile P(t) is then exponential 
and is given by an average relaxation rate (written as an inverse 
relaxation time l/T1), proportional to 

( 11Tl)Rarnan , T~d=[l t 2(d+iD)1 - I (Kramers) 
and 

These temperature dependences become T2 63 and T4  63, respec- 
tively, for a percolating network upon setting d+ equal to dm,,. 
Extended vibrational states would generate temperature depen- 
dences of T~ and T7, respectively. Experimental evidence for an 
anomalous temperature dependence for the Raman relaxation pro- 
cess has been obtained (39) for low-spin iron in large biological 
molecules. 

These calculations demonstrate that local probes embedded in 
fractal networks should exhibit substantially different relaxation time 
profiles and temperature dependences as compared to Euclidean 
embeddings. Use of localized electronic probes in amorphous 
materials may be a cfirect test of the hypothesis that fractal geometry 
is a useful geometrical description at short length scales. The 
consequences of a fractal geometry are manifest through Eqs. 16 
through 19. 
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