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molecular basis of the phytohormone auton- 
omy. Significant progress has been made in 
understanding the cytokinin-independent 
phenotype. Three groups (3) have shown 
independently that T-DNA gene 4 encodes 
an isopentenyl transferase, an enzyme that 
catalyzes the first step in cytokinin biosyn- 
thesis. Here we describe experimental results 
that help explain the auxin-independent 
phenotype of crown gall tissues. 

Genetic, transcription, and tissue culture 
studies (4) have shown that genes 1 and 2 
encoded by the T-DNA regions of pTiA6 
and related plasmids are responsible for the 
auxin-independent phenotype of crown gall 
tissues. We (5) and others (6) have demon- 
strated that gene 2 codes for an amidohy- 
drolase that can convert indole-3-acetarnide 
to indole-3-acetic acid, a natural auxin of 
plants (Fig. 1). Indole-3-acetamide, howev- 
er, is not believed to be a common membo- 
lite of plants. It was therefore suggested (5, 
6) that the gene 1 product may catalyze its 
synthesis. Here we show that this hypothesis 
is correct. 

We first constructed a plasmid that would 
express the pTiA6 gene 1 product in W e -  
riGhia wli (Fig. 2). The starting point for the 
construction was the plasmid pG1-Z, which 
contained almost all of gene 1 [approximate- 
ly 1900 base pairs (bp) of coding sequence 
and an additional 264 bp of 5' flankjng 
sequence] fused in frame to the eighth co- 

ATG Gene 1 TAG 
4 1 .  . I  

don of lacZ (7). When this plasmid was 
introduced into E. wli MC1061, a p-galac- 
tosidase-negative strain, only about 50 units 
of p-galactosidase activity (8) was detected. 
This suggested that the Ti plasmid se- 
quences did not provide efficient transcrip- 
tion or translation signals (or both) for gene 
expression in E. wli (in wild-type E. wli, a 
Illy induced lac operon produces about 
1000 units of p-galactosidase activity). We 
therefore placed the tac promoter (9), which 
includes the I& ribosome binding site, at 
different positions in front of the gene 1 
sequences and screened for plasmids pro- 
ducing high levels of p-galactosidase (10). 
One molecule chosen for further work, 
p23G1-Z, had the tac sequences placed ap- 
proximately 100 bp in front of the gene 1 
start codon. E s c h W  wli MC1061 harbor- 
ing this plasmid produced about 2000 units 
of p-galactosidase activity and synthesized a 
novel protein of about 178,000 daltons 
(178 kD), which is the mass expected for the 
gene 1-lacZ fusion protein. Finally, we re- 
constructed gene 1 by inserting the Eco RJ- 
Sal I fragment of p23G1-Z, which con- 
tained the tac promoter and the 5' portion 
of gene 1, into a derivative of pUC8, which 
contained the 3' end of gene 1 (11). This 
molecule was designated p23G1. 

If pTiA6 genes 1 and 2 provide a pathway 
for indole-%-acetic acid synthesis with in- 
dole-3-acetamide as an intermediate, a likely 

R ATG 
R 

R ATG \/s 

Fi 2. Construction of a plasmid to produce the pTiA6 gene 1 product in E. & (Top) A restriction map for the region of pTiA6 encoding gene 1. The 
gene 1 open reading frame is 2268 bp long (19). (Step 1) Placement of the 
tac promoter 5' to the coding sequence of gene 1. (Step 2) Reconstruction of 
intact gene 1 (see text for details). Abbreviations: amp, ampicillin resistance; 
B, Bgl 11; G1, pTiA6 gene 1; P, Pst I; PV, Pvu 11; R, Eco RI; S, Sal I; Tp, 
the tac promoter. Numbers below the names of the plasmids denote their 
size (in kilobase pairs). 

TRP- 

beginning substrate is L-tryptophan (Fig. 
1). Such a pathway exists in Psetrdomonas 
savastami, a plant pathogen that causes 
hyperplasias on olive and oleander (12). In 
this case, it has been shown that the first step 
is catalyzed by a monooxygenase that con- 
verts L-tryptophan to indole-3-acetamide. 
We therefore transformed p23G1 into E. 
wli, prepared crude cell-free extracts, and 
incubated them with L-['4C]tryptophan 
(13). Extracts of cells containing p23G1 
produced material that comigratedu;ith au- 
thentic indole-3-acetamide, whereas control 
extracts did not (Fig. 3 4  panel 1). Synthesis 
of this material was not ~eculiar to E. wli 
because it was also catalyzed by extracts 
prepared from P. putiAa and A. tuwf* 
A136 (a strain lacking the Ti plasmid) when 
the strains contained gene 1 constructions 
(Fig. 3A, panels 2 and 3, respectively). That 
the material synthesized was indeed indole- 
3-acetamide was confirmed by fractionating 
the samples by means of a second thin-layer 
chromatography (TLC) developing system 
and by high-performance liquid chromatog- 
raphy (HPLC) (14). In both cases, the 
material comigrated with authentic indole- 
3-acetamide. 6 addition. when cell-free ex- 
tracts prepared from E. 'wli producing the 
pTiA6 gene 2 product were added to the 
ether extracts containing the putative in- 
dole-3-acetamide (Fig. 3B) or to the materi- 
al after purification by HPLC, the material 

I A A -  a I A A -  J 
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Fig. 3. (A) Conversion of tryptophan to indole-3-acetamide by bacterial 
extracts containing TiA6 gene 1. Crude bacterial extracts were prepared and R incubated with L-[ Cltryptophan, and the indole compounds were extract- 
ed and separated by TLC (13). The autoradiograms of the fractionated 
samples are shown, and the migration positions of authentic indole-3-acetic 
acid (IAA), indole-3-acetamide (IAM), and tryptophan (TRP) are indicated. 
(Panel 1) Eschenkh wli MV17 (W3 110 AqE5 t n d )  (20) containing placIq 
(21) plus pUC8 (-) or p23G1 (+). (Panel 2) Pseu- putida A100 
containing either p23G1-Z (-) or p23Gl (+) inserted into the Eco RI site 
of the wide-host range cloning vector pJBK68 (22). (Panel 3)~bacttrr ium 
tumcf* A136 containing pJBK68 (-) or p23G1 inserted into the Eco RI 
site of pJBK68 (+). (B) Conversion of the putative indole-3-acetamide to 
indole-3-acetic acid. Ether extracts containing the putative indole-3-acet- 
amide were treated with crude extracts of E. coli harboring either pBR322 
(-) or pMTlacT2 (+), a plasmid that codes for the synthesis of the pTiA6 
gene 2 product (15). The indole compounds were extracted and separated by 
TLC, and the plates were developed by autoradiography. 
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was converted to a compound that comi- 
grated with authentic indole-3-acetic acid 
(15). 

These data indicate that the gene 1 prod- 
uct can catalyze the synthesis of indole-3- 
acetamide. This result is consistent with two 
recent observations. First. Onckelen and col- 
leagues (1 6) have shown that Nicotiana taba- 
cum tissues transformed with gene 1 have 
elevated levels of indole-3-acetamide com- 
pared to control cells. Second, Yamada and 
co-workers (1 7) have found that the pTiA6 
gene 1 product shares considerable amino 
acid sequence homology with the trypto- 
phan monooxygenase of P. savastanoz. Thus, 
the gene 1 product is probably a tryptophan 
monooxygenase that, in combination with 
the gene 2 product, catalyzes the synthesis of 
indole-3-acetic acid. It should be pointed 
out, however, that the gene 2 product has 
been shown to have a relatively broad sub- 
strate specificity (18). It can, for example, 
convert phenylacetamide to phenylacetic 
acid, another compound with auxin activity. 
The gene 1 product may also have a broad 
substrate specificity. One interesting possi- 
bility is that it may convert phenylalanine to 
phenylacetamide. If so, this would mean 
that the T-DNA could direct the svnthesis of 
at least two potent auxins. 

The basic mechanism by which A. tumefa- 
czens transforms plant cells to auxin indepen- 
dence is now established. It involves the 
introduction of a two-step pathway for aux- 
in biosynthesis. Whether additional T-DNA 
gene products can alter the auxin metabo- 
lism of plant cells remains to be determined. 
It is clear, however, that the response of 
different plant species to genes 1 and 2 can 
vary. For example, Binns and colleagues (4) 
have shown that a Ti plasmid with a non- 
functional gene 2 cannot transform N. taba- 
cum tissue; to auxin independence but can 
transform N. 8-lutinosa tissues to auxin au- 
tonomy. The molecular basis for this com- 
plementation is not known. Its elucidation 
should not only lead to a more complete 
knowledge of the interaction between A. 

tumefazens and plants but should also shed 
light on the mechanisms involved in regulat- 
ing auxin metabolism in plants. 
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