
enzymes, which play a role in sealing off 
membranes of cut nerve endings (14) and in 
establishing a path for regeneration, may 
become activated subsequent to modifica- 
tion. A third possibility is that these reac- 
tions may be involved in proteolytic events. 
The nonlysosomal ubiquitin proteolytic 
pathway, a system for hydrolyzing damaged 
proteins, has an absolute requirement for 
tRNA (15). The function of tRNA in the 
ubiquitin reaction is not known; it may 
serve as a posttranslational amino acid do- 
nor to damaged proteins, thereby targeting 
those proteins for degradation. If that is the 
case, then the modification reactions could 
act to participate in the breakdown of dam- 
aged proteins, thus clearing the way for 
successll regeneration. 

In conclusion, both sciatic and optic 
nerves contain the components necessary 
for, and are capable of, protein modification 
by the addition of amino acids. However, 
the finding that these reactions are dramati- 
cally increased in sciatic but not optic nerves 
after injury suggests a fhdamental bio- 
chemical difference between them, a differ- 
ence that may be related to the ability of one 
and the inability of the other to regenerate. 
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Herbivores' Direct and Indirect Effects on 
Algal Populations 

The increase in algal reproductive rates caused by nitrogen regeneration from 
herbivorous zooplankton approximately equaled the zooplankton-caused mortality. 
This result demonstrates that nutrient regeneration by herbivores is at least sometimes 
a strong indirect effect in natural communities. 

H ERBNORES APPECT THE POPULA- 
don dynamics of plants in at least 
two distinct ways: directly through 

consumption and indirectly through regener- 
ation of limiting nutrients. Although there has 
been interest in this dual role of herbivory in 
both terrestrial (1) and aquatic (2) plant 
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Fi . 1. The difference between growth rates of 
chforophyIl fluorescence in each veswl and the 
mean growth rate for controls-as determined 
from final densities by the equation 

[In P - (mean In F for controls)]/6 

where F is fluorescence on day 6-shows a signifi- 
cant nitrogen effect [F(1, 11) = 86.90, P < 
0.0051. The mean for the nitrogen flasks was 
0.348 (SE, 0.067), and the mean for the nomi- 
trogen flasks was -0.035 (SE, 0.068). Nitrogen 
regeneration could potentially stimulate phyto- 
plankton growth. 

communities and in indirect effects in general 
(3), until now there have been no studies that 
have simultaneously assessed the relative im- 
portance of these two processes in a natural 
community. Such experiments were conduct- 
ed on a natural algal community with a co- 
occurring crustacean herbivore, Daphnza pu- 
l e ~ ,  to separate the direct effect of herbivory 
from the indirect effect of fertilization. The 
indirect effect caused by nitrogen regeneration 
had about as large an impact on the phyto- 
plankton community as the direct grazing 
effect did. 

The general experimental procedure con- 
sisted of establishing an herbivore gradient 
and monitoring phytoplankton growth rates 
when influenced by both grazing and nutri- 
ent regeneration and when influenced by 
only nutrient regeneration. In addition, I 
performed nutrient addition experiments to 
establish whether regenerated nitrogen or 
phosphorus or both were limit- 
ing (4). 

In the absence of grazers the algae were 
limited by nitrogen, but not by phosphorus, 
as shown by chlorophyll fluorescence (5) 
(Fig. 1) and population densities. Chloro- 
phyll increased at 0.41 per day (SE, 0.09) 
faster in the nitrogen trekments than in the 
nonnitrogen ones, providing an estimate of 
the maximum potential effect of nitrogen 
regeneration on algal reproductive rates. 
Population densities of two of four domi- 
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Fig. 2. The direct and indirect effects of herbivory 
(20). (a) Net effect of D. pulex on algae, deter- 
mined by rates of change of chlorophyll outside 
the grazer exclosures. (b) Indirect effect of D. 
pulex on phytoplankton reproductive rates, deter- 
mined by rates of change of chlorophyll inside the 
grazer exclosures. (c) Direct effect of D. pulex on 
phytoplankton mortality rates. The slope of the 
least squares line fit to these data converts to a 
filtering rate of 11.7 rnl per individual per day 
(21, 22). The regression is significant [slope, 
0.012 (SE, 0.003)], and they intercept does not 
statistically differ from the origin [intercept, 
0.071 (SE, 0.050)]. Curves in (a) and (b) are 
from the fitted equations in (12). The curve in (c) 
is from a linear regression of d(G) on G. 

nant tasa significantly increased with addi- 
tion of nitrogen [Lnedesmus spp., F(1, 
12) = 5.71, 0.025 < P < 0.010; pennate 
diatoms, F ( l ,  12) = 34.36, P < 0.005 (6)]. 
Phosohorus and the N bv P interaction were 
always insignificant. 

At each grazer density in the herbivore 
gradient (7, 8) 94 percent of the volume of 
the pond water was in contact with the 
grazers. These phytoplankton were exposed 
to both grazing and nutrient regeneration. 
The remaining 6 percent, separated from the 
grazers by porous grazer exclosures (8), 
were exposed only to nutrient regeneration. 
Experiments lasted 6 days. 

Both algal reproductive and mortality 
rates depended on grazer density (Fig. 2). 
Algal per capita reproductive rates increased 
with increasing grazer density, saturating at 
low grazer densities (Fig. 2b). Mortality 
rates increased as grazer density increased 
(Fig. 2c). These two simultaneous effects, 
fertilization and grazing, yielded a net 
growth function with a shallow hump (Fig. 
2a) (9-11). Though both the grazing and 
fertilization effects of herbivores were mea- 

surable when separated, they were in oppo- 
sition, almost canceling when acting simul- 
taneously. 

To  explore these relationships in more 
detail, a series of equations (12) were fit to 
the data in Fig. 2. On the basis of that fit, 
the maximum increase in algal reproductive 
rates because of nutrient regeneration did 
not differ significantly from the increase in 
reproductive rates in the nitrogen additions 
(13-15). This result supports the conclusion 
that the effect seen in Fig. 2b is due to 
nitrogen regeneration. 

From these data it is possible to estimate 
the magnitudes of the direct and indirect 
effects in the units of per day. The density of 
D. pulex in the natural community was 
estimated to have been 19 individuals per 
liter (16), which was more than the density 
found to increase phytoplankton reproduc- 
tion through nitrogen regeneration (Figs. 
2b and 3) (17). I conclude that the direct 
and indirect effects were both important to 
the phytoplankton. In fact, the estimates of 
those two effects based on the estimated D. 
pulex density were nearly equivalent (18). 

Comparing the importance of nutrient 
regeneration with the importance of grazing 
for the total algal community leaves the 
question of how individual algal species are 
affected by fertilization and grazing in many 
environments. Phytoplankton populations 
inside the grazer exclosures were counted 
under a microscope to see which algae re- 
sponded most to nutrient regeneration. Of 
the four dominant taxa (Anabaena jos- 
aquae, Meloszra spp., pennate diatoms, and 
Scenedesmw spp.), the one that seemed to 
respond most was the same tason that re- 
sponded most significantly to nitrogen addi- 
tions-the pennate diatoms (6) (Fig. 3). 
This result suggests that the indirect fertil- 
ization effect was greatest for the most nutri- 
ent-limited taxon. Different algal species suf- 
fer different mortality losses from grazing 
(19). Also, different herbivore species vary 
in grazing and nutrient regeneration rates, 
which also depend on algal density. We can 
therefore expect these direct and indirect 
effects in the aquatic food web to be rich in 
their dynamic possibilities. 

To summarize, algal per capita reproduc- 
tive rates were lower in the absence of the 
herbivore D. pulex than when the grazer was 
present. The herbivore fertilized the algae by 
regenerating nitrogen, an indirect effect 
about as important for phytoplankton popu- 
lation dynamics as the mortality from graz- 
ing was. These findings reinforce the con- 
cept that nutrient regeneration by herbi- 
vores is an important trophic link (2). Al- 
though in the long term zooplankton 
grazers generally have an overall negative 
impact on algal populations, estimates of the 

~ a p h n i a  pulex per liter 

Fig. 3. Pennate diatom (6) density [*95 percent 
confidence intervals (23)] inside the grazer exclo- 
sures in the herbivore gradient (7,8), showing the 
indirect effect of fertilization on this taxon. 

effect of zooplankton on phytoplankton 
communities that consider only grazing may 
be in error. 
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Stress-Induced Inhibition of Reproductive Functions: 
Role of Endogenous Corticotropin-Releasing Factor 

In the adult castrated male rat, exposure to inescapable, intermittent electroshocks 
inhibited the pulsatile pattern of luteinizing hormone release and markedly lowered its 
plasma concentrations. The central administration of the corticotropin-releasing factor 
(CRF) antagonist a-helical ovine CRF residues 9 to 41 reversed the inhibitory action 
of stress. Neither its peripheral injection, nor the intraventricular injection of the 
inactive CRF analog des-Glul' to Arg35 ovine CRF was effective. These results suggest 
that endogenous CRF may mediate some deleterious effects of noxious stimuli on 
reproduction. 

E XPOSURE TO STRESS IS ACCOMPA- 

nied by disruption of reproductive 
functions in many species (1-1 0) in- 

cluding human beings (1 1-1 7), but the ex- 
act mechanisms that mediate these effects are 
not fully elucidated. Possible sites involved 
include (i) direct gonadal effects of the 
hormones secreted during stress [such as 
adrenocorticotropin (ACTH), steroids, cat- 
echolamines, q d  vasopressin] with subse- 
quent alterations in sex steroid output (8, 
18-20); (ii) a corticosteroid-mediated de- 
crease in pituitary responsiveness to gonado- 
tropin-releasing hormone (GnRH), result- 
ing in decreased luteinizing hormone (LH) 
secretion (21-23); and (iii) a centrally medi- 
ated inhibition of GnRH release (24). While 
there is evidence that each of these mecha- 

nisms can indeed operate during stress and 
could interfere with normal pituitary and 
gonadal function, recent studies have addi- 
tionally indicated that corticotropin-releas- 
ing factor (CRF), which is secreted by the 
brain during stress (25), will inhibit GnRH 
secretion into the hypophyseal portal circu- 
lation (26). These observations prompted us 
to investigate a possible central role of en- 
dogenous CRF in mediating stress-induced 
alterations in L H  output in the rat. 

We have studied castrated male rats be- 
cause their pattern of pulsatile release is 
inhibited by stress (5). In the castrated rat, 
forced immobilization or a broken leg abol- 

The Clavton Foundation Laboratories for Peptide Biolo- 
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Fig. 1. Effect of electroshocks on basal plasma L H  
in castrated male rats. The rats were placed in 
individual shockers and exposed to footshocks for 
3 hours. The arrow indicates the onset of the 
electroshocks. The shocks (2 mA, 2-second dura- 
tion) were delivered randomly on an average of = 
four per minute to the grid floors of plexiglass 
chambers (30 by 126 by 30 cm) by a Colbourn 
shocker. Blood samples (0.3 ml) were obtained 5 4 every 10 minutes and replaced with an equal 
volume of lactated Ringer or Plasmanate (plasma 
protein fraction, 5 percent; Cuttler Biological, 
Berkeley, CA). Open circles, control rats; dosed 
circles, shocked rats. Each point represents the 

measured by radioimmunoassay (intra- and inter- 
mean i: SEM of six to eight rats. Plasma L H  was 

0 6 0 120 180 
coefficients of variation, 5.2 and 9.8 percent, Time (minutes) 
respectively). Data were analyzed by one- and 
two-way analyses of variance. For reasons of clarity, levels of statistical significance are not indicated on 
figures. In this experiment, plasma L H  concentrations of stressed rats were significantly (P 5 0.01) 
different from control animals at all times. 
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