
Quantum Monte Carlo 

An outline of a random walk computational method for 
solving the Schrodinger equation for many interacting 
particles is given, together with a survey of results 
achieved so far and of applications that remain to be 
explored. Monte Carlo simulations can be used to calcu- 
late accurately the bulk properties of the light elements 
hydrogen, helium, and lithium as well as the properties of 
the isolated atoms and of molecules made up from these 
elements. It is now possible to make reliable predictions 
of the behavior of these substances under experimentally 
difficult conditions, such as high pressure, and of proper- 
ties that are ciiilicult to measure experimentally, such as 
the momentum distribution in superfluid helium. For 
chemical systems, the stochastic method has a number of 
advantages over the widely used variational approach to 
determine ground-state properties, namely fast conver- 
gence to the exact result within objectively established 
error bounds. 

I N THE EARLY DAYS OF QUANTUM MECHANICS, P. A. M. DIRAC 
observed that the physical laws necessary for the mathematical 
theory of a large part of physics and the whole of chemistry are 

completely known and that it is only necessary to find practical 
methods for the solution of the equations for complex systems (1). 
One could have expected that the advent of modern, high-speed 
computers would have by this time made it possible to perform such 
computations. However, the endeavor implied by Dirac's statement 
of principle remains largely unfulfilled. Many of the existing numeri- 
cal methods provide only a qualitative understanding of the proper- 
ties of isolated atoms and molecules or of their collective behavior in 
the condensed state. These methods are quantitatively inadequate 
either because the approximations they embody cannot be further 
refined or because the numerical scheme converges too slowly. 

A numerical method developed relatively recently to solve the 
Schrodinger equation for many interacting particles has the poten- 
tial to realize Dirac's goal. This method is a departure from the 
conventional approach to many-body problems in mathematical 
physics; namely, it does not reduce a system with very many degrees 
of freedom by an approximation to equations of much reduced 
dimensionality. 

Alternate numerical methods that do not invoke such an approxi- 
mation, such as the configurational interaction method in quantum 
chemistry, nevertheless expand the wave function in a complete set 
of one-body functions, so that once again one only has to deal with 
low-dimensional mathematical objects. Moreover, the functions 
used for the expansion are generally restricted, so that the low- 
dimensional integrations that appear in the theory can be performed 
analytically. The price paid for these restrictions is that, even with 
a large number of terms (frequently running into the millions), 
the calculations do not converge with the accuracy desired for 
chemistry. 

In the new numerical techniques, called quantum Monte Carlo 
methods, the Schrodinger equation, which exactly describes nonrel- 
ativistic particles, is represented by a random walk in the many- 
dimensional space in such a way that physical averages are exactly 
calculated. Monte Carlo or statistical methods are in fact the only 
general methods known for exactly solving problems in many 
dimensions, provided only that the problem can be formulated in 
terms of probabilities. 

Such a numerical approach has only become possible since the 
advent of high-speed computers. In fact, it is particularly adaptable 
to these machines because algorithms are simple and highly repeti- 
tive, characteristics that can take 111 advantage of the fast arithmetic 
capabilities of modern computers. Furthermore, these methods can 
be easily adapted to a variety of computer architectures. They yield 
exact results within statistically determined error bars that decrease 
with the length of the computer run. The principal goal in develop- 
ing algorithms is thus to find ways of increasing the efficiency of the 
calculations. This can be done in a straightforward way through a 
technique called importance sampling, which uses previous knowl- 
edge to provide a good starting approximation. 

The application of statistical methods to quantum mechanical 
problems is not without difficulties of its own, the most serious 
being the calculation of systems that have a wave function that is not 
everywhere positive. Nevertheless, considerable progress over the 
past few years has enabled us to carry out realistic simulations of 
systems composed of the light elements. We intend to show here 
that there is no practical impediment to realizing Dirac's program 
for many other many-body systems, although these applications will 
require considerably more efficient algorithms and faster computer 
hardware. 

Diffusion Monte Carlo 
Around 1945, Fermi remarked that stochastic methods could be 

used to solve the Schrodinger equation (2). The earliest recorded 
implementation was carried out in 1949 by Donsker and Kac (3) for 
the hydrogen atom, but the results were unimpressive because the 
lack of an importance function led to very low efficiency. For the 
same reason, an unpublished calculation by Rosenbluth (4) a few 
years later for the ground state of liquid 4 ~ e  gave unsatisfactory 
results. Meanwhile, stochastic processes came increasingly to be 
used in the study of neutron transport and classical condensed- 
matter systems. An important step for quantum Monte Carlo 
methods was maded by McMillan (5) in 1965 when he used a 
variational method to simulate helium. He showed that a one-to- 
one correspondence to a classical simulation could be made if one 
assumed a pair-product wave function. In the same period, Kalos (6) 
developed what is known as the Green's h c t i o n  Monte Carlo, 
which in 1974 culminated in an exact algorithm for calculating the 
ground-state properties of the hard-sphere boson fluid (7). We will 

The authors are at Lawrence Livermore National Laboratory, University of California, 
Livermore 94550. 

7 FEBRUARY 1986 ARTICLES $55 



describe a simplified version of Green's function Monte Carlo, 
known as diffusion Monte Carlo. 

The basis of diffusion Monte Carlo is that the Schrodinger 
equation written in imaginary time, t, will converge to the ground 
state exponentially fast. That equation for the wave function +(R, t) 
is 

where mj is the mass of particle j, V(R) is the total potential energy, 
R refers toAthe 3N set of particle positions, and N is the number of 
particles (H is the Hamiltonian operator). A constant, ET, the trial 
energy, has for convenience been subtracted from the potential 
energy. From a formal expansion of the wave function in a complete 
set of eigenvectors and eigenvalues, it can be readily demonstrated 
that all excited states decay exponentially fast with a decay constant 
given by the excitation energy from the ground state. The rate of 
convergence to the ground state is hence governed by the lowest 
excited state that has a component in the initially chosen wave 
function. 

If it is assumed that +(t) is non-negative, as is the case for bosons 

Possible new 
Generation configurations 
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Fig. 1. Schematic of the Green's function Monte Carlo calculation with 
importance sampling, demonstrating the evolution of the "snapshots." 
Illustrated is a three-electron system in a box; the squares represent old 
positions, the circles new ones. The old ensemble consists of four snapshots, 
and the new one consists of three. The process leadmg to a new ensemble 
involves (i) adding to each electron's coordinates a drift term equal to 
7h2Vln I+Tl/m (shown by arrows), where T is the time step; (ii) adding a 
random displacement (shown by a wiggly line) representin the difisive 8 .  step, whose mean square displacement in each dimension is ~h /2m, and (iii) 
branching, which creates from zero to several snapshots in the new ensemble, 
with the number determined by the integer part of m = [exp(-7EL) t; u] ,  
where u is a uniformly distributed random number m [0,1] and EL = H+T/ 
c$T - ET is the local energy. In the fixed-node approximation for dealing 
with fermions, a snapshot is deleted if the sign of +T has changed during th~s  
step. With these three new snapshots, the process is repeated. 

or distinguishable particles in the ground state, the wave function 
can be directly interpreted as a probability density, so that Eq. 1 can 
be interpreted as a diffusion and branching process in 3N dimen- 
sions. A useful analogy is to bacteria randomly diffusing in a puddle 
with a diffusion constant of h212m, in which the growth conditions 
are uneven and depend on the position in the (that is, on the 
potential energy), which determines the rate of growth or decline of 
the bacterial population there. The bacteria do not interact with 
each other since ;he Schrodinger equation is linear. Then Eq. 1 gives 
the evolution of the distribution in time. Alternative numerical 
methods that rely on tabulating the distribution everywhere (for 
example, in a grid) will consume an exponentially large amount of 
computer time and memory as the dimensionality of the space (the 
number of particles) increases. Direct simulation by random walks, 
which samples the distribution selectively, appears to be the only 
general way of numerically solving the quantum many-body prob- 
lem. 

Such a computer calculation is set up in the following way (Fig. 
1). An initial ensemble of svstems is constructed. usuallv from a 
classical Monte Carlo calculation with some trial wave function as 
proposed by McMillan (5). An ensemble consists of a number of 
"snapshots" of the coordinates of all the particles, let us say of all the 
elections and nuclei. In actual calculations, the ensemble is made up 
of about 1000 such snapshots. The evolution is accomplished by 
considering each snapshot in turn, displacing each of the particles by 
a random amount with a mean square displacement given by 
~fi~12m, where T is the time step. Then branching is done; a number 
of copies of the snapshot equal to the integer part of {exp[-TI 
2(VOld + Vnew)] + U )  is made, where u is a uniformly distributed 
random number in [0,1]. Thus a new ensemble is generated with a 
different number of snapshots. As the ensemble is evolving and its 
population is varying, the trial energy ET must be adjusted with a 
feedback mechanism so that the population remains stable. If the 
population becomes too large, ET is made smaller, and if the 
population diminishes, ET is increased. The value of ET necessary to 
stabilize the population is then the ground-state energy. The 
snapshots generated once steady state is reached (that is, when 
&$/at = 0) are then samples of the gro~md-state wave function. 

Importance Sampling 
For most problems the above algorithm is not satisfactory because 

the branching process is uncontrolled. Whenever the potential 
energy becomes large and negative (as it will, for example, when an 
electron approaches a nucleus), the branching process blows up, and 
a huge number of copies of that snapshot is created. Luckily, there is 
a very simple and elegant way of solving this problem: importance 
sampling. 

Importance sampling means changing the underlying probability 
distribution in a known way so that the calculation will spend more 
time in the important regions. For this purpose the trial function, 
+=, is introduced as an approximation to the ground-state wave 
function (derived, for example, from a Hartree calculation), and 
f(R, t) = +@)+(R, t) is defined. The Schrodinger equation can be 
written in terms off by some algebraic manipulations (8), resulting 
in the importance-sampled equation 

which has a structure very similar to the original Eq. 1 but with 
some important differences. The first term on the right-hand side is 
the gradient of something; therefore it conserves probability and 
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does not cause branching. It represents diffusion with a superim- 
posed drift. In our analogy, the water in the puddle is not still but in 
steady motion, carrying the bacteria around the puddle while they 
are diffusing. The second term again gives rise to branching, but 
now the rate is determined by the local energy EL(R) = H+=I+= 
- ET. 

The process of simulating this equation proceeds as follows (Fig. 
1). An initial population is generated according to 1 + ~ 1 ~ .  This 
ensemble is evolved by examining each snapshot and diffusively 
displacing each coordinate, as before, but in addition displacing each 
position by a drift term equal to ~ f i ~ V l l n  +i/m. The effect of the drift 
is to push the random walk away from unimportant regions (that is, 
where the trial function is small), since there the drift velocity is 
large. The number of copies is now calculated from exp{-~/2[E~(~ld) 
+ EL(newl]) mapped onto an integer with a random number as 
before. The crucial improvement is that if has been chosen close 
to the ground-state wave function, the local energy will be small, so 
that branching is much less. Importance sampling makes it practical- 
ly possible to solve the Schrodinger equation for several hundred 
particles. Also, for good trial functions the asymptotic distribution 
of snapshots will be equal to the square of the wave function, which 
is just what one would expect physically. 

The statistical error of the round-state energy is approximately 
given by [2(Ev - Eo)i(inP*)f2, which has the familiar dependence 
on the inverse square root of the number of steps, with a propor- 
tionality constant given by the difference between the variational 
energy of the trial function Ev and the correct ground-state energy 
Eo. Here P* is an effective population of the ensemble (the average 
number not counting duplicates), and n is the total number of time 
steps. Thus the computational efficiency is determined by the 
accuracy of the trial function (Ev - ET) times the computer time 
necessary to evaluate the trial function, the drift, and the local energy 
for a single snapshot. There is a trade-off between trial functions that 
are accurate and those that are fast to evaluate. 

Green's Function Monte Carlo 
Green's function Monte Carlo (9)  is a reformulation of the 

diffusion process such that no systematic errors due to the finite time 
step T arise. The method is so named because the differential 
equation is converted into an integral equation, the kernel or 
Green's function of which is sampled exactly. The procedure is a 
generalization of a Monte Carlo method suggested by von Neu- 
mann and Ulan (10) to solve systems of linear equations. In Green's 
function Monte Carlo there are several additional elements in the 
algorithm. For one, the time step itself must be sampled for each 
move; the walk does not advance by a predetermined time. Also, 
intermediate snapshots that are not legitimate members of the 
ensemble are generated. They serve only to sample the correct 
Green's function and hence contribute only to the propagation of 
the walk. In some cases this more complicated procedure is also 
more efficient, since a larger average time step results (11). Further- 
more, the procedure does not require user adjustment of the time 
step: the exact result will be automatically obtained. 

Permi Statistics 
It would appear from the discussion so far that the method is 

limited to the calculation of systems in which the wave function is 
nonnegative. A few years ago the method was extended to ground- 
state fermion systems, where the wave function is real but equally 
positive and negative because of the requirement of antisymmetry 

necessitated by the Pauli exclusion principle. Antisyrnmetry is built 
into the trial function by multiplying the pair-product function by a 
Slater determinant. The Slater determinant is made from single 
electron orbitals obtained from the Hartree-Fock or local density 
functional method. These orbitals determine the nodes of the trial 
function, where it changes sign. The procedure for ferrnions has 
evolved in two steps: the fixed-node approximation, and the subse- 
quent exact algorithm that releases those nodes. 

In the fixed-node approximation (9, 12) only one additional rule 
needs to be added to the previously discussed algorithm: if the 
random walk crosses a node of the trial function, that is, when 
+T(old)+T(new) < 0, that snapshot is deleted. This will occur relative- 
ly rarely, since the drift term will push the walks away from the 
places where the wave function vanishes. In our analogy of the 
bacteria, we must add the condition that the bacteria in the puddle 
die if they reach a boundary. Thus, this method solves the Schro- 
dinger equation in each nodal region separately. It can be shown 
that the energy so obtained is the best upper bound consistent with 
these conditions (13). It has been found that this approximation is 
often numerically very accurate because the node locations are not 
crucial for determining the energy. Of course, if the correct node 
locations are known, as in one-dimensional problems, the exact 
result is obtained. One can apply the fixed-node approximation to 
calculate any excited state for which a variational principle applies. 

The releasing of the nodes (8, 14) to get their correct locations 
leads to the exact fermion ground state; however, the computer time 
required may become exponentially large because of a numerical 
instability. Snapshots are not deleted when they hop across a node 
but now carry a plus or minus sign corresponding to the sign of the 
trial function when the walk was begun. The estimate of the wave 
function is the difference in the number of positive and negative 
snapshots that arrive at a given point, and the trial energy is correctly 
adjusted when this difference at any given point is constant in time. 
Although the procedure is mathematically correct, the signal-to- 
noise ratio for a given amount of computer time decreases exponen- 
tially as the positive and negative walks become mixed (Fig. 2); thus 
the computer budget may run out before satisfactory results are 
obtained. Because the method is unstable, it has been called a 
transient estimate (15). In principle, there are ways of canceling 
positive and negative snapshots to prevent the exponential growth 
in the population (16). In practice, this is difficult to carry out in 
many dimensions because the probability that a positive and nega- 
tive snapshot will have the positions of all the particles identical 
within a possible relabeling is too small. In spite of these difficulties, 
satisfactory results have often been obtained (8). A rigorous and 
stable method to simulate fermion systems by a stochastic process 
remains a most challenging problem. 

Other Quantum Monte Carlo Techniques 
The variational quantum Monte Carlo method, an adaptation of 

the classical Metropolis algorithm (1 7) ,  was previously mentioned in 
connection with finding good importance functions and beginning 
the ensemble. It can also be used to determine the ground-state wave 
function in the same sense that the traditional variational methods 
(Hartree-Fock or configuration interaction) are used. In the config- 
uration interaction procedure, the wave function is expanded in a 
complete set offunctions, each ofwhich is an antisymmetric product 
of single-particle orbitals. For variational quantum Monte Carlo 
methods, there is no such restriction on the basis set, since the 
required integrals are obtained with Monte Carlo rather than 
analytically. An intriguing possibility is that of a self-learning 
mechanism, in which the output of the Green's function Monte 
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Carlo simulation is used to improve the form of the trial function. 
For finite-temperature quantum mechanical calculations, the 

path-integral Monte Carlo is employed. The origin of the method is 
based on the observation that the density matrix (at high tempera- 
tures, the Maxwell-Boltzmann distribution; at low temperatures, the 
square of the wave function) can be factored into a product of 
density matrices, each at a higher temperature. 

(3) 
where p is l/kT (T is the temperature). The chosen number of 
products, M, is sufficiently large that at the effective temperature 
M T  an accurate expression for the density matrix exists, usually such 
that the Boltzmann distribution becomes valid. That transformed 
density matrix can then be evaluated by an analogy to a classical 
system of N closed polymer rings of M links (18). The simulation 
~roblem at finite temwrature is then reduced to findine an efficient " 
procedure for sampling all energetically contributing polymer con- 
figurations representing all the intermediate positions Ri of the 
links, or, in bther words, all contributing paths. For that, the 
classical Metropolis (17) method is used. This path-integral Monte 
Carlo scheme differs from the Green's function Monte Carlo method 
in that the paths must close on themselves because thermodynamical 
properties i r e  obtained from the trace or the diagonal part of the 
density matrix. For the polymer system, one samples a space of 
3N x M instead of the 3N x P dimensions (P is the population of 
the ensemble) in the Green's function method. ~1s;. &ere is no 
explicit importance sampling in path-integral Monte Carlo methods. 
Boson statistics are introduced by allowing neighboring polymers to 
cross-link. The efficient sampling of this polymerlike system has 
made it possible to perform accurate simulations (19) of liquid 4 ~ e  
both above and below the superfluid transition point. In contrast, 

Fig. 2. Node release 
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but the wave function o .. . . 

," .. ..' .'.so 0 0 
o m  . . was made orthogonal 
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0 .  
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the squares the nega- 
tive population, and c 
the solid curve repre- 00 .  @ b 8  

3 . sents the wave func- 
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tween the two distri- O .  O .  

butions). (B) Both the 
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oom . . 
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. . 
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8 
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process continues, viv- P 

c. d 
idly demonstrating a 8 
; ! ~ t  the difference is a d 
increasingly hard to d 
determine numerically a 4 
as the positive and 
negative populations 
grow. 

there have been very few simulations offermion systems in continu- 
ous space at finite temperatures, although the zero-temperature 
techniques discussed earlier are applicable. Most applications, partic- 
ularly those for the lattice gauge theories of high-energy physics, 
have been restricted to lattice and spin systems (20). 

An entirely different method that has also been tried primarily on 
lattice problems (21) and on one-dimensional systems (22) should 
be explored further for three-dimensional Fermi systems in continu- 
ous space, since Fermi statistics pose no special difficulty with this 
method. In this method, pair interactions in the Hamiltonian are 
replaced by interactions with an external, random, time-dependent 
field. By this so-called Hubbard-Stratonovitch (23) transformation, 
the many-body calculation is exactly transformed to one'for a system 
of one-body noninteracting fermions. The one-body problem must, 
however, be solved at each step, and this requires considerable 
computer time. A further disadvantage of this scheme appears to be 
that there is no way to allow for the introduction of pair-product 
importance functions. 

Condensed-Matter Applications 
The calculation of the properties of liquid 4He at zero tempera- 

ture was the first large-scale application of Green's function Monte 
Carlo (7, 24). It assumed a pair-interaction potential between 
helium atoms deduced from theoretical considerations and experi- 
mental data. Such an interaction potential can now be accurately 
calculated directly by Monte Carlo methods (25). Equilibrium 
properties, such as energy versus density, pressure versus density, 
crystallization pressure at zero temperature, and the structure factor 
obtained by x-ray or neutron diffraction, come out very close to 
experimental values (24); the differences can be ascribed to the 
inadequacy of the assumed pair potential. 

The most spectacular properties of liquid helium, the dynamical 
ones resulting from its superfluidity, are difficult to simulate with 
this method. However, many of these unusual transport properties 
are believed to result from the fact that, in superfluid helium, a finite 
fraction of the atoms have condensed into a zero-momentum state. 
The difficult neutron-scattering measurements of the momentum 
distribution needed (26) to confirm this theory are given in Fig. 3 at 
1 K. As mentioned above, similar calculations at finite temperatures 
are now being completed. 

The electrons in the conduction band of a simple metal are often 
modeled by replacing the ions by a uniform positive background. 
Although the model dates back more than SO years, there have been 
no convincing calculations of its properties, in spite of many 
attempts, except in the asymptotic limit of high and low densities. 
Even the order of magnitude of the melting density is not generally 
agreed upon. Wigner (27) predicted that, contrary to the usual 
situation, a crystal phase occurs in the low-density regime. The 
properties of the electron gas have been calculated (8, 28) by the 
variational, fixed-node, and release-node Monte Carlo methods, and 
the melting transition has been located. In contrast to the simula- 
tions of liquid helium, there are no direct experimental results to 
compare with these electron gas calculations. Hence, in Fig. 3, the 
momentum distribution of an electron gas at a density approximate- 
ly equal to that in the conduction band of potassium is compared 
with that of an ideal, noninteracting fermi gas. Recent calculations 
similar to those on the electron gas have been performed on 3 ~ e ,  a 
fermi liquid; the results are in good agreement with experiment 
(29). The electron simulation results are now often taken as standard 
input to the approximate solid-state calculations that use local 
density hc t iona l  theory. 

The electron gas has a fairly rich phase diagram. At zero tempera- 
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ture and normal metallic densities, the gas is a regular, spin-paired, 
diamagnetic fermi liquid. As the electron density is reduced by a 
factor of lo6, the electrons spontaneously spin-polarize. The polar- 
ization increases as the density is lowered by another factor of lo6, 
when the electrons undergo Wi ner crystallization. Such ferromag- B netism nearly occurs in liquid He at low temperature and partly 
accounts for the unusual magnetic behavior of that liquid. These 
Monte Carlo calculations, involving several hundred particles, have 
not yet attained the precision to explore such subtle effects as the 
superfluidity of 3He or the superconductivity of metallic hydrogen. 
The effects energetically are too small and the relevant length scales 
for the phenomena too large compared to the size of the system that 
can be simulated. However, it is possible to calculate the response of 
the electron gas to various types of external fields, test charges, or 
impurities. Such calculations are underway. 

Hydrogen, as the simplest of the elements, provides a natural 
extension of the previous work on the electron gas in which the 
uniform background is replaced by the actual protons. It is much 
more difficult to use a molecular pair potential in Monte Carlo 
calculations of the properties of hydrogen than it is with helium. 
The pair interaction for hydrogen is more complex and less certain, 
and at high pressures there are nonpainvise additive effects. Thus the 
simulations were performed directly with protons and electrons, 
interacting only through their coulomb potential. Both the protons 
and the electrons have a sizeable quantum motion. This is taken into 
account in the simulation by letting the protons drift and diffuse, 
but at a rate 1836 times slower than the electrons, which is the ratio 
of their masses. 

These calculations can be compared with experiments (30) at 
pressures above lo6 atmospheres (1  Mbar) reached with a diamond 
anvil apparatus. However, the molecular-atomic transition to a 
metal, first predicted by Wigner in 1935 (31), has not been observed 
experimentally. Simulation of hydrogen (32) in both the molecular 
and atomic phase established that this phase transition occurs at 
about 2.8 Mbar. It has also been established that the protons 
undergo a melting transition at low temperature but under astro- 
physical conditions (lo8 Mbar). The excellent agreement between 
the theoretical equation of state in the molecular phase and the 
experimental one is shown in Fig. 4. The energy resolution achieved 
with these calculations of 0.001 Rydberg per atom is also enough to 
determine crudely the pressure (roughly 1 Mbar) at which hydrogen 
molecules stop rotating, that is, when they become aligned in the 
crystal. 

These simulations of hydrogen have only scratched the surface of 
the interesting properties that could be reliably calculated. It would 
be relatively straightforward to obtain band gaps, bond frequencies, 
and dielectric properties of hydrogen even though the amount of 
computer time required is large (10 hours of CRAY-1 time per 
computation). Calculations of the properties of mixtures of hydro- 
gen and helium, as they occur, for example, in the core of Jupiter, 
and simulation of metallic lithium are further possible extensions of 
this work. 

Few-Body Problems 
The applications described so far have all been to bulk systems, for 

which periodic boundary conditions were used to minimize finite 
system effects. In calculations of the properties of few-particle 
systems, such as molecules or clusters, the correct boundary condi- 
tions are those of an isolated system. In such studies the advantage 
of the Green's h c t i o n  Monte Carlo method lies not only in its 
rigor but also in its ability to deal with many more electrons than 
alternative ab initio methods. The amount of computer time needed 

to achieve a given statistical error per atom increases only as the 
number of particles squared. For very large systems, one can use 
sparse matrix techniques to lower this power further. 

As a first example of a few-body system, the energy of three 
hydrogen atoms for several positions of the three protons has been 
calculated (33). The potential surface for this molecule needs to be 
known to establish the barrier for the simplest chemical reaction, 
namely the exchange of a hydrogen atom with one in a hydrogen 

0.05i ;.., Fig. 3. (A) The momentum 
distribution, n(k), as a func- 
tion of momentum, k, for tiq- 
uid 4He at 1 K. The momen- 
tum distribution as obtained 

o by Monte Carlo calculations 
1 2 

k 
at zero temperature consists of 
a zero momentum compo- 

nent, the condensate, represented by a delta function, 6(k) (heavy line at the 
origin), comprising about 10 percent of the particles, and a normal 
component, n*(k) (solid curve). Ignoring the temperature-dependence, the 
normal component can be compared with the results of neutron scattering 
experiments at 2.27 K (above the superfluid transition; open circles). The 
solid circles represent the measured momentum distribution at 1 K (below 
the superfluid transition). The condensate fraction, found by integrating the 
difference between the experimental distribution at 1 K and at 2.27 K, is 
found to be 14 percent, which is comparable to the theoretical value at 0 K. 
(B) The momentum distribution of an interacting electron gas calculated by 
the Monte Carlo method at zero temperature and at a density approximately 
equal to that of the valence electrons in potassium under standard conditions 
(dots and heavy line) compared with that of an ideal fermi gas (dashed line). 

Pressure (Mbar) 

Volume (cm3 mol") 

Fig. 4. The energy of hydrogen at zero temperature plotted against volume 
and corresponding pressure. The results of the diamond-anvil experiment are 
given by the solid curve and an extrapolation of the data is indicated by the 
dashed curve. The Monte Carlo results for the molecular phase are given by 
open squares and for the atomic phase by closed squares joined by a dotted 
line. The double-tangent construction indicated by the straight line deter- 
mines the molecular-to-atomic transition region to be between the two 
horizontal markers at 2.8 Mbar. 
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molecule. The energy for the barrier as calculated by Monte Carlo 
was 9.60 r 0.05 kcal mol-', which is 0.3 kcal mol-' lower than the 
best variational configuration interaction upper bound (34) but is 
exactly the same as the variational result if a correction that estimates 
the rate of convergence of the expansion is applied. 

Another example is a cluster of lithium atoms. Calculations on the 
lithium dimer gave more accurate total energies (8, 33) than the 
configuration interaction calculation. Similarly, the ground-state 
energy of the trimer in various geometries has been determined, 
encouraging the study of much larger clusters. If accurate results can 
be obtained for sufficiently large clusters with reasonable computer 
time, it will be possible to simulate metal surfaces realistically and 
subsequently to study the properties of molecules absorbed on 
them. In such cluster calculations the lithium nuclei should not be 
held fixed, but the geometry of the cluster should come out of the 
calculation. A good approximation would be to assume that these 
nuclei behave classically, which calls for an algorithm that can deal 
with both classical and quantum mechanical degrees of freedom at 
the same time. Such an algorithm would be very useful in treating 
any liquid system, such as water, starting with classically behaving 
oxygen and hydrogen nuclei (the latter requires quantum correc- 
tions but not a full quantum treatment) and electrons that behave 
quantum mechanically. Such calculations would be considerably 
more realistic than the present classical simulations of water that are 
based on rigid molecules interacting with pair forces. However, 
with current computers and methods, such a simulation of water 
would be too costly. One needed improvement is a way of directly 
calculating the change in the electronic energy as classical degrees of 
freedom change. Such a need arises in many applications. Work is 
underway on a differential Monte Carlo scheme that computes such 
energy differences. 

The reason that only relative energies are required is that fre- 
quently one is interested only in the difference in the energies of 
various arrangements of the atom in a molecule to find the 
arrangement of highest stability. Another application would be in 
the simulation of atoms larger than neon. The two main problems 
for heavier elements are (i) that the time step needed to follow the 
inner electrons becomes smaller as the core electrons are bound 
more tightly, leading to slow convergence, and (ii) that the differ- 
ence between the fermion ground state and the distribution to 
which the system relaxes upon nodal release becomes larger for 
atoms with more electrons, so that there is increasing difficulty in 
reliably extracting the difference between the positive and negative 
populations. If the inner-shell electrons could be accurately repre- 
sented by a pseudopotential, these difficulties would be ameliorated, 
since then only the part of the random walk concerned with the 
electrons in the valence region would contribute. The accurate 
replacement of the inner electrons by a pseudopotential requires that 
the core electrons be insensitive to the valence electrons. If for that 
purpose a nonlocal pseudopotential must be introduced, the Monte 
Carlo calculation would be much more involved. 

As a final example of few-body problems, consider the sticking 
probability of a muon to an alpha particle. In this situation the 
Monte Carlo method can be used not only to obtain energies but 
also to calculate the value of the wave function in an extremely 
improbable arrangement of the particles, namely when two nuclei 
are in the process of fusing. The total number offusions catalyzed by 
a single muon placed in a deuterium-tritium liquid is experimentally 
found (35) to be more than 100. This value is limited by the 
probability that an alpha particle will capture a muon immediately 
after a fusion occurs. Calculation of this capture probability requires 
knowing the value of the wave function of a molecule composed of a 
muon bound simultaneously to a deuteron and a triton. Such a 
three-body calculation is difficult by traditional methods, since the 
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energy is insensitive to the value of the wave function where it is 
needed, at the coalescence point. However, the wave function 
can be calculated by Monte Carlo in a very simple way (36). Many 
random walks are started from the desired configuration of the 
particles. When the walks have reached their steady-state distribu- 
tion, the ratio of the exact wave function to the trial wave function is 
proportional to the average population of the ensemble. The 
method is rigorous, and even at this highly singular point impor- 
tance sampling permits calculation of the wave function with a 
relative error less than 0.5 percent. 

Conclusion 
The Green's function Monte Carlo technique is still very much in 

the developmental phase, and applications have been limited to a 
few long-standing problems. Nevertheless, it is already apparent that 
the simplicity, rigor, and adaptability of this approach to different 
computer architectures make it likely that it will become a standard 
computational tool in physics and chemistry. Future algorithmic 
improvements include finding better numerical methods for dealing 
with fermions, finding ways of improving the trial wave function to 
make importance sampling more effective, computing excited states, 
combining quantum and classical Monte Carlo calculations, finding 
an efficient procedure for calculating energy differences, and dealing 
with fermions at finite temperature. The systems that could be 
simulated range from nuclear matter to plasmas in outer space, 
whenever more than two particles interact. 
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