after 2 weeks of flow reduction may involve responses other than adjustments of smooth muscle tone. For example, there may be a structural reorganization of the vessel wall. To assess this possibility, we ligated left external carotid arteries in an additional four rabbits. After 4 weeks the rabbits were reanesthetized, both carotids were exposed, and the smooth muscle relaxant papaverine (3.25 mg/ml) was applied topically to each vessel. Both dilated slightly, but the diameter reduction of the left carotid relative to the right was not reversed or even reduced by this dose of papaverine, even though it abolished the maximal constrictor response to norepinephrine (13). We infer that longterm, flow-induced reductions in arterial diameter are due to a structural modification of the vessel wall, although it remains possible that changes in smooth muscle tone contribute to the early phase of the response.

REFERENCES AND NOTES

- R. Thoma, Untersuchungen über die Histogenese and Histomechanik des Gefassystems (Enke, Stuttgart, 1893); A. F. W. Hughes, J. Anat. 72, 1 (1937).
- W. B. Chapman, J. Anat. 23, 175 (1918); F. Stephan,
 C. R. Assoc. Anat. 36, 647 (1949).
 J. R. Guyton and C. J. Hartley, Fed. Proc. Fed. Am. 3.
- Soc. Exp. Biol. 43, 973 (1984).
 R. Ingebrigtsen and S. Leraand, Acta Physiol. Scand.
- 79, 552 (1970); V. Smiesko, V. M. Khayutin, M. Gerova, V. Gero, *Physiol. Bohemoslov.* 28, 273 (1979); A. Kamiya and T. Togawa, Am. J. Physiol. 239, H14 (1980).
- (1900). 5. L. Lie et al., Circ. Res. 27, 727 (1970). 6. S. C. Ling et al., ibid. 33, 198 (1973); R. J. Lutz et al., 6. ibid. 41, 391 (1977).
- Vascular tissues are incompressible [T. E. Carew, R. M. Vaishnav, D. J. Patel, *Circ. Res.* **23**, 61 (1968)]; therefore, the relation between shear stress (τ) and shear strain (σ) is $\pi/\sigma = 1/2E$, where E is elastic modulus of the tissues [D. H. Bergel, in *Biomechan*-ies: Its Objectives and Foundations, Y. C. Fung, N. 18: Objectives and Foundations, Y. C. Fung, N. Perrone, M. Anliker, Eds. (Prentice-Hall, Englewood Cliffs, NJ, 1972), pp. 105-139]. A typical value for E for a mammalian carotid artery is 5 × 10⁻⁶ dyne/cm²; thus a shear stress of 100 dyne/cm² produces a shear strain of 0.15 percent.
 8. R. L. Keenan and S. Rodbard, Cardiovasc. Res. 7,
- 670 (1973); S. Rodbard, Cardiology 60, 4 (1975).
- For a review of endothelial release of vasoactive substances, see P. M. Vanhoutte, in *The Peripheral*

Circulation, S. Hungar, J. Ludbrook, J. Shaw, M. McGrath, Eds. (Excerpta Medica, New York, 1984), pp. 3–9. Shear-dependent release has been described for prostacyclin [J. A. Frangos, S. G. Eskin, L. V. McIntyre, C. L. Ives, *Science* 227, 1477 (1988)] and histamine [J. M. deForrest and T. M. Hollis, *Am. J. Deville and Mathematical Construction*]. Physiol. 234, H701 (1978)]. 10. S. M. Schwartz and R. Ross, Prog. Cardiovasc. Dis.

- **26**, 355 (1984). 11. H. R. Baumgartner, Z. Gesamte Exp. Med. 137, 227
- 1963
- 12. M. A. Reidy and S. M. Schwartz, Artery 8, 236 (1980).
- 13. Drug responses were assessed in anesthetized rabbits by exposing the common carotid arteries and topically applying the drugs continuously. Carotid arterial diameters were measured by using a stereomicroscope with a calibrated eyepiece. Maximal constrictor responses were seen with 10^{-5} to $10^{-4}M$ norepinephrine, which produced a 40 to 50 percent reduction in carotid diameter.
- M. A. Reidy and M. J. Levesque, Atherosclerosis 8, **I**4. 463 (1977).
- H. M. Groves et al., Lab. Invest. 40, 194 (1979).
 J. A. Fishman et al., Nature (London) 265, 625 (1977).
 M. A. Reidy and M. Silver, Am. J. Pathol. 118, 173 (1985)
- We thank C. Cleave and I. Mann for their technical 18. assistance. Supported by the Heart and Stroke Foundation of Ontario.

5 August 1985; accepted 3 October 1985

Ras-Transformed Cells: Altered Levels of Phosphatidylinositol-4,5-bisphosphate and Catabolites

LAURIE F. FLEISCHMAN,* SURESH B. CHAHWALA, LEWIS CANTLEY

Steady-state cellular levels of phosphatidylinositol-4,5-bisphosphate (PIP₂), 1,2-diacylglycerol (DAG), and inositol phosphates have been measured in two different fibroblast cell lines (NIH 3T3 and NRK cells) before and after transformation with three different ras genes. At high cell density the ratio of DAG to PIP₂ was 2.5- to 3fold higher in the ras-transformed cells than in their untransformed counterparts. The sum of the water-soluble breakdown products of the polyphosphoinositides, inositol-1,4-bisphosphate and inositol-1,4,5-trisphosphate, was also elevated in ras-transformed NRK cells compared with nontransformed NRK cells. These findings suggest that the ras (p21) protein may act by affecting these levels, possibly as a regulatory element in the PIP₂ breakdown pathway.

NTERMEDIATES IN THE PHOSPHATIdylinositol turnover cycle apparently act as second messengers to mediate diverse responses in cells. Phospholipase C hydrolysis of phosphatidylinositol (PI) and its phosphorylated derivatives, phosphatidylinositol-4-phosphate (PIP) and phosphatidylinositol-4,5-bisphosphate (PIP₂), is stimulated by hormones, neurotransmitters, serum, and purified growth factors (1). Recent work from several laboratories has indicated that PIP₂ is the primary substrate for this breakdown (2). The breakdown products of PIP2-diacylglycerol (DAG) and inositol-1,4,5-trisphosphate (IP₃)—appear to act as intracellular regulators. Diacylglycerol activates a Ca²⁺- and phospholipid-dependent protein kinase (kinase C) and can also act as a substrate for arachidonic acid release for production of prostaglandins (3); IP₃ stimulates Ca²⁺ release from intracellular vesicles into the cytosol (4). Both the DAG-activated kinase C and the IP₃-stimulated Ca²⁺ release cause activation of a plasma membrane Na⁺-H⁺ exchanger, which elevates cytoplasmic Na⁺ and pH (5). Recent evidence has suggested that generation of these signals through stimulation of PI turnover is a critical event in growth factor stimulation of cell proliferation (6).

The transforming proteins encoded by the ras genes of the Kirsten and Harvey sarcoma viruses are homologous 21-kD proteins. Mutated versions of cellular homologs of ras have been implicated in the etiology of many human tumors of diverse origin (7). The ras protein is located in the plasma membrane and possesses GTP-binding capacity and low guanosine triphosphatase (GTPase) activity (8). Analogies between

ras, transducin, and the proteins that regulate adenylate cyclase suggest a role for ras in transmembrane signal transduction (9), but its actual function in mammalian cells remains to be elucidated. In this study, levels of intermediates in the PI turnover cycle were measured quantitatively in NIH 3T3 and NRK cells and in these cells transformed by H, N, and K alleles of ras (see legend to Fig. 1). The results indicate that alterations in the steady-state levels of these membrane components is characteristic of ras transformation, suggesting that the ras protein may be involved in the regulation of PIP₂ breakdown.

PIP₂ and DAG levels in normal and rastransformed cells were determined by growing cells in [³H]glycerol. Cellular lipids were extracted in acidic chloroform-methanol and analyzed by thin-layer chromatography (TLC). Radioactivity remaining at the origin on the TLC plates developed in benzene-ethyl acetate (60:40) solvent (diacylglycerol plate) was used as a measure of total cellular [³H]glycerol-containing phospholipid. PIP₂ and DAG were expressed as a percentage of this total, and a ratio of DAG to PIP₂ was obtained for each cell type. Figure 1 shows the results of experiments with cells at high density $(0.8 \times 10^7 \text{ to})$ 1.0×10^7 cells per 100-mm plate). All three types of ras-transformed cells had signifi-

Department of Physiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111.

^{*}To whom correspondence should be addressed.

Table 1. Ratios of DAG and PIP₂ to total cellular lipid. Ratios determined by isotopic labeling with $[^{3}H]$ glycerol and $[^{3}H]$ inositol and by direct mass measurements are compared. Values are expressed as percent \pm SEM. The numbers in parentheses give the percentage of change in the transformed cells as compared to their normal counterparts; ND, not determined.

Cell line	DAG		PIP ₂	
	Glycerol-lipid*	Phospholipid ⁺	Glycerol-lipid‡	Glycerol-lipid§
NRK kNRK NIH 3T3 a ₁ -1 1B	$\begin{array}{c} 4.5 \pm 0.4 \\ 7.2 \pm 0.2 \ (+60\%) \\ 4.2 \pm 0.3 \\ 7.4 \pm 0.5 \ (+76\%) \\ 5.9 \pm 0.6 \ (+40\%) \\ \end{array}$	$\begin{array}{c} 3.5 \pm 0.04 \\ 4.3 \pm 0.06 \ (+23\%) \\ 3.5 \pm 0.3 \\ 4.5 \pm 0.1 \ (+29\%) \\ 4.3 \pm 0.4 \ (+23\%) \end{array}$	$\begin{array}{c} 0.46 \pm 0.03 \\ 0.29 \pm 0.02 \ (-37\%) \\ 0.60 \pm 0.04 \\ 0.34 \pm 0.04 \ (-43\%) \\ 0.33 \pm 0.02 \ (-45\%) \end{array}$	$0.59 \pm 0.1 \\ 0.23 \pm 0.1 \ (-61\%) \\ ND \\$

Fig. 1. Steady-state levels of 1,2-DAG and PIP² in ras-transformed and nontransformed cells grown at high cell density. Cells were grown to a density of 0.8×10^7 to 1.0×10^7 cells per plate in 100-mm dishes and labeled for 48 hours with [1,2,3,-3H]glycerol (20 μ Ci per 10 ml per 100-mm plate). Labeled medium was removed and cells were rinsed twice with cold phosphate buffered saline (PBS) (pH 7.4). One milliliter of 0.5N HCl was added to the plate and cells were scraped into 2 ml of cold chloroform. The plate was rinsed with 1 ml of 1N HCl, then 2 ml of methanol, and the washes were combined with the cell extract. Samples were then vortexed, allowed to stand for 30 minutes and briefly centrifuged to separate the two phases. The lower (organic) phase was removed and the aqueous phase was reextracted with 1 ml of chloroform. Pooled organic phases were then washed with 2 ml of 1N HCl-MeOH (1:1 by volume). The organic phase was dried under N_2 , dissolved in CHCl₃-MeOH- H_2O (2:1:0.01 by volume), and applied to TLC plates. For analysis of polyphosphoinositides, samples were spotted on silica gel 60 thin-layer plates (Merck) impregnated with 1 percent potassium oxalate and separated in chloroform-methanol-4N NH₄OH (9:7:2 by volume). Spots were identified by comparison with [³H]inositol-labeled standards and unlabeled standards visualized by iodine vapor. For analysis of diacylglycerol, lipids were spotted on untreated plates and separated in benzene-ethyl acetate (60:40 by volume). Lipids were visualized by autoradiography after treatment of plates with Enhance (New England Nuclear). The radioactive spots were cut out and assayed by liquid scintillation counting. At longer exposures small amounts of the 1,3 isomer of diacylglycerol could be detected migrating between 1,2-DAG and TAG; the relative positions of 1,2 and 1,3-DAG were confirmed by use of standards (Sigma) visualized by iodine vapor and were well resolved in this TLC system. Total [³H]glycerol incorporated into phospholipid was approximately 8750 cpm per 10⁶ cells. (a) Confluent NRK cells; (b) kNRK cells (Kirsten virus-transformed NRK cells); (c) confluent NIH 3T3 cells; (d) a, -1 cells (T24-H-ras-transfected NIH 3T3 cells; (e) 1B cells (SK-N-SH-N-ras-transfected NIH 3T3 cells). Averages and SEM's of three to nine determinations are shown. In all experiments described cells were grown in Dulbecco's modifed Eagle's medium supplemented by 10 percent fetal calf serum. Errors due to variability in cell number, extraction efficiency, or amount of sample applied to the thin layer system were eliminated by taking the ratio of counts in DAG or PIP₂ to the total counts in all glycerolcontaining phospholipids.

408

cantly lower levels (see Table 1) of PIP₂ and higher levels of DAG than their normal counterparts. The actual amounts of DAG and PIP₂ found in the three types of transformed cells were strikingly similar. DAG and PIP₂ amounts in the two types of nontransformed confluent cells were also similar despite the fact that the cells examined originate from different species (mouse versus rat) and tissues (skin versus kidney). In other experiments, in which the ratios of DAG to PIP₂ were determined for cells under low density (exponential growth) conditions, the ratio of DAG to PIP2 in uninfected NIH 3T3 cells was comparable to that of ras-transformed NIH 3T3 cells, whereas Kirsten-transformed NRK cells had a significantly higher ratio than normal NRK cells at both cell densities (10).

Experiments with [³H]inositol-labeled cells revealed that the water-soluble breakdown products of PIP and PIP₂ were also elevated in ras-transformed NRK cells (Fig. 2a). The results are presented as ratios of IP2, IP3, PIP, or PIP2 to phosphatidylinositol to minimize errors from variability in cell number and efficiency of extraction. In agreement with results obtained with [³H]glycerol labeling (Fig. 1), the amounts of PIP₂ were significantly lower (see Table 1) in the kNRK cells compared with nontransformed NRK cells. When the [³H]inositol radioactivity in PIP2 was expressed as a percentage of that in PI the values obtained were 3.3 percent for the NRK cells and 1.3 percent for the kNRK cells (Fig. 2A). Although no significant change in IP3 was detected in the ras-transformed cells, a large increase in IP2 was apparent. In the NRK cells IP2 expressed as a percentage of PI was 1.3 and in the kNRK cells it was 3.4. The sum of IP2 plus IP3 was 3.2 percent of PI in

the NRK cells and 5.0 percent of PI in the kNRK cells. The increase in IP₂ could have occurred because of increased phospholipase C hydrolysis of PIP, or because of a rapid inositol-1,4,5-trisphosphate phosphatase action on the IP₃ produced from PIP₂ breakdown, or by a combination of both effects. Very little difference in the amount of PIP was detected between normal and ras-transformed NRK cells (Fig. 2A). Thus, it seems likely that much of the IP₂ represents rapidly dephosphorylated IP₃, since the phosphatase that converts IP₃ to IP₂ has been shown to be an extremely active enzyme (11). Although some IP2 may be produced from breakdown of PIP, the elevation of IP2 in kNRK cells correlates better with the decreased steady-state level of PIP₂, suggesting derivation from PIP_2 breakdown (12).

Since transformed cells have altered rates of metabolism it is critical to eliminate differences due to rates of [3H]glycerol and ³H]inositol uptake and incorporation into the lipid pool. For this reason long labeling times were used in our studies. Control time-course experiments of [3H]glycerol labeling of NRK, NIH 3T3, kNRK, and a1-1 cells indicated that between 48 and 96 hours of labeling there was no significant change in the total incorporation of [³H]glycerol into cell phospholipid or in the percentage of DAG or PIP2 of this total. There was no significant difference per cell between the total [³H]glycerol label incorporated into the lipid pool by a₁-1 and NIH 3T3 cells; kNRK showed about 30 percent higher total incorporation while that of NRK cells was about 20 percent lower. In cells labeled with [³H]glycerol, approximately 18 percent of the total [3H]glycerol-lipid was PI in both the normal and transformed cells, as determined by two-dimensional TLC. Thus, the [³H]glycerol incorporation into the PI pool is similar in normal and transformed cells after 48 to 72 hours of labeling under conditions that permit at least three rounds of cell division.

The observations that amounts of PIP₂ in the kNRK cells were similarly lowered in both [³H]glycerol and [³H]inositol labeling experiments suggests that an alteration in PIP₂ mass per cell is involved. In addition, when the ratio of PIP₂ to PI from [³H]inositol labeling experiments is multiplied by the fraction of PI in total glycerol-containing lipid (0.18), the values obtained are similar to the ratio of PIP₂ to total glycerol-lipid measured in the [³H]glycerol labeling experiments (Table 1, last column).

Since differences in glycerol or inositol (or both) metabolism in the transformed cells still may have affected these findings in unknown ways, we sought to measure DAG by an alternative method not involving met-

Fig. 2. Steady-state levels of inositol phosphates and polyphosphoinositides in NRK and kNRK cells. NRK and kNRK cells were seeded at 5×10^4 cells in 2 ml of medium into 33-mm dishes and used after 6 to 7 days and 4 to 5 days, respectively, at which time the cell densities were 0.25×10^7 to 0.3×10^7 cells per plate (a confluent density for the normal NRK cells). The cells were labeled 48 to 72 hours before harvesting with myo-[2-3H]inositol (20 µCi per milliliter per 33-mm plate). The labeled medium was removed and the cells were rinsed three times with cold PBS to remove as much as possible of the free [³H]inositol. One milliliter of cold 15 percent trichloroacetic acid was added and the dishes were kept on ice for 30 minutes to extract the water-soluble inositol phosphates. The inositol phosphates were separated by anion-exchange chromatography as described previously (22). The inositol lipids that remained on the dishes after removal of the inositol phosphates were extracted with 2 ml of chloroformmethanol-concentrated HCl (200:100:1 by volume). The dishes were rinsed with an additional 1 ml of the same solvent and the two extractions were combined. Phase split was induced by adding 1 ml of chloroform and 1 ml of 0.1N HCl. The sample was then mixed and briefly centrifuged to resolve the two phases. The lower (organic) phase was removed, dried under N2, and analyzed by TLC (see Fig. 1). The average total incorporation was approximately 51,000 cpm per 106 cells for NRK cells and 59,000 cpm per 10⁶ cells for kNRK cells. (a) NRK cells (confluent); (b) kNRK cells (high density). The numbers are averages of eight to nine determinations in two experiments. (B) Ratios of steady-state levels of polyphosphoinositide breakdown products to PIP₂ in NRK and kNRK cells. (a) Confluent NRK cells are compared to (b) kNRK cells at similar density. Labeling and lipid analysis were as described [Fig. 1 and (A)].

abolic labeling. The DAG in the cell lipid extracts was quantitated by phosphorylation with the use of $[\gamma^{-32}P]ATP$ and a DAG kinase partially purified from bovine brain; samples of the same lipid extracts were analyzed for phosphate content. A comparison of the *ras*-transformed cells (kNRK, a₁-1, and 1B) to the untransformed cells (NRK and NIH 3T3) showed a 23 to 29 percent increase in ratio of DAG to lipid phosphate (Table 1). These findings confirm the increase in DAG amounts in the transformed cells and indicate that the differences in the metabolic labeling experiments reflect a significant difference in DAG mass (13).

The possibility that transformation by *ras* has an effect on the phospholipase C step in PI turnover is suggested by the data in Fig. 2B. The ratio of the primary breakdown products of polyphosphorylated phosphatidylinositol to the precursor PIP₂ are presented. Since the water-soluble inositol phosphates and diacylglycerol both increase while PIP₂ decreases, the ratios are increased three- to fourfold in *ras*-transformed cells.

More information on the functions of DAG and PIP₂ in cell physiology is needed before the significance of the steady-state alterations observed here can be assessed. The ability of DAG to activate kinase C has been widely discussed, although the cellular concentration necessary for this stimulation is difficult to estimate (14). The magnitude of difference between the amounts of DAG in normal and ras-transformed cells (a 40 to 76 percent increase) (Fig. 1) appears to be small. However, mitogen stimulation of cells arrested at the G0-G1 boundary of the cell cycle typically gives only a transient 30 to 150 percent increase in DAG and appears to activate kinase C (6), indicating that the changes seen here may be significant for kinase C regulation. Activation of kinase C by elevation of cellular DAG may be a critical step in cell transformation by ras. It has been shown that mutated ras genes are only capable of transforming embryonic rat fibroblasts after the cells are immortalized by a class of oncogenes that includes the myc gene (15). Tumor-promoting phorbol esters

have also been shown to induce transformed foci in cells immortalized by myc (16). Since the phorbol esters are specific activators of kinase C, the results suggest that activation of kinase C is the critical step in this transformation. Elevated levels of DAG, IP₂, and IP₃ have recently been found associated with transformation of NIH 3T3 cells by polyoma virus (17). In this case PIP₂ amounts were increased as well, consistent with the finding that immunoprecipitated complexes containing polyoma middle T protein and pp60^{c-src} contain PI kinase activity. Comparison with our results suggests that ras and polyoma may affect different steps in the PI turnover pathway.

Proteins homologous to mammalian ras have been studied in yeast and shown to be involved in the regulation of cyclic AMP; introduction of an activated yeast or mammalian ras gene stimulated an increase in cyclic AMP in yeast cells (18). However, recent attempts in several laboratories to demonstrate stimulation of adenylate cyclase by purified ras in mammalian cells have yielded negative results (19), consistent with earlier findings that cyclic AMP levels in rastransformed cells are generally depressed or unchanged (20). The influence of ras on transmembrane signaling may indirectly affect adenyl cyclase and other enzymes involved in interconnected pathways. In the simplest model consistent with our results, the ras protein could directly activate a phospholipase C that hydrolyses PIP₂. These events would result in a decrease in PIP₂, an increase in inositol phosphates (IP₂ and IP₃), and DAG levels in ras-transformed cells as seen here. Other modes of action at other points in the PI cycle are also possible, such as inhibition of diglyceride lipase or diacylglycerol kinase, raising the DAG level (21). However, these inhibitions do not offer a simple explanation for the decrease in PIP_2 and the increase in IP_2 .

REFERENCES AND NOTES

- 1. For reviews see R. H. Michell, Biochim. Biophys. For reviews see R. H. Michell, Biochim. Biophys. Acta 415, 81 (1975); M. J. Berridge, Biochem. J. 220, 345 (1984); Y. Nishizuka, Science 225, 1365 (1984).
 R. H. Michell et al., Phil. Trans. R. Soc. B296, 123 (1981); M. J. Berridge, Biochem. J. 212, 849 (1983); B. W. Agranoff, P. Murthy, E. B. Seguin, J. Biol.

- Chem. 258, 2076 (1983); T. F. J. Martin, *ibid.*, p. 14816; R. V. Farese *et al.*, *ibid.* 259, 7094 (1984). Y. Nishizuka, Nature (London) 308, 693 (1984); R. L. Bell *et al.*, Proc. Natl. Acad. Sci. U.S.A. 76, 3238 (1979); T. Okazaki et al., J. Biol. Chem. 256, 7316 (1981)
- [1981].
 H. Streb et al., Nature (London) 306, 67 (1983); M. J.
 Berridge and R. F. Irvine, *ibid.* 312, 315 (1984).
 C. P. Burns and E. Rozengurt, *Biochem. Biophys.* Res. Commun. 116, 931 (1983); P. M. Rosoff, L. F.
 Stein, L. C. Cantley, J. Biol. Chem. 259, 7056 (1984);
 W. H. Moolenaar, L. G. J. Tertoolean, S. W. de Laat, Nature (London) 312, 371 (1984); G. L. Alle-main, S. Paris, J. Pouyssegur, J. Biol. Chem. 259, 880 (1984). 5. 5809 (1984
- (1984).
 A. J. R. Habenicht et al., *ibid.* 256, 12329 (1981); A. P. Thomas et al., *ibid.* 258, 5716 (1983); C. H. MacPhee et al., J. Cell. Physiol. 119, 35 (1984); M. L. Berridge et al., Biochem. J. 222, 195 (1984); M. V. Taylor et al., Nature (London) 312, 462 (1984).
 R. W. Ellis et al., *ibid.* 292, 506 (1981); L. F. Parada et al., *ibid.* 2014, 100 (1981); C. F. Parada
- K. W. Ellis et al., *ibid.* 292, 300 (1961); E. F. Falada
 t al., *ibid.* 297, 474 (1982); C. J. Der, T. G.
 Kronturis, G. M. Cooper, *Proc. Natl. Acad. Sci.* U.S.A. 79, 3637 (1982); E. Taparowsky et al., *Nature* (London) 300, 762 (1982); K. Shimizu et al., *Proc. Natl. Acad. Sci.* U.S.A. 80, 2112 (1983); E. Taparowsky et al., *Coll. acad. Sci.* U.S.A. 80, 2112 (1983); E. Taparovsky et al., *Coll. acad. Sci.* U.S.A. 80, 2112 (1983); E. Taparovsky et al., *Coll. acad. Sci.* U.S.A. 80, 2112 (1983); E. Taparovsky et al., *Coll. acad. Sci.* U.S.A. 80, 2112 (1983); E. Taparovsky et al., *Coll. acad. Sci.* U.S.A. 80, 2112 (1983); E. Taparovsky et al., *Coll. acad. Sci.* U.S.A. 80, 2112 (1983); E. Taparovsky et al., *Coll. acad. Sci.* U.S.A. 80, 2112 (1983); E. Taparovsky et al., *Coll. acad. Sci.* U.S.A. 80, 2112 (1983); E. Taparovsky et al., *Coll. acad. Sci.* U.S.A. 80, 2112 (1983); E. Taparovsky et al., *Coll. acad. Sci.* U.S.A. 80, 2112 (1983); E. Taparovsky et al., *Coll. acad. Sci.* U.S.A. 80, 2112 (1983); E. Taparovsky et al., *Coll. acad. Sci.* U.S.A. 80, 2112 (1983); E. Taparovsky et al., *Coll. acad. Sci.* U.S.A. 80, 2112 (1983); E. Taparovsky et al., *Coll. acad. Sci.* U.S.A. 80, 2112 (1983); E. Taparovsky et al., *Coll. acad. Sci.* U.S.A. 80, 2112 (1983); E. Taparovsky et al., *Coll. acad. Sci.* U.S.A. 80, 2112 (1983); E. Taparovsky et al., *Coll. acad. Sci.* U.S.A. 80, 2112 (1983); E. Taparovsky et al., *Coll. acad. Sci.* U.S.A. 80, 2112 (1983); E. Taparovsky et al., *Coll. acad. Sci.* U.S.A. 80, 2112 (1983); E. Taparovsky et al., *Coll. acad. Sci.* U.S.A. 80, 2112 (1983); E. Taparovsky et al., *Coll. acad. Sci.* U.S.A. 80, 2112 (1983); E. Taparovsky et al., *Coll. acad. Sci.* (1984); *Coll. acad. Sci.* (1984); *Coll. acad.* (198
- Natl. Acad. Sci. U.S.A. 80, 2112 (1983); E. Taparowsky et al., Cell 34, 581 (1983).
 8. E. M. Scolnick, A. G. Papegeorge, T. Y. Shih, Proc. Natl. Acad. Sci. U.S.A. 76, 5355 (1979); M. C. Willingham et al., Cell 19, 1005 (1980); M. E. Furth et al., J. Virol. 43, 294 (1982); R. W. Sweet et al., Nature (London) 317, 273 (1984); J. P. McGrath et al., ibid 210, 644 (1984). bid. 310, 644 (1984)
- 9
- *ibid.* 310, 644 (1984). L. Stryer, J. B. Hurley, B. K.-K. Fung, *TIBS* 6, 245 (1981); A. G. Gilman, *Cell* 36, 577 (1984). Nontransformed exponentially growing cells were compared to their transformed counterparts at low density $(0.4 \times 10^7 \text{ to } 0.6 \times 10^7 \text{ cells per 100-mm} \text{ plate})$. Labeling and lipid analysis were as described in Fig. 1. Ratios of DAG to PIP₂ were 10.9 for NRK, 19.7 for kNRK, 18.3 for NIH 313, and 21.8 for a1-1 cells (compare with results for confluent cells presented in Fig. 1). The DAG as a percent of total [³H]glycerol-lipid was 5.8 (NRK), 6.1 (kNRK), 5.3 (NIH 313), and 7.4 (a₁-1); PIP₂ as a percent of total [³H]glycerol-lipid was 0.53 (NRK), 0.31 (kNRK), 0.29 (NIH 313), and 0.34 (a₁-1). The numbers are averages of five to six determinations in two sep rate experiments. The SEM was ± 0.006 for DAG measurements and ± 0.0005 for PIP₂. In other experiments NIH 3T3 cells were investigated at low (0.4 × 10⁷ to 0.6 × 10⁷ cells per plate, intermediate (0.6 × 10⁷ to 0.8 × 10⁷ cells per plate, and maxi-mum (confluent) (0.8 × 10⁷ to 1.0 × 10⁷ cells per plate) density. A decline in DAG/PIP₂ from 18.3 to 14.9 to 7.0 was observed as the density increased. PIP₂ as a percent of total [³H]glycerol-lipid in-creased from 0.3 n to 0.48 to 0.66 with increasing The state of the separate experiments. In other experiments in which cells were kept at confluent density for another 24 to 48 hours before harvesting ("post-confluent") a further decline in DAG to 2.5 to 3.5 percent of total lipid occurred in the nontransformed cells while DAG levels in the transformed cells did not decrease. These findings suggest that DAG and PIP2 levels in ras-transformed cells are less affected by conditions of cell density than those of their non-
- transformed counterparts. C. P. Downes, M. C. Musset, R. H. Michell, *Biochem. J.* 203, 169 (1982); D. J. Storey *et al.*, *Nature* п. (London) 312, 374 (1984); M. A. Seyfred, L. E.

Farrell, W. W. Wells, J. Biol. Chem. 239, 13204 (1984)

- 12. Two isomers of IP3 exist in some cells, inositol-1,4,5-Two isomers of 1P3 exist in some cells, inositol-1,4,5-trisphosphate and inositol-1,3,4-trisphosphate, the latter of which is more stable [R. F. Irvine *et al.*, *Biochem. J.* 223, 237 (1984)]. The separation tech-niques that we used were not capable of resolving these isomers. The major isomer of PIP₂ is pre-sumably phosphatidylinositol-4,5-bisphosphate al-though the separation technique employed would probably not resolve other possible isomers of this lipid, such as phosphatidylinositol-3,4-bisphosphate
- 13. It is not clear why the increase in DAG measured by [³H]glycerol labeling (40 to 76 percent) is greater than that estimated by DAG kinase (23 to 29 percent). It could reflect a small difference in utilization of extracellular glycerol in DAG synthesis between the normal and transformed cells. In an experiment in which metabolically labeled DAG was eluted from a TLC plate, deacylated, and analyzed for label in fatty acid, less than s percent of the label was present in this fraction in both the normal and transformed cells. This suggests that essentially all the label in DAG is in the glycerol backbone and that differences in labeling are not a consequence of changes in label incorporated into fatty acid.
- E. Rozengurt et al., Proc. Natl. Acad. Sci. U.S.A. 81, 14. 5748 (1984); A. Rodriguez-Pena and E. Rozengurt,
- (1944) (1944) (1.8)
 EMBO J. 4, 71 (198).
 H. Land, L. F. Parada, R. A. Weinberg, *Nature (London)* 304, 596 (1983); H. E. Ruley, *ibid.*, p. 602;
 R. E. Newbold and R. W. Overall, *ibid.*, p. 648.
- 16. G. Connan, M. Rassoulzagedan, F. Cuzan, ibid. 314, 277 (1985)
- D. R. Kaplan et al., in preparation; M. Whitman et al., Nature (London) 315, 239 (1985).
 T. Kataoka et al., Cell 37, 437 (1984); T. Toda et al.,

- 18. 1. Rataoka et u., ven 3/, 43/ (1964), 1. 1000 et u., ibid. 40, 27 (1985).
 19. D. Broeck et al., ibid. 41, 763 (1985); S. Beckner, S. Hattori, T. Y. Shih, Nature (London) 317, 71 (1985).
 20. R. A. Carchman et al., Cell 1, 59 (1974); W. B. Anderson, M. Gallo, I. Pastan, J. Biol. Chem. 249, (1974) 041 (1974).
- As we have emphasized, PIP₂ is likely to be a critical source of DAG; however, PI, PIP, and phosphatid-ic acid are also potential sources of DAG; the relative contributions of each to the cellular DAG level is unresolved in fibroblasts and is a difficult question to address. Also, DAG is rapidly converted to other metabolites in the cell and one of these reactions results in the release of arachidonic acid for prostaglandin synthesis. The by-product of this reaction, monoacylglycerol, was also elevated in the ras-transformed cells.
- M. J. Berridge et al., Biochem. J. 212, 473 (1983).
 S. N. Dunn, personal communication.
 H. H. Hess and J. Derr, Anal. Biochem. 63, 607 24.
- 25.
- (1975). We thank M. Goldfarb for a_{1} -1 and 1B cells, G. Cooper for NIH 3T3 cells, and R. J. Goldberg of Merck, Sharp and Dohme Research Laboratories for NRK and kNRK cells. We thank S. N. Dunn for his generous gift of DAG kinase, Robert Bell for discussions of the use of DAG kinase for DAG concentration measurements, and P. M. Rosoff and M. R. Whitman for helpful discussions. Previous publications of L. F. Fleischman were under the name Laurie F. Stein. This research was supported by grant GM 36133 from the National Institutes of Health. L.C. is an Established Investigator of the American Heart Association.

8 April 1985; accepted 23 October 1985