
precise location of individual atoms 
(within 1 to 2 A) is in part due to the 
cone-averaging procedure utilized in the 
fractal surface calculation. A second fac- 
tor is that surface area calculations also 
appear to be insensitive to the fine de- 
tails of residue structure and conforma- 
tion, as indicated by the successful appli- 
cation of several simplified and statisti- 
cal approaches for the calculation of 
surface area (6, 7). 

We also examined whether D may be 
related to such properties as residue mo- 
bility or exposed surface area to estab- 
lish whether fractal surfaces provide an 
independent characterization of surface 
properties. Comparisons of D to the re- 
fined temperature factors for myoglobin 
(protein databank set 1MBD) and super- 
oxide dismutase indicate that these pa- 
rameters are unrelated. oAs measured 
with small probes (R < 2 A), the value of 
D also appears to be unrelated to ex- 
posed surface area. Regions of proteins 
accessible to larger probes, however, 
tend to be associated with smooth re- 
gions of the fractal surface. Intuitively, 
this relation appears to be reasonable 
since residues on smooth surfaces are 
more likely to be able to contact large 
probes than residues on irregular sur- 
faces. These considerations suggest that 
the calculation of fractal surfaces, like 
the calculation of residue mobility (8, 9), 
may be a useful technique for describing 
the antigenic determinants on a protein. 

Fractal surfaces provide a means for 
characterizing the irregularity of protein 
surfaces. These surfaces are irregular 
when viewed on an atomic scale, with an 
average fractal dimension of about 2.4. A 
high degree of irregularity in proteins is 
consistent with direct experimental mea- 
surements of the fractal dimension of the 
polypeptide backbone (10). Rather than 
being uniformly irregular, however, the 
degree of irregularity varies across the 
protein surface. Regions involved in the 
formation of tight complexes (such as 
interfaces and possibly antibody-com- 
bining regions) appear to be more irregu- 
lar than regions involved in the forma- 
tion of transient complexes (such as ac- 
tive sites). Recognition of these geomet- 
ric factors provides a new approach to 
describing the interaction of macromol- 
ecules with one another. 
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Synthesis and Evaluation of a Prototypal Artificial Red Cell 

Abstract. A new process allows microencapsulation ofpuriJied human hemoglobin 
and 2,3-diphosphoglycerate to form neohemocytes. The microcapsule membrane is 
composed ofphospholipids and cholesterol. Neohemocytes are substantially smaller 
than erythrocytes, contain 15.1 grams per deculiter of hemoglobin, and have a PjO 
value (the partial pressure of oxygen at which the hemoglobin is half-saturated) of 
24.0 torr. All rats given 50-percent exchange transfusions survived with only limited 
evidence of reversible toxicity. Normal serum glutamate-pyruvate-transaminase 
values at 1, 7, and 30 days after transfusion were consistent with minimal hepatotox- 
icity. The concentration of blood urea-nitrogen was elevated by 35 percent after I 
day but returned to normal by day 7. However, histopathology revealed normal 
kidneys on day I as well as on days 7 and 30. Neohemocytes cleared from the 
circulation of transfused rats with an apparent half-life of 5.8 hours. 
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We now report the synthesis of artifi- 
cial red cell prototypes that meet the six 
essential specifications for such cells: (i) 
the microcapsule membrane must be bio- 
degradable and physiologically compati- 
ble; (ii) the encapsulation process must 
avoid significant hemoglobin (Hb) degra- 
dation; (iii) when encapsulated, the oxy- 
gen affinity of Hb must be reduced rela- 
tive to that of free human Hb; (iv) the 
encapsulated Hb must be sufficiently 
concentrated, that is, more than 33 per- 
cent of that in erythrocytes; (v) there 
should be no evidence of overt intravas- 
cular coagulopathy; and (vi) the artificial 
cells must be small enough to pass unre- 
stricted through normal capillaries. We 

call these prototypal artificial red cells 
neohemocytes (NHC). 

Microcapsules with lipid bilayer mem- 
branes rather than biodegradable poly- 
mer (I) or polymerized protein mem- 
branes (2) were used to make the artifi- 
cial cells, and the procedure (3) was 
based on one used for the preparation of 
liposomes (4). The preparation of each 
batch started with 0.293 mmol of human 
hemoglobin and 3.75 mmol of lipid con- 
sisting of egg yolk phosphatidylcholine, 
dipalmitoylphosphatidic acid, cholester- 
ol, and a-tocopherol in a molar ratio of 
4: 1 : 5 : 0.1, respectively. The resulting 
NHC were relatively homogeneous in 
size but less than homogeneous in con- 
tent (Fig. 1). The pellet from a 25 percent 
suspension of NHC contained an aver- 
age (n  = 10 batches) of 151 mglml [(stan- 
dard deviation (SD), 4)] of Hb and 2.21 
mgiml (SD, 0.11) of total lipid. The mean 
concentration of Hb within NHC was 
15.8 gldl. Only about 4.4 percent of the 
total displaced volume of NHC was 
membrane, if a lipid density of 1 g/cm3 is 
assumed. Additional characteristics of 
the cells are listed in Table 1. 

The pharmacokinetic properties of 
NHC were analyzed by following coen- 
capsulated tracer amounts of 14C-labeled 
sucrose in five rats that had undergone a 
50 percent exchange transfusion (5). The 
amount of I4C found in the blood of these 
rats thus reflected the amount of circu- 
lating, encapsulated sucrose and was 
taken as a direct measure of those NHC 
remaining intact in circulation (6). After 
8 hours the mean amount of 14C in the 
blood dropped to 40 percent of its value 
immediately after transfusion, with an 
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Table 1. Properties of NHC. Oxygen disassociation curves were determined (15) at 37°C. In each case the data were fitted to the Hill equation: 
Y = (P021Pso)"1[1 + (POZIP,,)"], where Y is the fraction of Hb with O2 bound to it, PO2 is the O2 pressure, Pso is the partial pressure of O2 at 
which hemoglobin is half-saturated, and n is the Hill number, which allowed calculation of P5,3 and n. Results are means 2 SD for three Hb 
solutions and ten batches of NHC. The lipid content was determined from two separate batches of NHC (16). Viscosities were determined at 37°C 
(n = 3). The expected ability of a 100-ml preparation to deliver oxygen to tissues, referred to as a-v O2 delivery, was calculated assuming arterial 
and venous PO2 values of 100 and 30 tom, respectively: a-v O2 delivery = 1.4[Hb](AY), where the constant has units ml (02)/g, [Hb] is the 
concentration of Hb in grams per deciliter, and AY is the difference in Y values calculated at the two diierent PO2 values. The [lipid] value is the 
concentration of total NHC livid and viscositv is measured in centimise (cv). 

Transfusion material pso 
Hill Methemo- [Hbl 

(torn) n globin (%) (gldl) 
[Lipid] a-v O2 Viscosity delivery 
(@'dl) (CP) (mVdl) 

Stroma-free Hb 13.2 (21.1) 2.4 (20.1) 0.8 (k0.3) 7.2 (20.01) - - 1.16 
25% suspension of NHC 24.0 (k2) 2.1 (20.1) 1.5 (20.7) 3.78 (20.1) 1 . 1  ( 0 . 0 6  1.0 (20.2) 1.78 
50% suspension of NHC 24.0 (k2) 2.1 (20.1) 1.5 (20.7) 7.55 (k0.4) 2.21 (20.11) 1.9 (20.2) 3.35 
Normal stored human blood 27 2.6 <1 13.5 * 2.7 7.5 

*A typical range for total lipids in blood is 0.38 to 0.74 gldl. 

Fig. 1. (a) Thin-section electron micrographs 
of neohemocytes from an electron rnicro- 
scope (Philips model 201). The bar designates 
0.5 km. Differences in electron density reflect 
differences in entrapped hemoglobin concen- 
tration. (b) Size-frequency distribution of 
NHC. The size spectrum was determined 
with a photon correlation spectrometer (Coul- 

ter moael ~ 4 )  a[ a W-  scattering angle. Results are the a"erage of three 5-minute counts of light 
intensity scattered by particles of the indicated size. 

Fig. 2. Partial clinical chemis- 55 BUN 075 Bilirubin 
try results for blood or serum 
from n male rats 1 2 2  to 150 g; 1 f 

, Je Crl : CD@ (SD)BR] receiving 50 
percent exchange transfusions 
of NHC. Clinical chemistries O I 

3 d 

I I 30 
were performed using a clini- 350 SGOT 
cal chemistry analyzer (Tech- SGPT 

nicon SMA-12 model). The B 250 blood urea-nitrogen ( B U N  5 [b $1 , 

bilirubin, creatinine, serum 2 ,5 
glutamate-oxalacetate trans- 
aminase (SGOT), and SGPT 
values shown are the = I  1 7  30 
mean 2 SD at either 1 I L , ~ ~ , . ~ . , , ~ -  
(n = 4), 7 (n = 4), or 30 
(n = 5) days after transfusion, - 
just before the rats were ? 0 5  20 
killed. The shaded region is 
the range for the mean 2 SD 
for values from sham-trans- 
fused rats (n = 7) killed on 30 

day 1 after transfusion. Red 
blood cell hematocrit (RBC 
HCT) values are for blood taken before and immediately after transfusion and, on the indicated 
day, immediately before the rats were killed. Blood glucose, uric acid, alkaline phosphatase, 
cholesterol, protein, phosphorous, albumin, and lactate dehydrogenase values for transfused 
rats were equivalent to control values at all three times. 

1166 

L 
O 0 1  

lays) 

apparent half-life of 5.8 hours (SD, 0.3), 
whereas during that time the cumulative 
amount of 14C recovered from urine was 
approximately 18 percent of the dose of 
14C-labeled sucrose with an apparent 
half-life of less than 1 hour. In contrast, 
free Hb is cleared from the circulation of 
transfused rats by an apparent zero-or- 
der process, and about 4 hours are re- 
quired for the amount of circulating Hb 
to fall to 40 percent of its original value 
(7). Liposomes are known to be cleared 
from the circulatory system, in part, by 
uptake by the reticuloendothelial sys- 
tem; adsorption to vascular endothelial 
cells is also thought to remove them. 
Significant extravascularization of lipo- 
somes has not been reported and would 
not be expected for particles as large as 
NHC. Because NHC are not excreted in 
urine, urinary recovery of 14C is a mea- 
sure of the stability of NHC in vivo. 
Apparent clearance of NHC from the 
circulatory system is therefore a combi- 
nation of irreversible loss of intact NHC 
from circulation and loss of quantified 
contents. The latter accounted for less 
than 18 percent of the total apparent 
clearance. 

Acute toxicity was evaluated in three 
experiments. In the first, a 50 percent 
suspension of NHC was injected intrave- 
nously into rats (0.5 to 8.0 ml per kilo- 
gram of body weight). There was no 
significant difference in the behaviour of 
control and experimental rats in the 48 
hours after injection. Next, 13 rats were 
transfused (5) with a 25 percent suspen- 
sion of NHC until their red blood cell 
hematocrit level fell to 50 percent or less 
of its original value. Rats were killed 1, 
7, and 30 days after transfusion; their 
blood was taken for analysis; and their 
lungs, brain, liver, spleen, heart, and 
kidney were removed, fixed, and stored 
for subsequent pathological examina- 
tion. The blood chemistry results are 
presented in Fig. 2 and the pathology 
results in Table 2. The mean serum gluta- 
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mate-pyruvate transaminase (SGPT) val- Table 2 .  Results from pathological examination of organs from n  rats after 50 percent exchange 

ues were normal, despite evidence of transfusion (5) with 25 percent suspensions of NHC. A single.blind histopathological evaluation 
of organs from the 20 animals was conducted. Only the five listed categories of pathology were 

acute focal hepatic necrosis in One of observed. All lungs, hearts, brains, and kidneys were judged normal. The trauma or abnormali- 
four rats evaluated on day 1 (8), which ty was either absent (-), mild (+), moderate (+ +), or marked (++ +); no severe trauma was 
was evidence that there was no nross detected. Seven control rats were sham-transfused (withdrawal and replacement of 2  ml of 
toxicity from the NHC. The slightly ele- blood) and killed after 1 day. 1 

vated concentration blood urea-nitrogen ~ ~ ~ ~ ~ ~ ~ $ ' ' ~ ~ ~ ( l - A  A 

suggested a transient reduction in kidney 

dild and moderate extramedullary hematopoiesis is periodically 
LL 10 I ~ U  g) as well as in rats affected with chronic, low-grade anemic, or 

function, but both the creatinine values 
and the kidney histology on all 3 days 
were normal. There was no evidence of 
either hemaglobinemia or hemoglobin- 
iuria. Improving the stability and the 
vascular retention time of NHC would 
be ways to further improve safety and 
reduce acute toxicity (9). 

In the final toxicity study the survival 
times of rats were compared after 95- 
percent exchange transfusions with ei- 
ther 7.2 g/dl of Hb, 3.6 g/dl of Hb, or 
neohemocyte suspensions (3.6 to 3.8 gldl 
of Hb). Figure 3 shows that rats trans- 
fused with Hb solutions had a mean 
survival time of less than 10 hours. Rats 
receiving 95 percent transfusions with 
suspensions of NHC survived more than 
18 hours, with two of five rats being long- 
term survivors, even though the mean 
total concentration of Hb in their 
"blood" after transfusion averaged 4.4 
g/dl, as compared to the mean value of 
7.8 g/dl observed in rats transfused with 
7.2 g/dl of stroma-free Hb. This improve- 
ment in survival presumably resulted be- 
cause of the lowered oxygen afXnity of 
Hb in NHC, the prolonged circulation 
time of encapsulated Hb as opposed to 
free Hb (lo), and the absence of signifi- 
cant acute toxicity. 

Several of the basic attributes of an 
artificial red cell (11) were achieved 
when Djordjevich and Miller (12) demon- 
strated that erythrocyte lysates could be 
reencapsulated in liposomes. Our NHC 
qualify as prototypal artificial red cells 
because they meet the previously listed 
six essential specifications (13). The 
membrane components are all nontoxic 
and biodegradable, and the data demon- 
strate reasonable biocompatibility. Un- 
like previous efforts (12, 14), the encap- 
sulation process does not significantly 
degrade Hb, although the amount of met- 
hemoglobin consistently increased rela- 
tive to the amount present just after 
encapsulation. The oxygen affinity of 
NHC was less than that of free human 
Hb and approached that of normal 
blood. Because of the osmotic adjust- 
ment during the microencapsulation 
process, the average final internal Hb 
concentration is higher than that of the 
starting Hb solution. There was no histo- 
pathological evidence of overt intravas- 
cular coagulopathy. Neohemocytes are 
small enough to pass freely through nor- 

Severity of trauma in n  rats 

Pathology Days after transfusion Control at 

1 7  30 day 1  
( n  = 7 )  

( n  = 4 )  ( n  = 4 )  ( n  = 5 )  

Acute focal hepatic necrosis 1 + + , 3 -  4 -  5  - 7  - 

Liver and spleen erythrocytophagy 2  + +, 2  + 4  - 5  - 7  - 
Extramedullary hematopoiesis 4  - 2 + + +  2 + +  1 +++, 1  + 

2  + 3  + 1 + + , 4 -  

Lymphoid hyperplasia of spleen 4  - 1 + , 3 -  5 -  2  + 
Spleen sheath hyperplasia 4  - 4  - 4 + + + ,  1  - 7 -  

mal, and possibly moderately restricted, 
capillaries. A nontoxic resuscitation flu- 
id that combines the functions of a plas- 
ma expander with the ability to carry and 
deliver oxygen to tissues could prove 

Time af ter  transfusion (hours) 

Fig. 3 .  The percent of rats surviving a 95 
percent exchange transfusion as a function of 
time after transfusion (10). This second group 
of male rats (150 to 250 g) were maintained 
under pentobarbital anesthesia for the dura- 
tion of the transfusion, which was completed 
when each animal's red blood cell hematocrit 
level was equal to, or less than, 5 percent of 
its original value. Curve A resulted from 
transfusion with a solution consisting of 3.6  
gldl of Hb in Ringer's solution (pH 7 . 4 ,  300 
mOsm). Curve B resulted from transfusion of 
a similar solution with 7 . 2  gldl of Hb. Curve C 
resulted from transfusion with 25 percent sus- 
pensions of NHC (as described in Table 1) in 
normal saline containing 5  gldl of HSA (pH 
7 . 4 ,  300 mOsm). We also found that rats 
transfused with a suspension of washed red 
blood cells with a hematocrit value of 25,  
where the red blood cells were suspended in 
the same solution used for NHC, all survived. 
The mean concentrations of Hb in "blood" 
immediately after transfusion were: curve A, 
4.3  gldl; curve B ,  7 . 8  gldl; and curve C, 4 .4  
gldl. 

useful in treatment of trauma, as a tem- 
porary substitute for red cells, and for 
the treatment of tissue ischemia. 
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Biosynthesis and Secretion of Proatrial Natriuretic Factor by 
Cultured Rat Cardiocytes 

Abstract. Rat atrial natriuretic factor (ANF) is translated as a 152-amino acid 
precursor preproANF. PreproANF is converted to the 126amino acid proANF, the 
storage form of ANF in the atria. ANF isolated from the blood is approximately 25 
amino acids long. It is demonstrated here that rat cardiocytes in culture store and 
secrete proANF. Incubation of proANF with serum produced a smaller ANF 
peptide. PreproANF seems to be processed to proANF in the atria, and proANF 
appears to be released into the blood, where it is converted by a protease to a smaller 
peptide. 
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Atrial natriuretic factor (ANF) is a 
peptide hormone with potent diuretic 
and natriuretic properties that probably 
plays an important role in controlling 
blood pressure (1, 2). ANF is released 
from the atria in response to an increase 
in blood volume (3). Understanding the 
mechanisms that control release of this 
peptide from the atria is critical to under- 
standing the mechanisms that control 
blood pressure. One approach to identi- 
fying these mechanisms is to study the 
peptide's biosynthesis. Analysis of the 
ANF gene and messenger RNA (mRNA) 
suggests that rodent ANF is translated as 
a 152-amino acid precursor, preproANF 
(Fig. 1) (4-7). PreproANF has many 
structural features common to other pep- 
tide hormone precursors (8) and thus 
may be processed similarly. PreproANF 
is converted to a 126-amino acid form, 
proANF (Fig. l), by removal of the 
amino terminal hydrophobic leader seg- 
ment and two residues from the carboxyl 
terminus. ProANF is the storage form of 
ANF in the atria (9) and has less diuretic 
activity than smaller ANF-related pep- 
tides (2). The subsequent steps in the 
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