
somal DNA [Fig. 2, inset (8)l. The shape 
of each broad set of peaks is reproduc- 
ible and amounts to a "fingerprint" of 
that particular turn of the DNA helix. 

In particular, we observe that certain 
individual sharp peaks in the tracings for 
the HSV-1 tk DNA are less intense than 
would be expected from the intensities of 
nearby peaks. We find nearly all of the 
peaks of low intensity (representing 
backbone deoxyriboses of lower than 
expected reactivity toward hydroxyl rad- 
ical) in sequences in which a pyrimidine 
nucleotide occurs to the 5' side of a 
purine [pyrimidine(3'-5')purine], with 
the purine giving rise to the peak of low 
intensity. An excellent example is the 
peak representing the guanine at position 
36 in Fig. 2. Almost all pyrimidine(3'- 
5')purine sequences have this character- 
istic. This observation recalls the analy- 
sis by Calladine (4) of the sequence- 
dependence of conformation of the do- 

decanucleotide d(CGCGAATTCGCG). 
Calladine explained variations in base 
pair twist angle, roll, propeller twist, and 
slide by showing that the steric clash of 
purines on opposite s t r a ~ d s  of the DNA 
helix could lead to perturbations in DNA 
structure. Pyrimidine(3'-5')purine se- 
quences are particularly susceptible to 
such steric clash and exhibit the largest 
deviation from the regular B-DNA con- 
formation, according to Calladine's anal- 
ysis. The sequence-dependence of the 
reactivity of hydroxyl radical toward de- 
oxyribose residues along the helix is 
evidence for similar systematic varia- 
tions (4, 5) of the shape of the surface of 
DNA in solution. 

One reason for studying the helical 
periodicities of DNA molecules that con- 
tain regulatory sequences is to determine 
the relative orientations of proteins that 
bind to such sequences. The densitome- 
ter scan in Fig. 2 shows where on the 
helix the transcriptional control se- 
quences (9) of the HSV-1 tk gene lie. 
After the "footprints" (sequence prefer- 
ences) (20) of transcription factors bound 
to these regulatory regions (21) are deter- 
mined, we should be able to deduce from 
our data the relative orientations of these 
proteins as they are bound along the 
helix. 

The method we report here offers a 
simple way to determine the helical twist 
and other structural details of any DNA 
restriction fragment. We hope that its 
application to a wide variety of DNA 
molecules will provide a connection be- 
tween high-resolution structural studies 
of oligonucleotides (1-5) and the confor- 
mations of regions of DNA in their natu- 
ral contexts. 
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Hypoglycemia-Induced Neuronal Damage Prevented by an 
N-Methyl-D-Aspartate Antagonist 

Abstract. The possibility that neuronal damage due to hypoglycemia is induced by 
agonists acting on the N-methyl-D-aspartate (NMDA) receptor was investigated in 
the rat caudate nucleus. Local injections of an NMDA receptor antagonist, 2-amino- 
7-phosphonoheptanoic acid, were performed before induction of 30 minutes of 
reversible, insulin-induced, hypoglycemic coma. Neuronal necrosis in these animals 
after 1 week of recovery was reduced 90 percent compared to that in saline-injected 
animals. The results suggest that hypoglycemic neuronat damage is induced by 
NMDA receptor agonists, such as the excitatory amino acids or related compounds. 

TADEUSZ WIELOCH 
Laboratory for Experimental Brain 
Research, University of Lund, 
S-221 85 Lund, Sweden 

Excitotoxins, in particular the excit- 
atory amino acids glutamate and aspar- 
tate, have been implicated in the patho- 
genesis of brain damage in various neu- 
rological diseases, including temporal 
lobe epilepsy, Huntington's disease, oli- 
vopontocerebellar atrophy, and cerebral 
ischemia (1). Hypoglycemia, especially 
if severe enough to cause coma (2), is yet 
another pathological condition leading to 

extensive neuronal loss in selected brain 
areas (3). The mechanisms underlying 
the sensitivity of neurons to glucose de- 
privation are not understood. However, 
with the advent of a long-term recovery 
model of insulin-induced hypoglycemia 
in rats (4), mimicking the clinically most 
relevant conditions of hypoglycemia- 
those created by an intravenous over- 
dose of insulin-it has become possible 
to study these mechanisms. 

The brain needs a continuous supply 
of oxygen and glucose for functional 
integrity. A progressive decrease in blood 
glucose concentration leads to metabolic 
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responses in the brain characterized by 
increased utilization of endogenous sub- 
strates, membrane depolarization, and 
energy failure (5). These metabolic 
events are accompanied by a pervasive 
neuronal necrosis affecting, among other 
structures, the caudate nucleus (6). Neu- 
ronal necrosis is not observed unless the 
electroencephalogram (EEG) shows pe- 

riods of isoelectricity (4). This suggests 
that the events associated with cessation 
of EEG, namely energy failure and loss 
of ion homeostasis, may trigger deleteri- 
ous events, such as excessive release of 
glutamate or aspartate, eventually lead- 
ing to cell damage. 

In this context, a subtype of glutamate 
receptors, the N-methyl-D-aspartate 

(NMDA) receptor, is of particular inter- 
est. Antagonists of these receptors pro- 
tect neurons in several brain regions 
against the adverse effects of excitotox- 
ins (7). For example, injections of quino- 
linic acid, an endogenous excitotoxin, 
into the striatum induced neuronal ne- 
crosis that was mitigated by simulta- 
neous administration of the NMDA re- 
ceptor antagonist 2-amino-7-phosphono- 
heptanoic acid (AW) (8). The study re- 
ported here was performed to determine 

Fig. 1. (A) Diagram showing 
the coronal section (21), the 
approximate position of the 
needle track, and the area 
(square) . where cell counts 
were performed. (B) Neur~pal 
necrosis in the caudate nuclei 
of the control and AW-inject- 
ed groups. The total neuronal 
population in the investigated 
area was 11 1 + 4 cells. I, in- 
jected hemisphere and C, con- 
tralateral hemisphere. Values 
are means + standard errors. 

whether neuronal necrosis induced by 
hypoglycemia can be associated with an 
excitotoxin-induced phenomenon medi- 
ated by NMDA receptors. 

Hypoglycemic coma was induced in 
rats by intraperitoneal injection of insu- 
lin (9). In experimental animals (n = 6), 
40 w of AP7 was injected into the cau- 
date nucleus of one hemisphere, while 
control animals (n = 6) received an in- 
jection of saline 'at the same site. Both 
injections were made 30 to 40 minutes 
before the EEG became isoelectric (10). 
Animals then remained in a coma for 30 
minutes, a period that reproducibly in- 
duces neuronal necrosis (60 to 80 per- ? - .--.-- 

, A;-* . .. , . I, . 
Y J ,  , . I  t "  - '-I - - - * .  , *  ,. b tL,. ' b  - .,. i /  *b . ' .( '* -- . -.i-.y, * 
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• -: 6 L- . .f Fig. 2. (A and B) Pho- 
, ' tomicro~raohs of the 

cent) in the caudate nucleus (4). At the 
end of the 30-minute period, glucose was 
administered through a venous catheter 
and the animals were allowed to recover 
for 1 week. The brains were fixed by 
perfusion, embedded in parailin, and 
sectioned. and the sections were stained middle ioriion of the 

caudate nucleus of 
rats subjected to 30 
minutes of hypoglyce- 
mic coma and allowed 
to recover for 1 week. 
(A) Effect of intra- 
striatal injection of 2 
pl of saline (needle 
track indicated by ar- 
rows). Necrotic neu- 
rons, composing ap- 
proximately 60 per- 
cent of the total 
neuronal mvulation. 

with celestine blue and acid fuchsine 
(11). Neuronal necrosis was assessed in 
the caudate nuclei of both hemispheres 
by cell counting (12). Necrotic neurons 
appeared bright red with a condensed 
nucleus. In some neurons the nucleus 
was fragmented. Surviving cells were 
violet with a prominent round nucleus 
and nucleolus (4, 13). 

Cell counts were made in a 600 by 400 
km area in tissue sections where the 
needle track was widest (Fig. 1A) (12). In 
the saline-injected side of control brains, 

are indicaied by ari 
, a  rowheads. (B) Sec- 

tion taken after intra- 
* striatal injection of 40 

pg of AFT (needle 
track indicated bv ar- 

64 + 6 (mean + standard error) of the 
105 + 6 neurons examined were necrot- 
ic, while on the contralateral side 58 +- 8 
of 102 + 7 neurons were damaged. In 
the AW-injected side of experimental 
brains, 6 '. 4 of 127 + 10 neurons were 

rows). Apart from re- 
active gliosis at the in- 
jection site, no neuro- 
nal necrosis is visible. 
In both groups the 
needle track was 
identified and traced 
from the surface of 
the cortex. Scale bar, 
100 pm. 

damaged, while in the contralateral 
hemisphere 66 r 8 neurons of 109 k 5 
were affected. Four animals showed no 
neuronal necrosis. In two animals, 23 of 
135 and 12 of 93 neurons were necrotic. 
The decrease in neuronal necrosis in the 
AW-injected hemisphere was significant 
(P < 0.01) compared to the contralateral 
side and to both caudate nuclei of the 
control group (Fig. 1B) (14). 

Figure 2A shows a photomicrograph 
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of the caudate nucleus of a rat inject- 
ed with saline. In this animal 62 percent 
of the neuronal population was damaged 
in the injected hemisphere. Figure 2B 
shows the corresponding area in an ani- 
mal injected with AP7. Gliosis was ob- 
served around the injection site, but no 
damaged neurons could be detected. In 
the contralateral caudate nucleus 69 per- 
cent of the neurons were necrotic. 

Several observations support the idea 
that hypoglycemic brain damage is medi- 
ated by excitotoxins. First, at the onset 
of isoelectric EEG, the extracellular lev- 
els of aspartate and glutamate are mark- 
edly increased (15). Second, unilateral 
ablation of the motor cortex, transecting 
the corticostriatal projections and de- 
creasing the ipsilateral striatal content of 
glutamate by 10 percent, protects the 
subjacent caudate nucleus against neuro- 
nal necrosis after 30 minutes of hypogly- 
cemic coma (16). This suggests that syn- 
aptic events are important for the induc- 
tion of neuronal necrosis. Furthermore, 
an electron microscopic investigation of 
the dentate gyrus granule cells (17), 
which are vulnerable to hypoglycemia 
(4 ) ,  revealed a dendro-somatic, axon- 
sparing lesion, that is, similar ultrastruc- 
tural characteristics as observed in the 
excitotoxin-induced neuronal damage 
(18). 

As in severe hypoglycemia, cerebral 
ischemia leads to extensive energy depri- 
vation, membrane depolarization, and an 
increase in extracellular levels of excit- 
atory amino acids (5, 15, 19). Since AP7 
ameliorates the acute morphological 
changes in the hippocampus induced by 
ischemia (20), similar pathogenic mecha- 
nisms could prevail in the two disorders. 
However, the distribution of neuronal 
necrosis after ischemia is different from 
that after hypoglycemia (6, 13), suggest- 
ing that the NMDA receptor agonists 
released, their origin, and their regional 
extracellular concentrations may differ 
(15). 

These findings show that the extent of 
neuronal necrosis in the caudate nucleus 
induced by severe hypoglycemia can be 
significantly reduced by an NMDA re- 
ceptor antagonist, suggesting that the 
deleterious mechanisms leading to neu- 
ronal necrosis may be mediated by exci- 
totoxins. Excitatory amino acid antago- 
nists may prove useful in preventing 
hypoglycemic brain damage. 
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