Human Apolipoprotein B: Structure of Carboxyl-Terminal Domains, Sites of Gene Expression, and Chromosomal Localization

Timothy J. Knott, Stanley C. Rall, Jr., Thomas L. Innerarity Shellie F. Jacobson, Mickey S. Urdea, Beatriz Levy-Wilson Lyn M. Powell, Richard J. Pease, Roger Eddy, Hiroshi Nakai Mary Byers, Linda M. Priestley, Elaine Robertson Leslie B. Rall, Christer Betsholtz, Thomas B. Shows Robert W. Mahley, James Scott

Lipoproteins are the primary carriers of plasma cholesterol and triglycerides and have a specific set of protein constituents, including apolipoproteins A-I, A-II, A-IV, B, C-I, C-II, C-III, and E. The largest of these proteins, apolipoprotein apolipoprotein constituent, are the principal cholesterol transporting lipoproteins in human plasma (>60 percent of the plasma cholesterol is present in LDL). Epidemiological studies have established a positive correlation between

Abstract. Apolipoprotein (apo-) B is the ligand responsible for the receptormediated catabolism of low density lipoproteins, the principal cholesterol-transporting lipoproteins in plasma. The primary structure of the carboxyl-terminal 30 percent (1455 amino acids) of human apo-B (apo-B100) has been deduced from the nucleotide sequence of complementary DNA. Portions of the protein structure that may relate to its receptor binding function and lipid binding properties have been identified. The apo-B100 messenger RNA is about 19 kilobases in length. The apo-B100 gene is expressed primarily in liver and, to a lesser extent, in small intestine, but in no other tissues. The gene for apo-B100 is located in the p24 region (near the tip of the short arm) of chromosome 2.

(apo-) B, is an obligatory constituent of chylomicrons, very low density lipoproteins (VLDL), and low density lipoproteins (LDL). Two antigenically related forms of apo-B circulate in plasma as constituents of these lipoproteins. The apo-B100 is synthesized in the liver and is essential for the packaging of triglyceride and cholesteryl ester into VLDL within the cisternae of the endoplasmic reticulum. The apo-B48 is produced by the intestine and has a similar structural role in the formation of chylomicrons (1, 2).

Apolipoprotein B100 is secreted into the plasma by the liver in the form of VLDL. The triglycerides of these lipoproteins are hydrolyzed by the action of lipoprotein lipase, converting the VLDL to cholesterol-enriched LDL. The LDL, possessing apo-B100 as their exclusive the amount of LDL cholesterol in the plasma and accelerated coronary artery heart disease (atherosclerosis). Plasma levels of LDL are controlled by the rate of synthesis of VLDL and by catabolism of these lipoproteins by the apo-B,E(LDL) receptor in the liver (1).

Apolipoprotein B100 is the protein component responsible for the cellular recognition and catabolism of LDL via the LDL receptor pathway. The apo-B,E(LDL) receptor recognizes two apolipoprotein ligands, apo-B100 and apo-E, but not apo-B48 (2). Studies on selective chemical modification of specific amino acid residues of these ligands have given further insight into the nature of the chemical interaction of apo-B100 and apo-E with the lipoprotein receptors. When either lysine or arginine residues are chemically modified, the binding of both apo-B100- and apo-E-containing lipoproteins to the apo-B,E(LDL) receptor is abolished (3). These studies and previous work that has helped to define the region of apo-E responsible for receptor binding (2) suggest that the apo-B receptor binding domain should be a region enriched in lysine and arginine residues.

Despite the abundance of apo-B in plasma and the importance of the apo-B,E(LDL) receptor pathway in determining the concentration of plasma cholesterol, few details are known about the structure or biosynthesis of apo-B. The insolubility of apo-B, its tendency to aggregate, and its susceptibility to proteases have impeded progress in determining its structure. When the lipids are removed, apo-B100 is insoluble in aqueous buffers, except in the presence of high concentrations of detergents; even if it remains soluble, it is probably aggregated. The apo-B in LDL or delipidated apo-B is very sensitive to cleavage by proteases and to cation-catalyzed oxidation. Thus, the molecular size of apo-B100 has not been clearly established. A number of reports have indicated that apo-B100 is composed of multiple subunits of less than 100 kD (4). However, most investigators now agree that apo-B is most likely a single, large polypeptide between 350 kD and 550 kD (1, 2). Because of the apparent large size and extreme intractability of apo-B, molecular biology techniques are more promising than protein chemistry methods for solving the problem of the structure of this protein. We now report the nucleotide sequence of complementary DNA (cDNA) clones encoding the carboxylterminal 30 percent of human liver apo-B (apo-B100).

Isolation and nucleotide sequence of apo-B100 cDNA clones. Because of the apparent large size of the apo-B100 polypeptide (>350 kD), the poly(A)-primed cDNA libraries that we used in our study would not be expected to contain 5' messenger RNA (mRNA) sequences coding for the amino-terminus of the protein. Therefore, we sought to obtain protein sequence data from fragments of

T. J. Knott, L. M. Powell, R. J. Pease, L. M. Priestley, E. Robertson, and J. Scott are in Molecular Medicine at the Clinical Research Centre, Watford Road, Harrow, Middlesex, United Kingdom; S. C. Rall, Jr., T. L. Innerarity, S. F. Jacobson, B. Levy-Wilson, and R. W. Mahley are at the Gladstone Foundation Laboratories, Cardiovascular Research Institute, Departments of Medicine and Pathology, University of California, San Francisco 94140; M. S. Urdea and L. B. Rall are at Chiron Corporation, 4560 Horton Street, Emeryville, California 94608; R. Eddy, H. Nakai, M. Byers, and T. B. Shows are at the Roswell Park Memorial Institute, Department of Human Genetics, Buffalo, New York 14263; C. Betsholtz is in the Department of Pathology, University Hospital, Uppsala, Sweden.

apo-B100 near the COOH-terminus of the protein so that oligonucleotide probes could be constructed and used for screening cDNA libraries. Apolipoprotein B100 of human plasma LDL was digested with thrombin, and the major fragments were isolated. Previously, Cardin et al. (5) demonstrated that thrombin digestion yields four fragments of apo-B100. They suggested the order of the thrombolytic fragments along the length of the apo-B molecule (Fig. 1), and these fragments have been designated T1, T2, T3, and T4. We have confirmed the order of these peptides by determining the NH₂-terminal sequence of apo-B100 and of each of the four fragments.

The most COOH-terminal thrombolytic peptide, designated T2, represents approximately 30 percent of the entire apo-B structure (Fig. 1). The NH₂-terminus of the T2 peptide yielded a single sequence as follows: Ala-Val-Ser-Met-Pro-Ser-Phe-Ser-Ile-Leu-Gly-Ser-Asp-Val-X-Val-Pro-Ser-Tyr-Thr-Leu-Ile-Leu-Pro-Ser-Leu-Glu-Leu-Pro. Residue X was tentatively identified as Arg, but could not be confirmed in subsequent analyses. Therefore, the oligonucleotide probe synthesized for use in screening the cDNA libraries was based only on the first 14 amino acid residues of T2 (6).

Six of 5000 clones from an adult human liver cDNA library (7) hybridized with the ³²P-labeled oligonucleotide probe. Each of the six clones was purified, ³²P-labeled, and hybridized to dot blots of total RNA prepared from tissues of an adult female rhesus monkey (8). One clone, p61D7, hybridized to an mRNA that was abundant in liver and, to a lesser extent, in small intestine (Fig. 2, left). No hybridization to mRNA of colon, spleen, pancreas, kidney, lung, pituitary, heart, or brain could be detected. Clone p61D7, containing an insert of approximately 1500 base pairs, was also used to screen a second adult human liver cDNA library prepared from mRNA fractionated by density gradient centrifugation (>28S) (9). A series of overlapping clones was isolated and used to determine the size of the putative apo-B100 mRNA. As demonstrated by Northern blotting (Fig. 2, right), the clones hybridized to a 19-kilobase (kb) mRNA in the human hepatoblastoma cell line, designated HepG2, and in the human proximal small intestine. In addition, we examined an autopsy specimen of adult human liver, and it also contained a hybridizable 19-kb mRNA. The size of the mRNA was consistent with its coding for an extremely large polypeptide. Furthermore, the occurrence of the

apo-B mRNA principally within the liver is consistent with the liver being the main site of synthesis of apo-B100.

Overlapping cDNA clones, corresponding to more than 5 kb of 3' cDNA

B100(550kD))	
T1(385kD)	T2 (170kD)	
T4 (145kD) T3(238kD)	1 I	B100
I TOLEOORDY	•	T1

ТЗ -

A B

Fig. 1. Thrombolytic peptides of apo-B100. (Left) The relationships among these peptides (5). (Right) An SDS gel of a thrombin digest of apo-B100 (A) and purified T2 (B). Human LDL (3 to 6 mg/ ml) in 10 mM tris, 0.3 mM

EDTA, pH 8.0, were filtered (0.45-µm pore) and incubated with thrombin (enzyme:substrate = 1:100, by weight) for 18 hours at 23°C. Thrombin was then removed by gel filtration chromatography (Sephadex G-50, 2.2 by 90 cm) in 0.15M NaCl, 0.3 mM EDTA, pH 8.2, at 23°C. The digested LDL (ThLDL) from the G-50 column were concentrated by Amicon filtration to 20 ml and dialyzed for 18 hours at 4°C against 50 mM Na2CO3, 50 mM NaCl, 0.3 mM EDTA, pH 8.6, and filtered (0.45-µm pore). After the addition of glutathione (final concentration 0.05 percent by weight), solid sodium deoxycholate was added very slowly over a 2- to 3hour period to the ThLDL (final weight ratio 55:1). After each small addition, the sodium deoxycholate was gently dissolved. The delipidated ThLDL were subjected to gel filtration chromatography at 23°C on a Sephadex G-100 column (2.2 by 60 cm) equilibrated with 10 mM sodium deoxycholate, 50 mM NaCl, 50 mM Na₂CO₃, 0.3 mM EDTA, pH 8.6, to separate the protein from the lipids. The protein fraction was concentrated to about 10 ml on Amicon YM30 membranes. A portion representing 5 to 10 percent of the delipidated ThLDL was dansylated by adding 15 µl of a 10 percent dansyl chloride solution (made fresh in acetone). Excess reagent was immediately removed by passing the treated protein through a small column of Sephadex G-25 equilibrated with 2 percent SDS, 0.01M sodium phosphate, pH 7.0. The effluent containing the dansylated protein was detected with ultraviolet light. The dansylated ThLDL were added to the remainder of the ThLDL and dialyzed against 0.1 percent SDS, 2.5 mM tris-glycine, pH 8.3. The thrombolytic fragments of apo-B100 were separated on SDSpolyacrylamide gradient (3 to 7 percent) slab gels (3.0 mm thick). No more than 5 mg of protein could be placed on each gel. When the electrophoresis was completed, ultraviolet light (long wavelength) was used to visualize the dansylated protein bands, which were sliced from the gel. The gel slices were then subjected to electroelution for 18 hours at 400 volts. The elution buffer was 0.1 percent SDS 2.5 mM tris, 19 mM glycine. The eluted thrombolytic fragments were extensively dialyzed against 5 mM NH4HCO3 and 0.1 percent SDS at 4°C and lyophilized. From four preparations of LDL, an average of 82, 56, and 6 percent of the total LDL protein was recovered in ThLDL, delipidated ThLDL, and thrombolytic fragment T2, respectively.

sequence, were used to determine the double-stranded nucleotide sequence of the 3' end of the putative apo-B mRNA (Fig. 3). The combined nucleotide sequence of these clones revealed one open reading frame of 4365 nucleotides, encoding 1455 amino acids of the COOH-terminus, and a 3' untranslated region of more than 260 nucleotides following the TAA termination codon. The nucleotide sequence and derived amino acid sequence of the coding portion are presented in Fig. 4.

Amino acid sequence of the COOHterminus of apo-B100. Proof that this derived amino acid sequence represents the COOH-terminus of apo-B100 was obtained by comparing the sequence to protein sequence data derived from various fragments of apo-B100. Although the nucleotide sequence matched with only 32 of the 42 bases of the oligonucleotide probe used to screen the cDNA library (6), the derived amino acid sequence in this region corresponded to the 29 NH₂terminal residues of thrombolytic fragment T2 and revealed that the unidentified residue X was indeed Arg (Fig. 4, residues 169 to 197). The NH₂-terminal sequences of four T2-derived CNBr peptides (10) and three apo-B100-derived tryptic peptides (11) corresponded to predicted amino acid sequences at seven points along the sequence (Fig. 4). Furthermore, the COOH-terminal sequence of apo-B100 as determined by mass spectrometry of a tryptic peptide (12) agreed with the derived COOH-terminus (residues 1446 to 1455). The cDNA sequence also predicted a peptide sequence (residues 5 to 29) that matched at 21 of 25 positions with the peptide R2-5 of apo-B previously reported (13). These ten peptide sequences occur within the same open reading frame, thus confirming that these cDNA clones represent apo-B100.

The derived composition of T2 (1287 amino acids) is as follows: Asp₆₆ Asn₆₀ Thr₈₆ Ser₁₂₅ Glu₉₁ Gln₆₅ Pro₄₆ Gly₄₉ Ala66 Cys5 Val79 Met17 Ile84 Leu147 Tyr48 Phe₆₉ Trp₁₃ Lys₁₀₀ His₃₂ Arg₃₉. The calculated mass of 146 kD is somewhat lower than the 170 kD estimated by Cardin et al. (5), but peptide T2 is also very likely glycosylated (Fig. 4), and therefore the discrepancy may be more apparent than real.

Dot matrix analysis (14) of the amino acid sequence did not reveal any significant internally repeated elements. Likewise, analysis of the nucleotide sequence revealed no internal repeats. A comparison of the sequence of apo-B100 with other published protein sequences (14) indicated that there were no particularly striking homologies between the COOH- terminus of apo-B and other proteins. Of particular note is that no apparent homologies to the other apolipoproteins were observed.

Chromosomal localization. Thirty-eight human-mouse somatic cell hybrids were used to map the apo-B gene to chromosome 2 (Table 1 and Fig. 5b). Furthermore, in situ hybridization demonstrated that apo-B could be localized to the p24 region of the short arm of chromosome 2 (Fig. 5a). No other genes relevant to lipid metabolism have been localized in this region. Other apolipoprotein genes (15) have been mapped to chromosome 1 (apo-A-II), 11 (apo-A-I, A-IV, and C-III) and 19 (apo-C-I, C-II, and E). The apo-B,E(LDL) receptor gene has also been localized to chromosome 19 (16). The localization of apo-B to the p24 region of chromosome 2 therefore gives no clue as to whether there is an evolutionary relationship between the apo-B gene and the other apolipoprotein genes.

Implications of apo-B mRNA distribution. Apolipoprotein B100 is a large, structural protein important in the biosynthesis of VLDL by the liver. Our study demonstrates that apo-B100 is very large, with a 19-kb mRNA. Not only was apo-B100 mRNA detected in human liver, in the HepG2 hepatoma cell line, and in rhesus monkey liver, but it was also detected in the human and monkey small intestine. The most likely explanation for this observation is that the intestine synthesizes apo-B100 in addition to apo-B48. The presence of small quantities of apo-B100 mRNA in the small intestine is consistent with previous observations obtained from studies of the perfused rat intestine and from the analysis of mesenteric lymph lipoproteins, which suggest that a high molecular mass form of apo-B (resembling apo-B100) may be produced by the intestine (1, 17). Nevertheless, it is well established that the principal form of apo-B synthesized and secreted by the small intestine is the smaller apo-B48 (apo-B with a molecular mass that is approximately one-half that of apo-B100) (1). However, our data do not exclude the possibility that apo-B100 and apo-B48 may be products of different proteolytic processing of the same translation product synthesized from the same mRNA. Alternatively, the two forms of apo-B could be products of the same gene that arise from different mRNA's produced by differential splicing. This remains to be elucidated.

Role of apo-B100 as a lipid binding protein. We analyzed the amino acid sequence of the COOH-terminus of apo-B100, taking into consideration the func-

4 OCTOBER 1985

Fig. 2. Dot blot analysis (8) of total RNA from adult female monkey tissues (left) and Northern gel analysis of apo-B mRNA (right). (Left) (Row A) 1 to 3, liver; 4, pancreas; 5 and 6, spleen; 7, small intestine; 8 and 9, colon. (Row B) Samples as in row A, but treated with NaOH. (Row C) 1, lung; 2, heart; 3, kidney; 4 and 5, pituitary; 6. frontal cortex; 7, occipital cortex; 8, cerebellum; 9, brainstem. (Row D) Samples as in row C, but treated with NaOH. Each sample was 10 µg of total RNA. (Right) (Lane 1) 5 µg of total RNA from HepG2; lane 2, 20 µg of total RNA from human intestine. The size of the 19-kb mRNA was estimated by comparison to λ Hind III fragments.

tional roles of apo-B100 as a structural protein in the assembly and secretion of hepatic lipoproteins and as the ligand responsible for mediating the binding of LDL to the apo-B,E(LDL) receptor. Predictions of the secondary structure with the Chou-Fasman algorithm (18) revealed that the COOH-terminus of apo-B is highly ordered, with approximately 30 a-helical segments encompassing approximately 33 percent of the residues and with a similar number of β structures representing about 25 percent of the residues. Few of these α or β structures extend over long distances because this sequence appears to have numerous B turns. Analysis of the sequence with the Kyte-Doolittle hydrophobicity plot (19) indicates that the COOH-terminus of apo-B has, in general, more hydrophilic than hydrophobic character (Fig. 6). The hydrophilic regions possess more α than β structure, while the hydrophobic regions have

Fig. 3. Restriction map of cDNA clones representing the 3 end of the apo-B mRNA. E, Eco RI; S, Sst I: H. Hind III: P. Pst I; Ba, Bam HI; Bg, Bgl II; A, Acc I. The filled circle denotes the position of hybridization of the oligonucleotide probe. The thickened line represents the sequenced regions: coding (solid bar) and noncoding

(open bar). The DNA sequence was determined by dideoxy chain termination on both strands and across all restriction sites used (28). Subcloning of restriction fragments into M13 vectors and preparation of single-stranded DNA templates was performed as described (29).

more β structure. There are frequent predicted crossovers from hydrophobic to hydrophilic character; and thus the apo-B100 polypeptide may be woven into and out of the lipid environment of the lipoprotein particle at irregular intervals and may have numerous lipid anchoring sites rather than a single large lipid binding domain that is characteristic of the smaller apolipoproteins. If the remainder of the apo-B polypeptide has similar features, it would appear that apo-B100 has more characteristics common to an integral membrane protein than to a typical apolipoprotein. Thus, apo-B serves as a nonexchangeable structural component of lipoproteins, while other apolipoproteins readily exchange among the various lipoproteins.

Lipid binding of other apolipoproteins has been ascribed to α -helical segments having amphipathic character (20). In some cases (apo-A-I, apo-A-IV, and apo-E) these amphipathic segments occur in tandem repetitions of 22 amino acids, resulting from tandem repetitions of 66 nucleotides in their genes (21). In the 1455 amino acids of apo-B thus far sequenced, no such repetitions (or any sort of repeated elements) occur. Furthermore, no typical amphipathic α helices are apparent in the apo-B100 sequence thus far analyzed. However, there are two potentially interesting hydrophobic regions (residues 135 to 270 and residues 600 to 770) that are predicted to have primarily β structures and that may be important in lipid binding. These same regions are highly enriched in proline residues, with more than half of all the prolines of this COOH-terminal segment occurring in these two hydrophobic regions. A frequent characteristic of these two regions is that the prolines are preceded by alternating hydrophilic and hydrophobic amino acid residues such that the hydrophobic side chains are on one face of the β sheet and the

hydrophilic side chains are on the other. These regions could represent amphipathic β sheets analogous to the amphipathic α helices seen in other apolipoproteins. Such a structure has been postulated to be of potential importance in the structure of LDL (22).

Previously, apo-B has been shown to be a glycoprotein (with ~ 8 to 10 percent of its mass as carbohydrate) with oligosaccharides of both the high mannose and complex type (23). The role of apo-B glycosylation in the structure and function of this protein remains to be determined. However, the COOH-terminal region of apo-B100 has eight potential Nglycosylation sites (Asn-X-Ser/Thr), as indicated in Fig. 4. Interestingly, most of these sites occur near points where the protein is predicted to cross over from hydrophobic to hydrophilic character and, thus, could be at the surface of the particle at the lipid-water interface. Although only N-glycosylation, and not O-glycosylation, has been demonstrated for apo-B100, the hydroxy amino acids serine and threonine are especially abundant in the region of residues 230 to 430 (representing \sim 30 percent of all amino acids in this region).

Role of apo-B100 as a receptor binding protein. In addition to the structural role of apo-B100, this apolipoprotein serves as the ligand mediating the binding of LDL to the apo-B,E(LDL) receptor. Because of the similarities between the interaction of apo-B100 and apo-E with the apo-B,E(LDL) receptor (2), it is reasonable to consider that the receptor binding domains of the two ligands might be similar. Studies of apo-E (2) have clearly established that the region responsible for its direct interaction with the receptor is in the vicinity of residues 140 to 150 of the apo-E molecule, a region enriched in basic amino acids (Fig. 7).

Inspection of the amino acid sequence of the COOH-terminal region of apo-B100 reveals a potentially important sequence that has a structure similar to

1 AAC Asn	ATT Ile	ATG Met	GAG Glu	GCC Ala	CAT His	GTA Vai	GGA G1 y	ATA Ile	AAT Asn	GGA Gly	GAA Glu	GCA Ala	AAT Asn	CTG Leu	GAT Asp	TTC Phe	TTA Leu	AAC Asn	20 ATT Ile	CCT Pro	TTA Leu	ACA Thr	ATT Ile	CCT Pro	GAA Glu	ATG Met	CGT Arg	CTA Leu	CCT Pro	tac Tyr	ACA Thr	ATA Ile	ATC Ile	ACA Thr	ACT Thr	CCT Pro	CCA Pro	CT G Leu	40 AAA Lys
GAT Asp	TTC Phe	TCT Ser	CTA Leu	T GG Trp	GAA Glu	AAA Lys	ACA Thr	GGC G1y	TT G Leu	AAG Lys	GAA Glu	TTC Phe	TT G Leu	AAA Lys	ACG Thr	ACA Thr	AAG Lys	CAA G1n	60 TCA Ser	TTT Phe	GAT Asp	TTA Leu	AGT Ser	GTA Val	AAA Lys	GCT Ala	CAG Gln	tat T yr	AAG Lys	AAA Lys	ÁAC Asn	AAA Lys	CAC His	AGG Arg	CAT His	TCC Ser	ATC Ile	ACA Thr	80 AAT Asn
CCT Pro	TTG Leu	GCT Ala	GTG Val	CTT Leu	tgt Cys	GAG Glu	TTT Phe	ATC Ile	AGT Ser	CAG Gln	AGC Ser	ATC Ile	AAA Lys	TCC Ser	TTT Phe	GAC Asp	AGG Arg	CAT His	100 TTT Phe	GAA Glu	AAA Lys	AAC Asn	AGA Arg	AAC Asn	AAT Asn	GCA Ala	TTA Leu	GAT Asp	TTT Phe	GTC Val	ACC Thr	AAA Lys	TCC Ser	TAT Tyr	AAT Asn	GAA Glu	ACA Thr	AAA Lys	120 ATT Ile
AAG Lys	TTT. Phe	GAT Asp	AAG Lys	TAC Tyr	AAA Lys	GCT Ala	GAA G1u	AAA Lys	tCt Ser	CAC His	GAC Asp	GAG Glu	CTC Leu	CCC Pro	AGG Arg	ACC Thr	TTT Phe	CAA Gln	140 ATT Ile	CCT Pro	GGA G1 y	TAC Tyr	ACT Thr	GT⊺ Val	CCA Pro	GTT Val	GTC Val	AAT Asn	GTT Val	GAA Glu	GTG Val	tct Ser	CCA Pro	TTC Phe	ACC Thr	ATA Ile	GAG G1u	ATG Met	160 TC G Ser
GCA Ala	TTC Phe	GGC G1 y	TAT Tyr	GTG Val	TTC Phe	CCA Pro	AAA Lys	GCA Ala	GTC Val	AGC Ser	ATG Met	CCT Pro	AGT Ser	TTC Phe	TCC Ser	ATC Ile	CTA Leu	GG⊺ G1y	180 TCT Ser	GAC Asp	GTC Val	CGT Arg	GTG Val	CCT Pro	TCA Ser	tac T yr	ACA Thr	TTA Leu	ATC Ile	C⊺G Leu	CCA Pro	TCA Ser	TTA Leu	GAG Glu	CTG Leu	CCA Pro	GTC Val	CTT Leu	200 CAT His
GTC Val	CCT Pro	AGA Arg	AAT Asn	CTC Leu	AAG Lys	CTT Leu	TCT Ser	CTT Leu	CCA Pro	CAT His	TTC Phe	AAG Lys	GAA Glu	TTG Leu	TGT Cys	ACC Thr	ATA Ile	AGC Ser	220 CAT His	ATT Ile	TTT Phe	ATT Ile	CCT Pro	GCC Ala	ATG Met	GGC Gly	AAT Asn	ATT Ile	ACC Thr	TAT Týr	GAT Asp	TTC Phe	TCC Se r	TTT Phe	AAA Lys	TCA Ser	AGT Ser	GTC Val	240 ATC Ile
ACA Thr	CTG Leu	AAT Asn	ACC Thr	AAT Asn	GCT Ala	GAA Glu	CTT Leu	TTT Phe	AAC Asn	CAG Gln	TCA Ser	GAT Asp	ATT Ile	GTT Val	GCT Ala	CAT His	CTC Leu	CTT Leu	260 TCT Ser	TCA Ser	TCT Ser	TCA Ser	tct Ser	GTC Val	ATT Ile	GAT Asp	GCA Ala	CTG Leu	CAG Gln	TAC Tyr	AAA Lys	TTA Leu	GAG Glu	GGC Gly	ACC Thr	ACA Thr	AGA Arg	TT G Leu	280 ACA Thr
AGA Arg	AAA Lys	AGG Arg	GGA G1y	TT G Leu	AAG Lys	TTA Leu	GCC Ala	ACA Thr	GCT Ala	CTG Leu	TCT Ser	CTG Leu	AĞC Ser	AAC Asn	AAA Lys	TTT Phe	GTG Val	GAG Glu	300 GGT G1 y	AGT Ser	CAT His	AAC Asn	AGT Ser	ACT Thr	GTG Val	AGC Ser	TTA Leu	ACC Thr	ACG Thr	AAA Lys	AAT Asn	ATG Met	GAA Glu	GTG Val	TCA Ser	GTG Val	GCA Ala	AAA Lys	320 ACC Thr
ACA Thr	AAA Lys	GCC Ala	GAA Glu	ATT Ile	CCA Pro	ATT Ile	TTG Leu	AGA Arg	ATG Met	AAT Asn	TTC Phe	AAG Lys	CAA G1n	GAA Glu	CTT Leu	AAT Asn	GGA Gly	AAT Asn	340 ACC Thr	AAG Lys	TCA Ser	● AAA Lys	CCT Pro	ACT Thr	GTC Val	TCT Ser	TCC Ser	TCC Ser	ATG Met	GAA G1u	TTT Phe	AAG Lys	tat Tyr	GAT Asp	TTC Phe	AAT Asn	TCT Ser	TCA Ser	360 ATG Met
ĊTG Leu	ŤAC Tyr	TCT Ser	ACC Thr	GCT Ala	AAA Lys	GGA G1y	GCA Ala	GTT Val	GAC Asp	CAC His	AAG Lys	CTT Leu	AGC Ser	TTG Leu	GAA Glu	AGC Ser	CTC Leu	ACC Thr	380 TCT Ser	TAC Tyr	TTT Phe	TCC Ser	ATT Ile	GAG Glu	TCA Ser	TCT Ser	ACC Thr	AAA Lys	GGA G1y	GAT Asp	GTC Val	AAG Lys	GG⊺ G1y	TCG Ser	GTT Val	• CTT Leu	TCT Ser	CGG Arg	400 GAA Glu
TAT Tyr	TCA Ser	GGA G1y	ACT Thr	ATT Ile	GCT Ala	AGT Ser	GAG Glu	GCC Ala	AAC Asn	ACT Thr	tac Tyr	TTG Leu	AAT Asn	TCC Ser	AAG Lys	AGC Ser	ACA Thr	CGG Arg	420 TCT Ser	TCA Ser	GTG Val	AAG Lys	CTG Leu	CAG Gln	GGC Gly	ACT Thr	TCC Ser	AÂA Lys	ATT Ile	GAT Asp	GAT Asp	ATC Ile	TGG Trp	AAC Asn	CTT Leu	GAA G1u	GTA Val	AAA Lys	440 GAA G1u
AAT Asn	TTT Phe	GCT Ala	GGA Gly	GAA Glu	GCC Ala	ACA Thr	CTC Leu	CAA Gln	CGC Arg	ATA Ile	tat Tyr	TCC Ser	CTC Leu	TGG Trp	GAG Glu	CAC His	AGT Ser	ACG Thr	460 AAA Lys	AAC Asn	CAC His	TTA Leu	CAG Gln	CTA Leu	GAG Glu	GGC G1y	CTC Leu	TTT Phe	TTC Phe	ACC Thr	AAC Asn	GGA Gly	GAA Glu	CAT His	ACA Thr	AGC Ser	AAA Lys	GCC Ala	480 ACC Thr
CTG Leu	GAA Glu	CTC Leu	TCT Ser	CCA Pro	TGG Trp	CAA Gln	ATG Met	TCA Ser	GCT Ala	CTT Leu	GTT Val	CAG G1n	GTC Val	CAT His	GCA Ala	AGT Ser	CAG Gln	CCC Pro	500 AGT Ser	TCC Ser	TTC Phe	CAT His	GAT Asp	TTC Phe	CCT Pro	GAC Asp	CTT Leu	GGC G1y	CAG Gln	GAA G1u	GTG Val	GCC Ala	CTG Leu	AAT Asn	GCT Ala	AAC Asn	ACT Thr	AAG Lys	520 AAC Asn
CAG Gln	AAG Lys	ATC Ile	AGA Arg	TGG Trp	AAA Lys	AAT Asn	GAA Glu	GTC Val	CGG Arg	ATT Ile	CAT His	TCT Ser	GGG G1 y	TCT Ser	TTC Phe	CAG Gln	AGC Ser	CAG Gln	540 GTC Val	GAG Glu	CTT Leu	TCC Ser	AAT Asn	GAC Asp	CAA Gln	GAA Glu	AAG Lys	GCA Ala	CAC His	CTT Leu	GAC Asp	ATT Ile	GCA Ala	GGA G1y	TCC Ser	TTA Leu	GAA Glu	GGA G1y	560 CAC His
CTA Leu	AGG Arg	TTC Phe	CTC Leu	AAA Lys	AAT Asn	ATC Ile	ATC Ile	CTA Leu	CCA Pro	GTC Val	TAT Tyr	GAC Asp	AAG Lys	AGC Ser	TTA Leu	TGG Trp	GAT Asp	TTC Phe	580 CTA Leu	AAG Lys	CTG Leu	GAT Asp	GTA Val	ACC Thr	ACC Thr	AGC Ser	ATT Ile	GGT G1y	AGG Arg	AGA Arg	CAG Gln	CAT His	CTT Leu	CGT Arg	GTT Val	TCA Ser	ACT Thr	GCC Ala	600 TTT Phe
GTG Val	TAC Tyr	ACC Thr	AAA Lys	AAC Asn	CCC Pro	AAT Asn	GGC Gly	TAT Tyr	TCA Ser	TTC Phe	TCC Ser	ATC Ile	CCT Pro	GTA Val	AAA Lys	GTT Val	TTG Leu	GCT Ala	620 GAT Asp	AAA Lys	TTC Phe	ATT Ile	ACT Thr	CCT Pro	GGG G1y	CTG Leu	AAA Lys	CTA Leu	AAT Asn	GAT Asp	CTA Leu	AAT Asn	TCA Ser	GTT Val	CTT Leu	GTC Val	ATG Met	CCT Pro	640 ACG Thr
TTC Phe	CAT His	GTC Val	CCA Pro	TTT Phe	ACA Thr	GAT Asp	CTT Leu	ÇAG Gln	GTT Val	CCA Pro	TCG Ser	TGC Cys	AAA Lys	CTT Leu	GAC Asp	TTC Phe	AGA Arg	GAA Glu	660 ATA Ile	CAA G1n	ATC Ile	TAT Tyr	AAG Lys	AAG Lys	CTG Leu	AGA Arg	ACT Thr	TCA Ser	TCA Ser	TTT Phe	GCC Ala	CTC Leu	AAC Asn	CTA Leu	CCA Pro	ACA Thr	CTC Leu	CCC Pro	680 GAG G1u
GTA Val	AAA Lys	TTC Phe	CCT Pro	GAA Glu	GTT Val	GAT	GTG Val	TTA Leu	ACA Thr	AAA Lys	TAT Tyr	TCT Ser	CAA G1n	CCA Pro	GAA Glu	GAC Asp	TCC Ser	TTG Leu	700 ATT Ile	CCC Pro	TTT Phe	TTT Phe	GAG Glu	ATA Ile	ACC Thr	GTG Val	CCT Pro	GAA Glu	TCT Ser	CAG G1n	TTA Leu	ACT Thr	GTG Val	TCC Ser	CGA Arg	TTC Phe	ACG Thr	CTT Leu	720 CCA Pro
AAA Lys	AGT Ser	GTT Val	TCA Ser	GAT Asp	GGC Gly	ATT Ile	GCT Ala	GCT Ala	TTG Leu	GAT Asp	CTA Leu	AAT Asn	GCA Ala	GTA Val	GCC Ala	AAC Asn	AAG Lys	ATC Ile	740 GCA Ala	GAC Asp	TTT Phe	GAG Glu	TTG Leu	CCC Pro	ACC Thr	ATC Ile	ATC Ile	GTG Val	CCT Pro	GAG Glu	CAG G1n	ACC Thr	ATT Ile	GAG Glu	ATT Ile	CCC Pro	TCC Ser	ATT Ile	760 AAG Lys
TTC Phe	TCT Ser	GTA Val	CCT Pro	GCT Ala	GGA G1y	ATT Ile	GTC Val	ATT Ile	CCT Pro	TCC Ser	TTT Phe	CAA G1n	GCA Ala	CTG Leu	ACT Thr	GCA Ala	CGC Arg	TTT Phe	780 GAG G1u	GTA Val	GAC Asp	TCT Ser	CCC Pro	GTG Val	tat Tyr	AAT Asn	GCC Ala	ACT Thr	TGG Trp	AGT Ser	GCC Ala	AGT Ser	TTG Leu	AAA Lys	AAC Asn	AAA Lys	GCA Ala	GAT Asp	800 TAT Jyr

that proposed for the receptor binding domain of apo-E. This region (residues 276 to 286) of possible importance is compared to the apo-E binding domain in Fig. 7. In comparing this structure with that of the apo-E binding domain, we find it noteworthy that normal binding is disrupted by genetic variants of apo-E in which neutral amino acid substitutions for arginine or lysine occur at residues 142, 145, and 146 (2). These residues in apo-E correspond to amino acids 278, 281, and 282 in the comparable region of apo-B100. The structure of the apo-B,E(LDL) receptor has now been determined, and a postulated ligand binding domain has been shown to be enriched in acidic amino acids (24). The

Table 1. Distribution of apo-B with human chromosomes in human-mouse cell hybrids.

Chromosome number Concordant hybrids	(+/+)*	1 12	2 18	3 16	4 12	5 14	6 14	7 15	8 14	9 6	10 17	11 15	12 14	13 12	14 15	15 15	16 8	17 16	18 16	19 11	20 11	21 15	22 10	X 15
(No.)	(-/-)	18	20	8	15	13	17	11	10	18	10	12	11	12	6	12	14	5	11	15	10	5	11	9
Discordant hybrids	(+/-)	6	0	2	6	4	4	3	4	12	1	3	4	6	3	3	10	2	2	7	7	3	8	3
(No.)	(-/+)	2	0	12	5	7	3	9	10	2	10	8	9	8	14	8	6	15	9	5	10	15	9	11
Discordancy (%)		21	. 0	37	29	29	18	32	37	37	29	29	34	37	45	29	42	45	29	32	45	47	45	37

*The first symbol within the parentheses indicates those hybrids that were either positive (+) or negative (-) for apo-B; the second symbol within the parentheses indicates those hybrids that either contained (+) or lacked (-) the particular chromosome.

GTT Val	GAA G1 u	ACA Thr	GTC Val	CTG Leu	GAT Asp	TCC Ser	ACA Thr	TGC Cys	AGC Ser	TCA Ser	ACC Thr	GTA Val	CAG G1n	TTC Phe	CTA Leu	GAA Glu	tat Tyr	GAA Glu	820 CTA Leu	AAT Asn	GTT Val	TTG Leu	GGA G1y	ACA Thr	CAC His	AAA Lys	ATC Ile	GAA Glu	GAT Asp	GGT G1y	ACG Thr	TTA Leu	GCC Ala	TCT Ser	AAG Lys	ACT Thr	AAA Lys	GGA G1y	840 ACA Thr
CT1 Lei	GCA Ala	CAC His	CGT Arg	GAC Asp	TTC Phe	AGT Ser	GCA Ala	GAA Glu	tat T yr	GAA Glu	GAA Glu	GAT Asp	GGC G1y	AAA Lys	TTT Phe	GAA G1 u	GGA G1y	CTT Leu	860 CAG G1n	GAA Glu	TGG Trp	GAA Glu	GGA G1y	AAA Lys	GCG Ala	CAC His	CTC Leu	AAT Asn	ATC Ile	AAA Lys	AGC Ser	CCA Pro	GCG Ala	ŤTC Phe	ACC Thr	GAT Asp	.CTC Leu	CAT His	880 CTG Leu
CG(Arg	TAC Tyr	CAG G1m	i AAA I Lys	GAC Asp	AAG Lys	AAA Lys	GGC G1y	ATC Ile	TCC Ser	ACC Thr	TCA Ser	GCA Ala	GCC Ala	TCC Ser	CCA Pro	GCC Ala	GTA Val	GGC G1 y	900 ACC Thr	GTG Val	GGC G1y	ATG Met	GAT Asp	ATG Met	GAT Asp	GAA Glu	GAT Asp	GAC Asp	GAC Asp	TTT Phe	TCT Ser	AAA Lys	TGG Trp	AAC Asn	TTC Phe	TAC Tyr	TAC Tyr	AGC Ser	920 CCT Pro
CAG Glr	TCC Ser	TCT Ser	CCA Pro	GAT Asp	AAA Lys	AAA Lys	CTC Leu	ACC Thr	ATA Ile	TTC Phe	AAA Lys	ACT Thr	GAG Glu	TTG Leu	AGG Arg	GTC Val	CGG Arg	GAA Glu	940 TCT Ser	GAT Asp	GAG Glu	GAA Glu	ACT Thr	CAG Gln	ATC Ile	AAA Lys	GTT Val	AAT Asn	TGG Trp	GAA G1u	GAA Glu	GAG Glu	GCA Ala	GCT Ala	TCT Ser	GGC G1y	TTG Leu	CTA Leu	960 ACC Thr
TCT Ser	CTG Leu	AAA Lys	GAC S Asp	AAC Asn	GTG Val	CCC Pro	AAG Lys	GCC Ala	ACA Thr	GGG G1y	GTC Val	CTT Leu	TAT Tyr	GAT Asp	tat Tyr	GTC Val	AAC Asn	AAG Lys	980 TAC Tyr	CAC His	TGG Trp	GAA G1u	CAC His	ACA Thr	GGG Gly	CTC Leu	ACC Thr	CTG Leu	AGA Arg	GAA Glu	GTG Val	TCT Ser	TCA Ser	AAG Lys	CTG Leu	AGA Arg	AGA Arg	AAT Asn	000 CTG Leu
CAG Gln	AAC Asn	AAT Asn	GCT Ala	GAG G1u	TGG Trp	GTT Val	tat Tyr	CAA Gln	GGG G1y	GCC Ala	ATT Ile	AGG Arg	CAA G1n	ATT Ile	GAT Asp	GAT Asp	ATC Ile	GAC Asp	1020 GTG Val	AGG Arg	TTC Phe	CAG Gln	AAA Lys	GCA Ala	GCC Ala	AGT Ser	GGC G1y	ACC Thr	ACT Thr	GGG G1y	ACC Thr	TAC Tyr	CAA G1n	GAG Glu	TGG Trp	AAG Lys	GAC Asp	1 AAG Lys	GCC Ala
CAG Gln	AAT Asn	CTG Leu	i TAC Tyr	CAG Gln	GAA Glu	CTG Leu	TTG Leu	ACT Thr	CAG Gln	GAA Glu	GGC G1y	CAA Gln	GCC Ala	AGT Ser	TTC Phe	CAG G1n	GGA G1y	CTC Leu	1060 AAG Lys	GAT Asp	AAC Asn	GTG Val	TTT Phe	GAT Asp	GGC G1 y	TTG Leu	GTA Val	CGA Arg	GTT Val	ACT Thr	CAA G1n	AAA Lys	TTC Phe	CAT His	ATG Met	AAA Lys	GTC Val	AAG Lys	080 CAT His
CTG Leu	ATT Ile	GAC Asp	TCA Ser	CTC Leu	ATT Ile	GAT Asp	TTT Phe	CTG Leu	AAC Asn	TTC Phe	CCC Pro	AGA Arg	TTC Phe	CAG Gln	TTT Phe	CCG Pro	GGG G1y	AAA Lys	1100 CCT Pro	GGG G1 y	ATA Ile	TAC Tyr	ACT Thr	AGG Arg	GAG G1u	GAA G1u	CTT Leu	TGC Cys	ACT Thr	ATG Met	TTC Phe	ATA Ile	AGG Arg	GAG Glu	GTA Val	GGG G1y	ACG Thr	GTA Val	L120 CTG Leu
TCC Ser	CAG Gln	GTA Val	TAT Tyr	TCG Ser	AAA Lys	GTC Val	CAT His	AAT Asn	GGT G1y	TCA Ser	GAA Glu	ATA Ile	CTG Leu	TTT Phe	TCC Ser	tat Tyr	TTC Phe	CAA Gln	1140 GAC Asp	CTA Leu	GTG Val	ATT Ile	ACA Thr	CTT Leu	CCT Pro	TTC Phe	GAG Glu	TTA Leu	AGG Arg	AAA Lys	CAT His	AAA Lys	CTA Leu	ATA Ile	GAT Asp	GTA Val	ATC Ile	TCG Ser	ATG Met
TAT Tyr	AGG Arg	GAA Glu	CTG Leu	TTG Leu	AAA Lys	GAT Asp	TTA Leu	TCA Ser	AAA Lys	GAA Glu	GCC Ala	CAA Gln	GAG Glu	GTA Val	TTT Phe	AAA Lys	GCC Ala	ATT Ile	1180 CAG Gln	TCT Ser	CTC Leu	AAG Lys	ACC Thr	ACA Thr	GAG Glu	GTG Val	CTA Leu	CGT Arg	AAT Asn	CTT Leu	CAG Gln	GAC Asp	CTT Leu	TTA Leu	CAA Gln	TTC Phe	ATT Ile	TTC Phe	1200 CAA G1n
CTA Leu	ATA Ile	GAA Glu	GAT Asp	AAC Asn	ATT Ile	AAA Lys	CAG Gln	CTG Leu	AAA Lys	GAG Glu	ATG Met	AAA Lys	TTT Phe	ACT Thr	TAT Tyr	CTT Leu	ATT Ile	AAT Asn	1220 TAT Tyr	ATC Ile	CAA G1n	GAT Asp	GAG G1u	ATC Ile	AAC Asn	ACA Thr	ATC Ile	TTC Phe	AAT Asn	GAT Asp	tat Tyr	ATC Ile	CCA Pro	tat Tyr	GTT Val	TTT Phe	AAA Lys	TTG Leu	L240 TTG Leu
AAA Lys	GAA Glu	AAC Asn	CTA Leu	TGC Cys	CTT Leu	AAT Asn	CTT Leu	CAT His	AAG Lys	TTC Phe	AAT Asn	GAA Glu	TTT Phe	ATT Ile	CAA Gln	AAC Asn	GAG G1u	CTT Leu	1260 CAG G1n	GAA G1u	GCT Ala	TCT Ser	CAA Gln	GAG Glu	TTA Leu	CAG G1n	CAG Gln	ATC Ile	CAT His	CAA Gln	tac Tyr	ATT Ile	ATG Met	GCC Ala	CTT Leu	CGT Arg	GAA Glu	GAA Glu	1280 TAT Tyr
TTT Phe	GAT Asp	CCA Pro	AGT Ser	ATA Ile	GTT Val	GGC G1y	TGG Trp	ACA Thr	GTG Val	AAA Lys	TAT Tyr	tat Tyr	GAA Glu	CTT Leu	GAA Glu	GAA Glu	AAG Lys	1 ATA Ile	300 GTC Val	AGT Ser	CTG Leu	ATC Ile	AAG Lys	AAC Asn	CTG Leu	TTA Leu	GTT Val	GCT Ala	CTT Leu	AAG Lys	GAC Asp	TTC Phe	CAT His	TCT Ser	GAA Glu	tat Tyr	ATT Ile	1 GTC Val	320 AGT Ser
GCC Ala	TCT Ser	AAC Asn	TTT Phe	ACT Thr	TCC Ser	CAA Gln	CTC Leu	TCA Ser	AGT Ser	CAA Gln	GTT Val	GAG Glu	CAA Gln	TTT Phe	CTG Leu	CAC His	AGA Arg	AAT Asn	340 ATT Ile	CAG Gln	GAA Glu	tat Tyr	CTT Leu	AGC Ser	ATC Ile	CTT Leu	ACC Thr	GAT Asp	CCA Pro	GAT Asp	GGA G1y	AAA Lys	GGG G1y	AAA Lys	GAG Glu	AAG Lys	ATT Ile	1 GCA Ala	.360 GAG G1 u
CTT Leu	TCT Ser	GCC Ala	ACT Thr	GCT Ala	CAG Gln	GAA G1u	ATA Ile	ATT Ile	AAA Lys	AGC Ser	CAG G1n	GCC Ala	ATT Ile	GCG Ala	ACG Thr	AAG Lys	AAA Lys	1 ATA Ile	380 ATT Ile	TCT Ser	GAT Asp	TAC Tyr	CAC His	CAG Gln	CAG Gln	TTT Phe	AGA Arg	TAT Tyr	AAA Lys	CTG Leu	CAA G1n	GAT Asp	TTT Phe	TCA Ser	GAC Asp	CAA G1n	CTC Leu	1 TCT Ser	400 GAT Asp
TAC Tyr	tat Tyr	GAA Glu	AAA Lys	TTT Phe	ATT Ile	GCT Ala	GAA G1u	TCC Ser	AAA Lys	AGA Arg	TTG Leu	ATT Ile	GAC Asp	CTG Leu	TCC Ser	ATT Ile	CAA G1n	1 AAC Asn	420 TAC Tyr	CAC His	ACA Thr	TTT Phe	CTG Leu	ATA Ile	TAC Tyr	ATC Ile	ACG Thr	GAG Glu	TTA Leu	CTG Leu	AAA Lys	AAG Lys	CTG Leu	CAA G1n	TCA Ser	ACC Thr	ACA Thr	1 GTC Val	.440 ATG Met
AAC Asn	CCC Pro	TAC Tyr	ATG Met	AAG Lys	CTT Leu	GCT Ala	CCA Pro	GGA G1y	GAA Glu	CTT Leu	ACT Thr	ATC Ile	1 ATC Ile	455 CTC Leu	TAA ***	ττ	TTTT	AAAA	GAA	ATCT	CAT	TATC	тстт	тсс	AATG	AACT	T CA	CATA	GCAC	AGA	AAAA	ATC	AAAC	TGCC	TA T	ATTG	ATA	AA	
ACCA	TACA	GT G	AGCO	AGCC	T TG	CAGT	AGGC	AGT	AGAC	TAT	AAGC	AGAA	GC A	CATA	TGAA	стg	GACC	TGCA	CCA	AAGC	TGG	CACC	AGGG	ст с	GGAA	GGTC	т ст	GAAC	TCAG	AAG	GATG	GCA	TTTT	TTGC	CAA G	TTAA	AGA/	AA	

ATCAGGATCT GAGITATITT GCTAAACTTG GGGGAGGAGG AACAAA

Fig. 4. Nucleotide sequence of cDNA clones representing the 3' end of apo-B100 mRNA and the derived amino acid sequence of the COOHterminal 30 percent of apo-B100. The arrow indicates the thrombin cleavage site that gives rise to fragment T2. The lines under the derived amino acid sequence indicate those regions found from peptide sequencing. The broken lines indicate those amino acid residues that could not be assigned with certainty in the peptide sequence analyses. The dotted line indicates the peptide R2-5 of LeBoeuf *et al.* (13). Circles indicate potential N-glycosylation sites. Asterisks (***) indicate the termination codon. Numbering of the sequence is arbitrary and begins at the most NH₂-terminal amino acid. The sequence of the first 266 nucleotides of the 3'-untranslated region is given, but there is a still-unknown number of nucleotides preceding the poly(A) tail. sequence of the proposed ligand binding domain is also shown in Fig. 7.

In addition to a role in receptor binding, regions enriched in basic amino acids may also be involved in mediating apo-B100 interaction with heparin. In both apo-E and apo-B, modification of lysine or arginine residues results in loss of heparin binding ability as well as receptor binding ability (3). Within the COOH-terminus of apo-B100, there are other sites of potential importance for

either receptor or heparin binding. These include residues 40 to 76 and residues 94 to 136.

The importance of these domains in either receptor or heparin binding remains to be determined. However, with respect to receptor binding, it is reasonable to focus attention on a single site within apo-B100 and to focus attention on the COOH-terminus of the molecule. Previously, Milne and Marcel and their co-workers (25) demonstrated that the

Fig. 5. (a) In situ hybridization of apo-B cDNA in 163 human metaphases. The horizontal axis represents the chromosomes in their relative size proportion; the vertical axis gives the silver grain distribution. The in situ hybridization (30) shows significant labeling at the 2p24 site in comparison to the nonspecific background labeling (19.4 percent of all grains are on chromosome 2; 4.7 percent of all grains are on 2p24). (b) Southern hybridization of apo-B cDNA probe (clone p61D7) to human, mouse, and somatic cell hybrid DNA. The DNA was digested with Eco RI (or Hind III, not shown) and hybridized with ³²P-labeled cDNA insert. The size of the 1.6-kb fragment was estimated

with λ Hind III- and φX174 Hae III-digested DNA markers. Human DNA (H) was prepared from Wi38 cells and mouse DNA (M) from LM/TK⁻ cells. In the examples of somatic cell hybrids shown, positive hybridization (+) and negative hybridization (-) are indicated. The construction and characterization of the human-mouse somatic cell hybrids, the preparation of DNA, and hybridization conditions were as described (31).

Fig. 6. Hydrophobicity plot of the COOHterminal region of apo-B100. The hydrophobicity index (H) of Kyte and Doolittle (19) was used and is plotted against the sequence using a windowing average of 18 residues. Residues are numbered as in Fig. 4.

of apo-E and a region of apo-B. The homologous positively charged residues lysine and arginine are boxed in the

Apo-B,E(LDL) Receptor (Consensus Sequence) -Cys-Asp-X-X-X-Asp-Cys-X-Asp-Gly-Ser-Asp-Glu-

sequence of apo-E and apo-B. The consensus sequence of the postulated ligand binding site of the apo-B,E(LDL) receptor, which is enriched in the negatively charged residues aspartic and glutamic acids (underlined), is shown for comparison (24).

binding of a single monoclonal antibody to the LDL particle blocks receptor binding activity, which suggests that there may be only a single receptor binding domain expressed on the surface of an LDL particle. Furthermore, they have localized the epitopes of monoclonal antibodies that inhibit receptor binding activity to the apo-B74 fragment of apo-B100. This fragment encompasses thrombolytic fragments T3 and T2 (Fig. 1). We have identified a monoclonal antibody (18C4) that also inhibits the binding of LDL to the apo-B,E(LDL) receptor. On immunoblots, it recognizes only fragment T2. The basic region encompassing residues 276 to 286, which most closely resembles the apo-E binding domain, is located in thrombolytic fragment T2 within 110 residues of the thrombin cleavage site. Antibodies to synthetic peptides from the region 276 to 286 and other basic regions are being prepared to determine experimentally whether any of these sites is the receptor binding domain.

In summary, the availability of cDNA clones for apo-B will allow complete structural characterization of the apo-B mRNA, the entire protein, and ultimately the gene. This will eventually allow the unraveling of the steps that control the biosynthesis of VLDL and LDL, thus providing insights into how to control LDL levels and to regulate LDL cholesterol metabolism.

Note added in proof: After this research article was submitted, Deeb et al. (26) reported a partial cDNA sequence for human apo-B. Their sequence does not overlap any portion of ours. Lusis et al. (27) reported a partial cDNA sequence for the rat large apo-B. The beginning of their insert shows a 70 percent homology (both nucleotides and amino acids) to our sequence beginning at amino acid residue 929 in Fig. 4.

References and Notes

- References and Notes
 R. J. Havel, J. L. Goldstein, M. S. Brown, in Metabolic Control and Disease, P. K. Bondy and L. E. Rosenberg, Eds. (Saunders, Philadel-phia, 1980), pp. 393-494; J. P. Kane, Annu. Rev. Physiol. 45, 637 (1983); J. L. Goldstein and M. S. Brown, in The Metabolic Basis of Inherited Disease, J. B. Stanbury et al., Eds. (McGraw-Hill, New York, 1983), pp. 672-712.
 R. W. Mahley and T. L. Innerarity, Biochim. Biophys. Acta 737, 197 (1983); R. W. Mahley, T. L. Innerarity, S. C. Rall, Jr., K. H. Weisgraber, J. Lipid Res. 25, 1277 (1984).
 R. W. Mahley et al., J. Biol. Chem. 252, 7279 (1977); K. H. Weisgraber, T. L. Innerarity, Rio-chim. Biophys. Acta 575, 81 (1979).
 C.-H. Chen and F. Aladjem, Biochem. Biophys. Res. Commun. 60, 549 (1974); W. A. Bradley, M. F. Rohde, A. M. Gotto, Jr., R. L. Jackson, ibid. 81, 928 (1978); L. Socorro, F. Lópid Res. 20, 631 (1979); L. Socorro, F. López, A. López, G. Camejo, ibid. 23, 1283 (1982).
 A. D. Cardin et al., J. Biol. Chem. 259, 8522 (1984).

- A. D. Cardin et al., J. Biol. Chem. 259, 8522 (1984). 5.

- A 42-base synthetic oligodeoxynucleotide, based on the first 14 amino acids of thrombolytic fragment T2, was synthesized as described [B. D. Warner et al., DNA 3, 401 (1984)]. Codon In agnient 12, was synthesized as described ib.
 D. Warne et al., DNA 3, 401 (1984)]. Codon choices were made to reduce the degeneracy of the probe. The choices were based on data gathered on codon preferences for other apolipoprotein and membrane proteins. The oligonucleotide synthesized was the complement of the coding sequence for the NH2-terminus of T2: 3'-CGGCACA^C₂GTACGGGA^C₂GAAGAGG-TA^C₂GACCCGA^C₂GTACGGGA^C₂GAAGAGG-TA^C₂GACCCGA^C₂GTACGGGA^C₂GAAGAGG-TA^C₂GGACCCGA^C₂GTACGGGA^C₂GAAGAGG-TA^C₂GACCCGA^C₂GTACGGGA^C₂GAAGAGG-TA^C₂GACCCGA^C₂GTACGGGA^C₂GAAGAGG-TA^C₂GACCCGA^C₂GTACGGGA^C₂GAAGAGG-TA^C₂GACCCGA^C₂GTACGGGA^C₂GAAGAGG-TA^C₂GACCCGA^C₂GTACGGGA^C₂GAAGAGG-TA^C₂GACCCGA^C₂GTACGGGA^C₂GAAGAGG-TA^C₂GACCCGA^C₂GTACGGGA^C₂GAAGAGG-TA^C₂GACCCGA^C₂GTACGGGA^C₂GAAGAGG-TA^C₂GACCCGA^C₂GTACGGGA^C₂GAAGAGG-TA^C₂GACCCGA^C₂GTACGGGA^C₂GAAGAGG-TA^C₂GACCCGA^C₂GTACGGGA^C₂GAAGAGG-TA^C₂GACCCGA^C₂GTACGGAC-5'.
 7. The cDNA library was constructed by D. E. Woods, A. F. Markham, A. T. Ricker, G. Goldberger, and H. R. Colten [*Proc. Natl. Acad. Sci. U.S.A.* 79, 5661 (1982)] and screened as described by J. Scott *et al.* [*Nature (London)* 302, 538 (1983)] and G. I. Bell *et al.* [*ibid.* 310, 775 (1984)].
 8. Plasmid DNA was prepared by a modified alka-
- 775 (1984)]. Plasmid DNA was prepared by a modified alka-line lysis method [T. Maniatis, E. F. Fritsch, J. Sambrook, *Molecular Cloning: A Laboratory Manual* (Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1982)] and ³²P-labeled by random priming as described [A. P. Feinberg and B. Vogelstein, *Anal. Biochem* 132, 6 (1983); *ibid.* 137, 266 (1984)]. RNA dot blot analysis was performed as described by L. B. Rall *et al.* (*Nature (London)* 313, 228 (1985)] and L. B. Rall, J. Scott, and G. I. Bell (*Methods Enzymol.*, in press.) in press.)
- in press.) K. T. Belt *et al.*, *Cell* **36**, 907 (1984). Lyophilized T2 was dissolved in water at 2 mg/ ml (the SDS concentration was about 0.6 to 0.8 percent). The protein solution was added drop-wise to four times its volume of 90 percent HCOOH with stirring. Any precipitate that formed was allowed to clear before the next drop was added. Solid CNBr (125:1, by weight) was added and the mixture was incubated for 8 10 drop was added. Solid CNBr (125:1, by weight) was added, and the mixture was incubated for 8 hours at room temperature. The same weight of CNBr was then added and allowed to react for an additional 16 hours. The digest was then dialyzed (3.5-kD cutoff tubing) against 100 ml of 70 percent HCOOH with two changes over a 2-to 3-hour period. The bag was then opened, and the concentration of SDS was increased to 1 percent. The solution was dialyzed against 1 percent SDS, 5 mM NH₄HCO₃ for 4 to 5 hours and then against 0.1 percent SDS, 5 mM NH₄HCO₃ for 24 hours. The solution was frozen as a plug and lyophilized to reduce the volume (but not to dryness). The remaining liquid was (but not to dryness). The remaining liquid was adjusted to pH 7.0 to 7.5 with 1N NaOH. A to adjusted to pH 7.0. to 7.5 with 1N NaOH. A portion of the peptide mixture was dansylated as described in Fig. 1, and the fragments were separated on 15 to 20 percent polyacrylamide gradient gels (1.5 mm thick). The peptides were transferred by electroelution into dialysis bags (3.5-kD cutoff) and dialyzed against 5 mM NH₄HCO₃, 0.1 percent SDS, for 48 hours and then lyophilized. Peptides were sequenced in a Beckman 890C Sequencer with a standard 0.1M Quadrol program in the presence of 3 mg of Polybrene and 0.5 percent SDS. Amino-terminal sequences were obtained on four peptides. CB1 (25 percent yield) was a 19.8-kD peptide whose NH₂-terminal sequence corresponds to residues 227 to 258 in Fig. 4. The absence of identifiable amino acids at positions 228 and 250 almost certainly indicates that these Asn residues are amino acids at positions 228 and 250 almost certainly indicates that these Asn residues are glycosylated. Furthermore, the molecular size of CB1 is too large for that predicted from the positions of the methionines in Fig. 4; therefore, this peptide is probably behaving anomalously on gels because of glycosylation. Peptide CB2 (30 percent yield) was a 17.2-kD peptide that represents residues 489 to 638 (calculated, 16.95 kD). Peptide CB3 (12 percent yield) was a 30.5-

kD peptide that represents residues 639 to 903 (calculated, 29.95 kD). Peptide CB4 (<20 per-cent yield) was an 18- to 19-kD peptide found as a contaminating component in other fractions. The peptide represents residues 1275 to 1440 (calculated, 18.76 kD).

- (calculated, 18.76 kD). Low density lipoproteins (5 to 7 mg/ml) in 0.15*M* NaCl, 0.01 percent EDTA were filter-sterilized (0.45- μ m pore size). Trypsin in 200 mM NH₄HCO₃, *p*H 7.6, was added to achieve a final ratio of trypsin to protein of 1:35 (by weight). The solution was then incubated at 37°C in an N₂ atmosphere for 6 hours. The solution particles the particles 11 The solution was then includated al 37 C in all N_2 atmosphere for 6 hours. The solutile peptides and the trypsin were removed by gel filtration chromatography over a Sephadex G-50 column (2.2 by 90 cm) at 4°C in 0.15M NaCl, 1 mM EDTA, pH 8.2. The void volume fractions were collected and concentrated on an XM50 Amicon membrane to about 10 m and then filtered collected and concentrated on an XM50 Amicon membrane to about 10 ml and then filtered through a 1.2- μ m filter. The trypsin-treated LDL were dialyzed against 0.3 mM EDTA, ρ H 7.4, and lyophilized. A mixture of chloroform and methanol (2:1) was added to the lyophilized lipoprotein and incubated at 23°C for 30 min-utes. To reduce the density of the organic sol-vent, an equal volume of methanol was added, and the protein was sedimented at low speed (3000 rev/min for 10 minutes, Beckman J6). The chloroform-methanol mixture was removed by chloroform-methanol mixture was removed by chioroform-methanol mixture was removed by aspiration, and the peptide mixture was dried under N_2 . The procedures for the dansylation, electrophoresis, and elution of the peptides were the same as described for the CNBr fragments of T2, except that the separating gel was a 10 to 15 percent gradient gel. Amino-terminal sequences 12.
 - percent gradient gel. Amino-terminal sequences of three tryptic peptides (of nine that were determined) were located in the COOH-terminal portion of apo-B. These 29-, 23-, and 25-kD peptides, respectively, represent those begin-ning at residues 739, 761, and 1154, respectively (Fig. 4). Each peptide follows a lysine residue. Peptides were generated by tryptic digestion at 37°C for 6 hours followed by gel filtration on Sephadex G-25. Peptide pools were then sub-jected to high-performance liquid chromatogra-phy using an N-propanol/acetic acid system. The sequences of tryptic peptides were deter-mined by interpreting the fragmentation patterns observed by fast atom bombardment (FAB) (VG ZAB mass spectrometer equipped with an M-ZAB mass spectrometer equipped with an M-scan FAB gun; 10 kV and 20 μ A xenon ion current [H. R. Morris and M. Panico, *Biochem. Biophys. Res. Commun.* 101, 623 (1981)]. Where sequences were not complete due to lack of ion fragmentation, the remaining amino acids were assigned by comparing the FAB molecular weight and amino acid analysis. First and last weight and annual actuality and assist and assist and assist annual assist annual assist annual assist annual assist annual annual annual annual assist annual annual annual assist annual assist annual annu were chosen for detailed mass spectrometric analysis, although the chromatogram was very complex (a consequence of the very large size of this protein), and none were at a stage of suffi-cient purity for classical sequencing. A peptide with an (M + H) = 1039 was of particular inter-est because it did not contain a COOH-terminal Lys or Arg (no change in mass after carboxy-peptidase B digestion, thus making it a candi-date for the true COOH-terminus of the intact apo-B protein). The ratio of Leu to 1le (from amino acid analysis) was 3:2, although these could not be differentiated by the mass data. The composition and partial sequence of this pentide composition and partial sequence of this peptide was consistent with the predicted sequence of residues 1446 to 1455 in Fig. 4. R. C. LeBoeuf *et al.*, *FEBS Lett.* **170**, 105
- 13. (1984)

- J. Pustell and F. C. Kafatos, Nucleic Acids Res. 12, 643 (1984); M. O. Dayhoff, W. C. Barker, L. T. Hunt, Methods Enzymol. 91, 524 (1983).
 B. Olaisen, P. Teisberg, T. Gedde-Dahl, Jr., Hum. Genet. 62, 233 (1982); C. L. Jackson, G. A. P. Bruns, J. L. Breslow, Proc. Natl. Acad. Sci. U.S.A. 81, 2945 (1984); T. J. Knott et al., Biochem. Biophys. Res. Commun. 125, 299 (1984); G. A. P. Bruns, S. K. Karathanasis, J. L. Breslow, Arteriosclerosis 4, 97 (1984); O. Scha-maun et al., Hum. Genet. 68, 181 (1984).
 U. Francke, M. S. Brown, J. L. Goldstein, Proc. Natl. Acad. Sci. U.S.A. 81, 2826 (1984).
 A.-L. Wu and H. G. Windmuller, J. Biol. Chem. 256, 3615 (1981); D. M. Lee, E. Koren, S. Singh, T. Mok, Biochem. Biophys. Res. Com-mun. 123, 1149 (1984).
 P. Y. Chou and G. D. Fasman, Annu. Rev. Biochem. 47, 251 (1978).
 J. Kyte and R. F. Doolittle, J. Mol. Biol. 157, 105 (1982).
 L. Surgert, B. Lakara, J. D. Marigert, A.

- 105 (1982)
- J. P. Segrest, R. L. Jackson, J. D. Morrisett, A. M. Gotto, Jr., *FEBS Lett.* 38, 247 (1974).
 M. S. Boguski, N. A. Elshourbagy, J. M. Taylor, J. I. Gordon, *Proc. Natl. Acad. Sci. U.S.A.* 90 (2005).
- 22.
- I. Gordon, Proc. Natl. Acad. Sci. U.S.A.
 82, 992 (1985).
 D. Osterman, R. Mora, F. J. Kézdy, E. T.
 Kaiser, S. C. Meredith, J. Am. Chem. Soc. 106, 6845 (1984).
- 23.
- 6845 (1984).
 P. Lee and W. C. Breckenridge, Can. J. Biochem. 54, 42 (1976); N. Swaminathan and F. Aladjem, Biochemistry 15, 1516 (1976).
 T. Yamamoto et al., Cell 39, 27 (1984); T. C. Sudhof, J. L. Goldstein, M. S. Brown, D. W. Russell, Science 228, 815 (1985).
 R. W. Milne and Y. L. Marcel, FEBS Lett. 146, 97 (1982); Y. L. Marcel, M. Hogue, R. Theolis, Jr., R. W. Milne, J. Biol. Chem. 257, 13165 (1982); R. W. Milne, R. Theolis, Jr., R. B. Verdery, Y. L. Marcel, Arteriosclerosis 3, 23 (1983). 25 (1983).
- (1983).
 S. S. Deeb, A. G. Motulsky, J. J. Albers, *Proc. Natl. Acad. Sci. U.S.A.* 82, 4597 (1985).
 A. J. Lusis *et al.*, *ibid.*, p. 4597.
 F. Sanger, A. R. Coulson, B. G. Barrell, A. J. H. Smith, B. A. Roe, *J. Mol. Biol.* 143, 161 (1980). 28 (1980)
- 29. T. J. Knott et al., Nucleic Acids Res. 12, 3909
- 30.
- T. J. Knott et al., Nucleic Actas Res. 1, 1084).
 B. U. Zabel, S. L. Naylor, A. Y. Sakaguchi, G. I. Bell, T. B. Shows, Proc. Natl. Acad. Sci. U.S.A. 80, 6932 (1983).
 T. B. Shows et al., Somat. Cell Genet. 10, 315 (1984); T. B. Shows et al., Cytogenet. Cell Genet. 21, 99 (1978); T. B. Shows, A. Y. Sakaguchi, S. L. Naylor, Adv. Hum. Genet. 12, 34 (1982); E. M. Southern, J. Mol. Biol. 98, 503 (1975); S. L. Naylor et al., J. Exp. Med. 157, 1020 (1983).
- (1975); S. L. Naylor et al., J. Exp. Med. 157, 1020 (1983). We thank C. Joannon, R. Bartsch, and D. S. Bailey for the intestinal RNA; D. Woods, S. Humphries, K. T. Belt, M. C. Carroll, and R. R. Porter for CDNA libraries; N. Haskins and col-leagues of M-Scan, Ltd., Silwood Park, Ascot, U.K., who performed some of the amino acid sequence work and protein chemistry under the 32 sequence work and protein chemistry under the direction of Professor Howard R. Morris of the direction of Professor Howard R. Morris of the Department of Biochemistry, Imperial College, London, under MRC contract; L. Haley, M. Henry, and C. Young for technical assistance; R. Otter for computer analysis; Barbara Allen for editorial assistance; J. X. Warger and N. J. Gargasz for graphic arts; and K. Humphrey, S. Richmond, and K. Sholly for manuscript prepa-ration. Supported in part by NIH grants GM 20454 and HO 05196 and by American Cancer Society grant CD62 to T.B.S.

23 July 1985; accepted 4 September 1985