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Immunohistochemical Localization in the Rat Brain 
of the Precursor for Thyrotropin-Releasing Hormone 

Abstract. A rabbit antiserum to a peptide sequence present in the precursor for 
thyrotropin-releasing hormone (proTRH), deduced from cloned amphibian-skin 
complementary DNA, was raised by immunization with the synthetic decapeptide 
Cys-Lys-Arg-Gln-His-Pro-Gly-Lys-Arg-Cys (proTRH-SH). Immunohistochemical 
studies on rat brain tissue showed staining of neuronal perikarya in the parvicellular 
division of the paraventricular nucleus of the hypothalamus and the raphe complex 
of the medulla, identical to that already described for thyrotropin-releasing hormone 
(TRH). Zmmunostaining was abolished by preincubation with proTRH-SH ( 1 0 - 6 ~ )  
but not TRH   lo-'^). Both TRHprecursor and TRH were located in neurons of the 
paraventricular nucleus. However, in contrast to the findings for TRH, no staining 
was observed in axon terminals of the median eminence. These results suggest that a 
TRHprecursor analogous to that reported in frog skin is present in the rat brain and 
that TRH in the mammalian central nervous system is a product of ribosomal 
biosynthesis. 
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The long-standing controversy ( I )  con- 
cerning the mode of biosynthesis of thy- 
rotropin-releasing hormone (TRH) has 
recently been resolved. It is now clear 
that TRH, like other hypothalamic re- 
leasing factors such as luteinizing hor- 

mone-releasing (LH-RH) (2),  arises 
from the post-translational cleavage of a 
large precursor protein (3) and not by 
soluble nonribosomal enzymatic mecha- 
nisms such as those that produce the 
small neural peptide carnosine (4). On 
the basis of studies reporting large quan- 
tities of TRH in amphibian cutaneous 
tissue (5) ,  Richter et al. (6) isolated mes- 
senger RNA from the skin of the frog 
Xenopus laevis and were able to obtain a 
complementary DNA (cDNA) clone with 
an insert of 478 nucleotides coding for 
a portion of the preprohormone precur- 
sor of TRH (preproTRH). The deduced 
TRH precursor of 123 amino acids con- 
tains three copies of the sequence Lys- 
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Arg-Gln-His-Pro-Gly-LysIArg-Arg and a 
fourth incomplete copy. The paired 
flanking basic amino acids are potential 
cleavage sites in peptide biosynthesis 
(7). TRH (pGlu-His-ProNH2) would then 
arise after enzymic amidation at the car- 
boxyl terminus with the glycine residue 
acting as an amide donor (8) while gluta- 
mine would undergo cyclization to form 
the mature hormone. 

Earlier studies on the TRH precursor 
have been hampered by the small size of 
the TRH molecule. Antisera raised 
against the tripeptide have required that 
the NH2-terminal pyroglutamyl ring and 
the COOH-terminal amide be intact for 
immunologic reactivity (9). Consequent- 
ly, such antibodies do not recognize 
COOH-terminal or NH2-terminal exten- 
sions of the TRH sequence as would be 
present in a TRH precursor. 

It is not known whether the mecha- 
nism of TRH biosynthesis in the mam- 
malian hypothalamus is similar to that in 
frog skin. To study this further, we im- 
munized New Zealand White rabbits with 
the artificial peptide Cys-Lys-Arg-Gln- 
His-Pro-Gly-Lys-Arg-Cys (proTRH-SH) 

(10) coupled to bovine thyroglobulin 
through a lysine residue with glutaralde- 
hyde (11) and emulsified in Freund's 
adjuvant. The terminal cysteinyl resi- 
dues in this synthetic decapeptide are 
available for oxidative cyclization (12), 
thereby increasing the probability of gen- 
erating an antibody directed against the 
mid-region of the molecule and its ex- 
tended counterpart sequences in native 
proTRH. 

After 3 months, one antiserum (342) 
bound Iz51-labeled proTRH-SH. The 
binding was inhibited by synthetic 
proTRH-SH but not by TRH, various 
TRH metabolites, or other hypothalamic 
and neural peptides (13). 

To determine whether the TRH pre- 
cursor could be identified in the mam- 
mal, we prepared brain tissue from Spra- 
gue-Dawley rats (Charles River) fixed by 
intracardiac perfusion with either 4 per- 
cent paraformaldehyde or Bouin's solu- 
tion. Some animals received stereotactic 
injections of colchicine (75 pg in 10 pl of 
saline) into the lateral ventricle 48 hours 
before fixation so as to improve visual- 
ization of immunoreactive neuronal peri- 

karya (14). Vibratome sections through 
the forebrain, medulla oblongata, and 
spinal cord were prepared for immuno- 
cytochemistry by the peroxidase-anti- 
peroxidase (PAP) technique (15). Antise- 
rum 342 was used at a titer of 1:750 
diluted in O.05M tris-buffered saline, pH 
7.6, containing 0.2 percent Triton X-100. 

Immunoreactivity was localized to 
neuronal perikarya within the anterior 
and medial parvicellular division of the 
paraventricular nucleus (PVN) in the hy- 
pothalamus, in the raphe complex of the 
medulla (Fig. 1, A and B), and in other 
regions of the forebrain. This distribu- 
tion is identical to what we have demon- 
strated as typical for TRH-containing 
perikarya (14). The character of 
immunostaining with antiserum 342 was 
distinct, with immunoperoxidase stain- 
ing present in the cytoplasm near the 
nucleus (Fig. 1A). No immunoreactive 
material was seen in axons or axon ter- 
minals in the median eminence (Fig. 1C) 
or in the spinal cord, even in animals 
that had not been treated with colchi- 
cine. In addition, reaction product was 
rarely seen in first-order dendrites, and 

A @ 
- Fig. 1 (left). Coronal vibratome sections (50 

~ m )  through the rat hypothalamus and the 
medulla, showing the presence of immuno- 
reaction product (PAP technique) in the cyto- 
plasm of parvicellular neurons in the paraven- 
tricular nucleus (PVN) (A) and in the raphe 
pallidus (RP) (B), using an antiserum (342) 
raised against a synthetic sequence of the 

PVN frog-skin precursor of proTRH. The reaction I I ' product tends to encircle the nucleus (arrows 
in inset) and is absent from axon terminals in 
the median eminence (ME) (C). Control sec- 
tion (D) shows the absence of immunoreac- 
tion product in the PVN when the antiserum 
was preadsorbed with the synthetic decapep- 
tide Cys-Lys-Arg-Gln-His-Pro-Gly-Lys-Arg- 
Cys; 111, third ventricle. Magnification x 128 

ME (A, B, and C); x320 (inset in A and 
D). Fig. 2 (right). Sequential immunos- c D taining (PAP technique) of the same paraven- 
tricular neuron with antiserum 342 directed 

against proTRH-SH and with an antibody raised against synthetic TRH. Diaminobenzidine (brown reaction product) was used as the chromagen 
to localize immunostaining with antiserum 342, and 4-chloro-I-naphthol (blue reaction product) was used to localize immunostaining of the 
tripeptide TRH. Note intense immunoreactivity encircling the nucleus with antiserum 342 (arrows) in contrast to the delineation of the cell soma 
and processes with antiserum to TRH (arrowhead). Magnification ~ 2 0 0 .  
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(proTRH) immunostains neurons in the 
rat brain that also contain the tripeptide 
TRH. Because of the distinct compart- 
mentalization of immunostaining with 
antiserum 342 in the cell somata, highly Enhanced Metabolism of Leishmania donovani Amastigotes at 
suggestive of an association with the Acid pH: An Adaptation for Intracellular Growth 
Golgi apparatus (la), we propose that 
this antibody reacts specifically with the Abstract. Amastigotes (tissue forms) of Leishmania donovani isolated from 
rat proTRH. Further, since immunoreac- infected hamster spleens carried out several physiological activities (respiration, 
tivity is confined to the cell body and is catabolism o f  energy substrates, and incorporation of precursors into macromole- 
not present in axon terminals as is the cules) optimally at p H  4.0 to 5.5. All metabolic activities that were examined 
tripeptide TRH, it appears that process- decreased sharply above the optimal pH. Promastigotes (culture forms), on the other 
ing of the proTRH does not occur during hand, carried out the same metabolic activities optimally at or near neutral pH. This 
axonal transport as described for adaptation to an acid environment may account in part for the unusual ability of 
propressophysin, the precursor to vaso- amastigotes to survive and multiply within the acidic environment of the phagolyso- 
pressin (19). Rather, the data indicate somes in vivo. 
that the proTRH is rapidly converted to 
TRH within the neuronal perikaryon, ANTONY J. MUKKADA of reticuloendothelial organs by phago- 
perhaps even before leaving the Golgi JOHN C. MEADE cytic engulfment. Macrophages of hu- 
apparatus, in a manner that may be simi- THERESA A. GLASER man and animal reservoirs serve as 
lar to the processing of the enkephalin Department of Biological Sciences, obligatory host cells that permit the sur- 
precursor (20). University o f  Cincinnati, vival and intracellular multiplication of 

The findings suggest that a TRH pre- Cincinnati, Ohio 45221 leishmania amastigotes. Leishmania 
cursor analogous to that reported in am- PETER F. BO~NVENTRE donovani and other leishmania1 species 
phibian skin is present in the rat brain Department of Microbiology and do not inhibit phagosome-lysosome fu- 
and that TRH biosynthesis in the mam- Molecular Genetics, sion after ingestion by phagocytic cells 
malian central nervous system occurs by University of Cincinnati, (1-5), as do several other intracellular 
post-translational cleavage of a precur- Cincinnati, Ohio 45267 pathogens (6-8). Thus leishmanias have 
sor protein rather than by a nonriboso- mechanisms that permit survival, 
ma1 enzymic process. The availability of Leishmania donovani, the agent of growth, and cell division in an environ- 
an antibody that specifically recognizes visceral leishmaniasis, is a dimorphic ment that is inimical to most life forms. 
the rat hypothalamic TRH precursor has protozoan parasite. In tissues of infected Unlike the rickettsiae (9) and Trypano- 
recently enabled our group to elucidate hosts, amastigote forms of the organism soma cruzi (lo), both of which escape 
its cDNA sequence, which encodes a establish residence within macrophages from phagocytic vesicles into the cell 

13 SEPTEMBER 1985 1099 




