
mammary gland. The absence of GnRH 
binding sites in non-neoplastic tissues 
suggests that carcinogenic transforma- 
tion of normal breast cells is in some 
instances accompanied by the appear- 
ance of membrane proteins not normally 
present, or present only in undetectable 
amounts, in the nonlactating gland. 

Evidence that the GnRH binding sites 
in tumor tissue are GnRH receptors may 
be provided by demonstrating that 
GnRH can affect cellular function. 
GnRH agonists have been reported to 
inhibit the estrogen-dependent growth of 
cultured mouse mammary tumor cells in 
a dose-dependent fashion (14), and inhi- 
bition of the growth of a single human 
breast cancer cell line in culture by 
GnRH analogs has been described (15). 
GnRH analogs also inhibit the incorpo- 
ration of [3H]thymidine and [l4C1leucine 
into MCF-7, MDA-MB-231, and ZR-75-1 
human breast tumor cells in culture (16). 
These ductal cell lines were all positive 
for GnRH binding sites. 

Although a major mechanism of inhibi- 
tion of breast carcinomas by GnRH ana- 
logs is likely to be the inhibition of 
gonadotropin secretion and decline in 
gonadal steroid hormone production, the 
efficacy of the hormone in the treatment 
of some postmenopausal women with 
breast cancer and the effects demonstrat- 
ed in vitro argue in favor of a direct effect 
of GnRH analogs on breast tumor cells. 
Our demonstration of specific GnRH 
binding sites in certain breast carcino- 
mas illustrates a potential mechanism for 
these effects. A precedent for GnRH 
binding sites in a steroid hormonesensi- 
tive tissue has been shown in rat prostat- 
ic tumors (17). The significance of GnRH 
binding sites in human breast carcinomas 
and their relevance in clinical manage- 
ment of breast cancer remain to be deter- 
mined. The possibility of a correlation 
between the direct effects of GnRH on 
breast carcinoma cell lines and the pres- 
ence of GnRH binding sites in the cell 
lines merit further study. 
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Tissue Factor Gene Localized to Human Chromosome 1 
(lpter + lp21) 

Abstract. Tissue factor (tissue thromboplastin, coagulation factor ZZZ), a protein 
component of cell membranes, is an essential cofactor for factor VZZ-dependent 
initiation of blood coagulation. Since no tissue factor-dejicient condition has been 
described, it is one of only a few proteins of the coagulation system for which the 
pattern of inheritance has not been ascertained. Because of the species-specijicity of 
tissue factor activity and the availability of a very sensitive chromogenic assay, it 
was possible in the present study to use somatic cell hybrids to assign the 
chromosomal location of the tissue factor structural gene (F3) to human chromo- 
some 1 (lpter -+ lp21). 
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Tissue factor is a glycoprotein present 
in the membranes of most cells and is 
traditionally assigned to the extrinsic 
pathway of blood coagulation (1,2).  Also 

known as tissue thromboplastin or coag- 
ulation factor 111, tissue factor serves as 
a lipid-dependent cofactor for factor 
VII-mediated activation of factor X (3-6) 
and factor IX (7). That it may be the 
primary physiological initiator of blood 
coagulation ( I )  is supported by the ob- 
servation that tissue factor is the only 
known protein in the pathway leading to 
blood coagulation for which a congenital 
deficiency has not been reported (8, 9). 
Tissue factor regulation, both in terms of 
expression of activity at the cell mem- 
brane and at the genetic level, is impor- 
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1 tant not only because of the role tissue 
factor plays in normal hemostasis but 
also because of its potential role in 
pathological conditions such as dissemi- 

1 nated intravascular coagulation, athero- 
sclerosis, and metastasis of malignant 
cells (1, 2). 

In this report we describe our mapping 
of the tissue factor gene, designated F3. 
The study was made possible by the use 
of human-mouse somatic cell hybrids 
(10, I l ) ,  a sensitive chromogenic assay 
for factor X activation (12, 13), and the 
use of purified bovine factors VIIa and X 
(14-16). The material remaining insolu- 
ble after homogenization of the cells (1 7, 
18) was used as the source of tissue 
factor. In the presence of bovine factor 
VIIa and factor X, calcium, and chromo- 
genic substrate (13, 19, 20), the parent 
mouse cell lines showed no tissue factor 
activity (produced no detectable activa- 
tion of factor X) whereas the parent 
human cell lines tested were rich in tis- 
sue factor activity. No significant activa- 
tion of factor X occurred with material 
from any cell line in the absence of factor 
VIIa, confirming that the activity mea- 
sured was that of tissue factor. Hybrid 
lines uniformly expressed less tissue fac- 
tor activity than the human parent lines, 
but this had no effect on the analysis as 
indicated by the concordance of activity 
with the eventual chromosome assign- 
ment. To assure the reliability of the 
results, the samples were coded and the 
presence or absence of tissue factor was 
determined by one investigator (S .D. C.) 
who remained unaware of the identities 
or chromosome complements of the hy- 
brids. 

Each hybrid line was evaluated in at 
least four tissue factor assays, and the 
results were compared to negative con- 
trols (assays containing either material 
from the mouse parent line or dilution 
buffer). Twenty-nine hybrid lines gave 
results that were clearly either positive 
or negative when compared to the con- 
trols (21). A comparison of the result of 
the tissue factor evaluation and the com- 
plement of human chromosomes in the 
hybrids is presented in Table 1. Only 
human chromosome 1 was Dresent in all 
lines with tissue factor activity and ab- 
sent in all lines with no tissue factor 
activity (100 percent concordance). 
From these results we conclude that the 
structural gene for human tissue factor is 
located on chromosome 1. 

The chromosome complement of hy- 
brid JWR22H did not include chromo- 
some 1, but a 211 translocation chromo- 
some [t(1;2)(p21 ;q37)1 was present (22). 
This cell line expressed tissue factor 
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activity (P < 0.02, Wilcoxon rank-sum 
test), so we were able to assign the tissue 
factor gene to the p arm of human chro- 
mosome 1 (lpter + lp21). 

While the mode of inheritance (reces- 
sive or dominant, autosomal or sex- 
linked) is known for most of the blood 
coagulation factors, only a few of them 
have been mapped to a human chromo- 
some. The enzyme (factor VII) and one 
substrate (factor X) involved in tissue 
factor-initiated coagulation have only re- 
cently been mapped to chromosome 13 
from studies of patients with chromo- 
somal abnormalities (23). The assign- 
ment of factor IX (the other substrate) to 
the X chromosome was deduced from 
the sex-linked inheritance of hemophilia 
B (8, 9), ,?d factor IX has been shown to 
be closely linked with the gene for factor 
VIII (24). 

The evidence that tissue factor prepa- 
rations from various tissues have similar 
functions, molecular weights, and immu- 
nological properties (1, 2, 25-28) is not 
sufficient to conclude that only one tis- 
sue factor protein is common to all cells 
that express tissue factor activity. Be- 
cause of the limited variety of human 
parental cell types used to construct the 
somatic cell hybrids in this study (17) as 
well as potential perturbations in gene 
expression resulting from hybridization, 
we are not able to eliminate the possible 
existence of tissue factor loci on other 
chromosomes. Furthermore, multiple 
tissue factor genes may be present within 
the region lpter + lp21. Despite these 
possibilities, the similarities among tis- 
sue factor isolates and the gene mapping 
results are consistent with a single gene 
locus. The successful demonstration that 
human tissue factor can be expressed in 
human-mouse hybrid cells and the local- 
ization of the human tissue factor gene 

expressed in those hybrids should expe- 
dite efforts to isolate the gene and re- 20. 
solve these questions. 21. 
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