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Graphs provide powerful tools both mation from graphs; theory and experi- 
for analyzing scientific data and for com- mental data are then used to order the 
municating quantitative information, tasks on the basis of accuracy. The or- 
The computer graphics revolution, dering has an important application: data 
which began in the 1960's and has inten- should be encoded so that the visual 
sified during the past several years, stim- decoding involves tasks as high in the 
ulated the invention of graphical meth- ordering as possible, that is, tasks per- 

Summary. Graphical perception is the visual decoding of the quantitative and 
qualitative information encoded on graphs. Recent investigations have uncovered 
basic principles of human graphical perception that have important implications for 
the display of data. The computer graphics revolution has stimulated the invention of 
many graphical methods for analyzing and presenting scientific data, such as box 
plots, two-tiered error bars, scatterplot smoothing, dot charts, and graphing on a log 
base 2 scale. 

ods: types of graphs and types of quanti- formed with greater accuracy. This is 
tative information to be shown on graphs illustrated by several examples in which 
(1-4). One purpose of this article is t o  some much-used graphical forms are 
describe and illustrate several of these presented, set aside, and replaced by 
new methods. new methods. 

What has been missing, until recently, 
in this period of rapid graphical invention 
and deployment is the study of graphs Elementary Tasks for the Graphical 

and the human 'ystem. When a Perception of Quantitative Information 
graph is constructed, quantitative and 
categorical information is encoded, 
chiefly through position, shape, size, 
symbols, and color. When a person 
looks at a graph, the information is visu- 
ally decoded by the person's visual sys- 
tem. A graphical method is successful 
only if the decoding is effective. No 
matter how clever and how technologi- 
cally impressive the encoding, it fails if 
the decoding process fails. Informed 
decisions about how to encode data can 
be achieved only through an understand- 
ing of this visual decoding process, 
which we call graphical perception (5). 

Our second purpose is to convey some 
recent theoretical and experimental in- 
vestigations of graphical perception. We 
identify certain elementary graphical- 
perception tasks that are performed in 
the visual decoding of quantitative infor- 

The first step is to identify elementary 
graphical-perception tasks that are used 
to visually extract quantitative informa- 
tion from a graph. (By "quantitative 
information" we mean numerical values 
of a variable, such as frequency of radia- 
tion and gross national product, that are 
not highly discrete; this excludes cate- 
gorical information, such as type of met- 
al and nationality, which is also shown 
on many graphs.) Ten tasks with which 
we have worked, in our theoretical in- 
vestigations and in our experiments, are 
the following: angle, area, color hue, 
color saturation, density (amount of 
black), length (distance), position along a 
common scale, positions on identical but 
nonaligned scales, slope, and volume 
(Fig. I). 

Visual decoding as we define it for 
- elementary graphical-perception tasks is 

~- - 

The authors are statistical scientists at AT&T Bell what julesz calls preattentive vision (6): Laboratories, 600 Mountain Avenue, Murray Hill, 
New Jersey 07974. the instantaneous perception of the visu- 

al field that comes without apparent 
mental effort. We also perform cognitive 
tasks such as reading scale information, 
but much of the power of graphs-and 
what distinguishes them from tables- 
comes from the ability of our preatten- 
tive visual system to detect geometric 
patterns and assess magnitudes. We 
have examined preattentive processes 
rather than cognition. 

We have studied the elementary 
graphical-perception tasks theoretically, 
borrowing ideas from the more general 
field of visual perception (7, 8), and 
experimentally by having subjects judge 
graphical elements (1, 5). The next two 
sections illustrate the methodology with 
a few examples. 

Study of Graphical Perception: Theory 

Figure 2 provides an illustration of 
theoretical reasoning that borrows some 
ideas from the field of computational 
vision (8). Suppose that the goal is to 
judge the ratio, r, of the slope of line 
segment BC to the slope of line segment 
AB in each of the three panels. Our 
visual system tells us that r is greater 
than 1 in each panel, which is correct. 
Our visual system also tells us that r is 
closer to 1 in the two rectangular panels 
than in the square panel; that is, the 
slope of BC appears closer to the slope 
of AB in the two rectangular panels than 
in the square panel. This, however, is 
incorrect; r is the same in all three pan- 
els. 

The reason for the distortion in judging 
Fig. 2 is that our visual system is geared 
to judging angle rather than slope. In 
their work on computational theories of 
vision in artificial intelligence, Marr (8) 
and Stevens (9) have investigated how 
people judge the slant and tilt (10) of the 
surfaces of three-dimensional objects. 
They argue that we judge slant and tilt as 
angles and not, for example, as their 
tangents, which are the slopes. An angle 
contamination of slope judgments ex- 
plains the distortion in judgments of Fig. 
2. Let the angle of a line segment be the 
angle between it and a horizontal ray 
extending to the right (0 in Fig. 3). The 
angles of the line segments in the square 
panel of Fig. 2 are not as similar in 
magnitude as the angles in either of the 
rectangular panels; this makes the slopes 
in the rectangular panels seem closer in 
value. 

Again, let 0 be the angle of a line 
segment. Suppose a second line segment 
has an angle 0 + A0 where A0 is small 
but just large enough that a difference in 
the orientations of the line segments can 
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be detected. The slopes of the two line 
segments are tan(0) and tan(0 + he). 
The relative difference of the slopes is 

Since A0 is small, the relative difference 
is nearly A0 times 

The behavior off shows that for a fixed 
A0 the relative slope difference varies as 
a function of 0 because f goes to infinity 
as 0 approaches 0, 7~12, or 7~ radians. 
Thus when two line segments are suffi- 
ciently close to vertical or horizontal, an 
almost imperceptible difference in their 
orientations can be accompanied by a 
large relative difference in slope; then 
judgments of relative slope will be poor. 
In Fig. 2 the two line segments in each 
rectangular panel are close to vertical or 
horizontal. 
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The Study of Graphical Perception: 

Experimentation 

In experiments designed to investigate 
the elementary graphical-perception 
tasks (1, 5), subjects studied the magni- 
tudes of some aspect of two geometric 
objects of the same type and judged what 
percentage the smaller magnitude was of 
the larger (for example, Fig. 4). 

The error of a judgment in the experi- 
ments is the absolute difference between 
judged percent and true percent. Figure 
5 shows error measures of elementary 
tasks for three experiments. Position and 
length judgments are the most accurate; 
angle and slope judgments are nearly 
equally accurate in experiment 3 and less 
accurate than length judgments. The 
slopes that subjects judged in this experi- 
ment were of line segments whose angle 
8 with the horizontal ranged from 0.21 
radian (12") to 1.34 radians (77"). Howev- 
er, we know from the theoretical discus- 
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Fig. 1. Elementary graphical-perception tasks performed during visual decoding of quantitative 
information from graphs. To judge the values graphed in the upper left panel we can make 
judgments of positions along the common horizontal scale. To compare a value in the upper left 
panel with a value in the upper right panel we can judge position along identical but nonaligned 
scales. The lower left panel is a divided bar chart. Comparing the three totals of the three groups 
or the three values of item A can be done by judging position along a common scale, since each 
set of values has a common baseline; but comparing the three values of item B, or the values of 
item C, or the three values in any of the three groups requires judgment of length. The lower 
right panel shows the value of one variable as a function of another. To determine the local rate 
of change of y as a function of x we can judge the slopes of the line segments. 

sion given earlier that if we allowed 0 to 
approach 0, n / 2 ,  or 7~ radians, the error 
measure for slope would increase. The 
area judgments in experiment 3 are the 
least accurate of the elementary tasks. 

Ordering the Elementary 

Graphical-Perception Tasks 

Such theoretical and experimental in- 
vestigations have led us to order the 
tasks by the accuracy with which they 
are performed (Table 1). The ordering 
should be thought of as a tentative work- 
ing hypothesis, based on current infor- 
mation, that can be expected to evolve. 
With the information now available we 
have been unable to distinguish the rela- 
tive accuracy of some tasks, such as 
judging slope and judging angle. Aspects 
of the ordering are partly conjectural in 
that we have no controlled experimenta- 
tion to support them. For example, judg- 
ment of position along a common scale is 
stipulated to be more accurate than judg- 
ment of position along identical, non- 
aligned scales. In experiment 3, accura- 
cy was nearly identical for these two 

I 
A B C 

Fig. 2. Angle contamination of slope judg- 
ments. The visual system tends to judge the 
ratio of the slope of BC to the slope of AB in 
the square panel to be larger than the corre- 
sponding ratios in the two rectangular panels. 
In fact, the three ratios are equal. 

Fig. 3.  Resolution of slope judgments. As 9 
approaches 0, ni2, or  .rr radians, the resolution 
of relative slope values is lost by the visual 
system, which tends to judge the angles of line 
segments. 
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Fig. 4. Display from an experiment in graphi- 
cal perception. Subjects judged what percent- 
age angles B, C, and D are of the magnitude of 
angle A. The actual display filled an 8% by 11 
inch piece of paper. 

tasks; however, the error statistics for 
judgment of position along a common 
scale are considerably lower in experi- 
ments 1 and 2 than in experiment 3 .  One 
possible explanation for this anomaly is 
that the embedding of the judgments of 
position along a common scale in an 
experiment with a large fraction of con- 
siderably more difficult judgments 

Experiment 1 

Position (Common) 

Ang 1 e 

caused the subjects to  judge position 
along a common scale less accurately. 
More experimentation with the two 
types of position judgments is needed. 

Table 1. Ordering elementary tasks by accura- 
cy, according to theoretical arguments and 
experimental results. Graphs should exploit 
tasks as high in the ordering as possible. The 
tasks are ordered from most accurate to least. 

Rank Aspect judged 

Application of the Ordering to 

Data Display 

Options often exist for encoding data 
on graphs. The principle of graph con- 
struction resulting from the ordering in 
Table 1 is the following: options should 
be selected that result in perceptual tasks 
as  high in the ordering as  possible. This 
increases the accuracy of our perception 
of important patterns in the data. The 
ordering does not result in a precise 
prescription for displaying data but rath- 
e r  is a framework within which to work. 

The top panel of Fig. 6 shows 
smoothed yearly average atmospheric 
C 0 2  measurements from Mauna Loa,  
Hawaii (11). The C 0 2  concentrations at  
two times can be visually decoded by 
judging the relative positions of two 
filled circles along the common vertical 

Experiment 2 I 
Position (Common) , , ,+ , . , , , . , ,  , . , , , ,  . . , . . , , .  . , . ,  . . , . , . , . . ,  

Length . . . , , , , , , , , , . , . . ,  ; = ; , ,  , , , ,  , , , ,  , , , , , . . ,  . , , . , . . . . . . . .  . 

Experiment 3 

Position (Common) . . . . . . . . . . . . . . . . . . . . . . . . . . .  -+ . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Length , . , , . , , . . . . .  

Ang 1 e 

S 1 ope 

Circle Areo 

Blob Area 

Position along a common scale 
Position on identical but 

nonaligned scales 
Length 
Angle 
Slope (with 0 not too close to 

0, 7112, or 7 radians) 
Area 
Volume 
Density 
Color saturation 
Color hue 

scale. The local rate of change of the 
C 0 2  concentrations can be decoded by 
judging the slopes of the line segments 
joining successive points. The quick im- 
pression from the slopes is that the data 
form two lines with a break around 1966 
and with a greater slope for the second 
line; this would mean a constant local 

judged percentages. The inner intervals of the 
at f r o  rue Per ) two-tiered error bars are 50 percent confi- 

dence intervals and the outer intervals have 95 percent confidence. Fig. 6 (right). Slope and position judgments. Visually decoding the local 
rate of change of atmospheric CO, in the top panel requires judging slope; the immediate visual impression is that the rate is constant from 1957 
to 1965 and higher but also constant from 1967 to 1980. The bottom panel is a graph of the yearly changes of the data in the top panel. Here local 
rate of change can be visually extracted by making judgments of position along a common scale, which are more accurate than slope judgments; it 
is now clear that the CO, local rate of change from 1967 to 1980 is not constant but gradually increases by a factor of 2, except for a dip in the 
1970's. 

*+, , .  , .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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Fig. 5 (left). A measure of subject error for 
I I I I I I tasks in three experiments. A dot chart is used 

4 6 8 10 12  1 4  to graph error measures for tasks from three 
ex~eriments in which subjects graphically 



rate of increase from 1959 to 1965 and a 
higher but constant local rate of increase 
from 1967 to 1980. 

In the bottom panel of Fig. 6 the yearly 
rate of change in C02  is encoded direct- 
ly, making it possible to extract the 
quantitative information by making the 
more accurate judgments of position 
along a common scale. It is now clear 
that the visual impression of rate of 
change arrived at from the top panel is 
inaccurate. The relative accuracy of the 
graphical perception of slope suggests 
that if it is important for viewers of a 
graph to appreciate the rate of change of 
graphed values, then rate of change itself 
should be graphed directly. 

Figure 7 further illustrates the benefit 
of replacing one graphical method by 
another to move higher in the ordering of 
the graphical-perception tasks. The top 
panel is a divided bar chart, a common 
graphical display, which requires judg- 

ments of length and position. The bottom 
panel is a dot chart ( I ) ,  which eliminates 
the less accurate length judgments. 

Even if geometric aspects of a graph 
encode quantitative information, the vi- 
sual system may be unable to detect the 
information. If detection is impossible, 
the ordering of Table 1 is irrelevant. For 
example, position along a common scale 
may encode values, but if there are many 
overlapping graphical elements it will be 
difficult to detect individual data values. 

A less obvious problem of detection 
occurs in the common graph form repre- 
sented in the top panel of Fig. 8. Two 
curves describe how y depends on x for 
two different situations. On such a graph 
we usually want to study each set of y 
values separately, but we also want to 
compare the two y values for each x to 
see how much greater one is than the 
other. For superposed curves the 
amounts by which y values of one set 

exceed those of the other is encoded 
by the vertical distances between the 
curves. But it is difficult to detect verti- 
cal distances because the visual system 
tends to extract minimum distances, 
which in Fig. 8 lie along perpendiculars 
to the curves. The top panel of Fig. 8 
gives the visual impression that as x 
increases the differences between the 
curves increase to a maximum around 
x = 25 and then dzcrease. The bottom 
panel shows the d fferences between y 
values directly; the differences can be 
readily detected ar,d decoded by judg- 
ments of position a lmg a common scale. 
Now it is clear that the top panel gives an 
inaccurate impression. 

The difficulty of d2tecting vertical dis- 
tances between culves suggests that if 
each of two curves superposed on the 
same graph has widely varying slopes 
and if comparing corresponding y values 
is important, then the differences should 

A  Total 
A 5  
A 4  
A  3 
A  2 
A  1 

B Total 
B 5 
8 4  
B 3 
B 2 
8 1 

C Total 
C 5 
C4 
C 3 
C 2  
C 1 

Value 

X V a l u e  

Fig. 7 (left). Length and position judgments. The top panel is a divided 
bar chart. As in Fig. 1 ,  this graphical method requires length judg- 
ments; for example, to visually compare and order the values in group 
A is not easy. In the bottom panel the values are shown by a dot chart. 
All values on the graph can be visually compared by judgments of 
position along a common scale, an easier task. Now the ordering of 
the values in group A is easy to perceive. Fig. 8 (right). Judging 
curve differences. In the top panel it is difficult to judge how much 
greater the y values of curve 1 are than those for curve 2 because our 
visual system has difficulty detecting the vertical distances between 
the curves. In the bottom panel the differences are graphed directly; 
the values are quite different from how they appear in the top panel. 
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also be graphed. If many curves are 
shown, graphing all pairwise differences 
is impractical, and the only solution is to 
make it clear to viewers that curve differ- 
ences can be poorly perceived. 

Graphical Methods 

We turn now to several graphical 
methods that are part of a large collec- 
tion now available for analyzing and pre- 
senting scientific data. 

Dot charts. Dot charts (1) are used in 
the top two panels of Fig. 1, in Fig. 5, 
and in the bottom panel of Fig. 7. The 
dot chart is a graphical method that 
displays data in which the numerical 
values have names. The dotted lines 
visually connect a graphed value with its 
name, but the lines have been made light 
to keep them from being imposing and 
obscuring the numerical values. When 
the baseline for the graph is zero (Fig. 7), 
the dotted lines can end at the data dots; 
the data can be visually decoded by 
judging the positions of the data dots 
along the horizontal scale or by judging 
the lengths of the dotted lines. If there is 
no zero baseline (or some other meaning- 
ful value at the baseline), the dotted lines 
should go across the entire data region 
(Fig. 5); were the dotted lines to stop at 
the data dots, line length would be a 
visually significant aspect of the graph 
that would encode nothing meaningful. 
By bringing the dotted lines across the 

Fig. 10. Lowess. It is difficult to assess the 
dependence of y on x in the top panel because 
the signal is embedded in noise. In the bottom 
panel a curve has been superposed that was 
computed by a scatterplot smoothing proce- 
dure called lowess. 

Fig. 9. Tukey box 
plots. Box plots per- 
mit comparisons of 
distributions of 
groups of measure- 
ments. Each plot 
summarizes the distri- 
bution of one group; 
the horizontal line 
segment inside the 
box is the 50th per- 
centile and the top 
and bottom are the 
25th and 75th percen- 
tiles. The data have 
been graphed on a 
log2 scale rather than 
log,, to avoid frac- 
tional powers of 10. 

Hlgh School 

entire graph, the portions of the lines 
between the data dots and the left base- 
line are visually de-emphasized. (For a 
similar reason a bar chart should not be 
used when there is no meaningful base- 
line, since the bar lengths would encode 
meaningless numbers.) 

Tukey box plots. One of the most 
fundamental data analytic tasks in sci- 
ence is the comparison of the distribu- 
tions of groups of measurements of some 

variable. For example, in experiment 3 
we studied 127 subjects from three 
groups: 24 high school students, 60 col- 
lege students, and 43 technically trained 
professionals. We computed the average 
of each subject's absolute errors and 
compared the distributions of three 
groups of measurements to see if level of 
technical training affected errors. 

Figure 9 compares the average abso- 
lute errors for the three groups of sub- 
jects by Tukey box plots (3, 4). The 
horizontal line segment inside of each 
box is the 50th percentile and the top and 
bottom are the 25th and 75th percentiles. 
The ends of the dashed lines are called 
adjacent values: Let t be 1.5 times the 
75th percentile minus the 25th percen- 
tile; the upper adjacent value is the larg- 
est observation less than or equal to the 
75th percentile plus t ,  and the lower 
adjacent value is the smallest observa- 
tion greater than or equal to the 25th 
percentile minus t .  Outside values, 
which are observations beyond the adja- 
cent values, are graphed individually. If 
the data are a sample from a normal 
distribution with mean p and variance 
u2, the expected values of the adjacent 
values are about p 2 2.67u, so we ex- 
pect only a small percentage of the data 
to lie outside. Nonnormality can cause 
more outside values; for example, if 
there are outliers (very large or small 
values), or if the data are skewed to the 
right (a stretching out of the distribution 
at the high end of the scale), more out- 
side values will occur. In Fig. 9 mild 
skewness causes the outside values at 
the high end. 

That the overall performance of the 
three groups of subjects did not depend 
on level of technical training and experi- 
ence (Fig. 9) is not surprising; the preat- 
tentive visual tasks are very basic judg- 
ments that the visual system performs 
daily. The two largest subject errors are 
considerably larger than the others; an 
examination of the responses of the two 
subjects led us to believe that they did 
not understand the instructions, so we 
eliminated them from the analysis. 

Graphing means and sample standard 
deviations, the most commonly used 
graphical method for conveying the dis- 
tributions of groups of measurements, is 
frequently a poor method. We cannot 
expect to reduce distributions to two 
numbers and succeed in capturing the 
widely varied behavior that data sets in 
science can have. For example, using 
just the mean and standard deviation 
does not reveal outliers. Box plots give 
us more information about data distribu- 
tions and allow us to appreciate the 
behavior of outliers. 
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Graphing on a log base 2 scale. The 
data in Fig. 9 are shown on a logarithmic 
scale because the measurements on the 
original scale are very skewed to the 
right; graphing without taking logarithms 
produces a graph with poor resolution 
because most of the values are clustered 
near the origin. Instead of using the 
standard loglo scale we used log,. The 
data range from to If we use 
a loglo scale we must face fractional 
powers of 10 at the tick mark labels, 
which is difficult since most people do 
not intuitively comprehend fractional 
powers of 10. Dealing with powers of 2 is 
considerably easier than dealing with 
fractional powers of 10 (and has become 
even easier because of the pervasive use 
of powers of 2 in computing). Graphing 
on a log, scale can be useful whenever 
the data range through a small number of 
powers of 10. 

Two-tiered error bars. Figure 5 illus- 
trates two-tiered error bars (I), which 
convey the sample-to-sample variation 
of a statistic computed from the data (for 
example, the mean) by showing confi- 
dence intervals. The outer error bars are 
a 95 percent confidence interval and the 
inner error bars are a 50 percent interval. 
The usual scientific convention for 
graphically conveying sample-to-sample 
variation is to show the statistic and use 
error bars to convey plus and minus one 
standard error of the statistic. (If the 
statistic is the mean and the sampling is 
random, the standard error is s l f i  
where s is the sample standard devi- 
ation.) This is a poor practice, however, 
because the standard error is useful only 
insofar as it tells us about confidence 
intervals. But confidence intervals are 
not always directly based on standard 
errors. When they are, plus and minus 
one standard error is not usually the 
most cogent interval; for example, where 
the statistic has a normal distribution and 
the sample size is large, it gives a 68 
percent confidence interval. When confi- 
dence intervals are quoted numerically 
they are almost always 95 percent or 
higher to communicate a highly probable 
range. The outer bars of the two-tiered 
error bars reflect this practice. The inner 

interval of 50 percent gives a middle 
range for the sample-to-sample variation 
of the statistic that is analogous to the 
box of a box graph. 

Lowess: smoothing scatterplots. Sup- 
pose (xi, yi), for i = 1 to n ,  is a set of 
measurements of two related variables. 
A powerful tool for studying the depen- 
dence of y on x is to graph yi against xi, 
but if the signal is embedded in noise, it 
can be difficult to assess more precise 
aspects of the dependence. In the top 
panel of Fig. 10, y decreases as x in- 
creases, but it is difficult to judge wheth- 
er the decrease is linear or nonlinear. 
The bottom panel shows a smooth curve 
computed by a procedure called robust 
locally weighted regression, or lowess 
(12). This scatterplot smoothing proce- 
dure provides a graphical summary of 
the dependence of y on x; in Fig. 10, the 
dependence is nonlinear. 

Lowess produces a set of points (xi, 
Pi), whose abscissas are the same as 
those of the data; pi, the fittecl value at xi, 
is an estimate of the center of the distri- 
bution of the y values for x values in a 
neighborhood of xi. The set of points (xi, 
pi) form a nonparametric regression of y 
on x (13); in Fig. 10 these values are 
graphed by moving from left to right and 
connecting successive lowess points by 
lines. As the size of the neighborhoods 
increases, the nonparametric regression 
becomes smoother. In the lowess algo- 
rithm, ji is the value of a line fitted to the 
data by weighted least squares, where 
the weight for (xk, yk) is large if xk is 
close to xi and decreases as the distance 
of xk from xi increases. A robustness 
feature prevents outliers, such as the 
point graphed by a closed circle in the 
upper right corner in Fig. 10, from dis- 
torting the smoothing. The lowess algo- 
rithm actually amounts to a special low- 
pass digital filter that can be used even 
when xi is not a time variable or when it 
is not equally spaced. One important 
property of lowess is that its flexibility 
permits it to follow many patterns, in- 
cluding those with discontinuous deriva- 
tives. The lowess algorithm is comput- 
ing-intensive, but programs using many 
speedup procedures are available (14). 

Conclusion 

Experiments in graphical perception, 
theoretical reasoning, and the results of 
more general investigations in visual per- 
ception and computational vision have 
contributed to the ordering of the graphi- 
cal-perception tasks in Table 1. This 
framework-identifying elementary tasks 
and ordering them-represents a first 
step in understanding graphical percep- 
tion. The ordering provides a guide for 
data display that results in more effective 
graphical perception. Other factors, such 
as detection, must also be taken into 
account in graphing data. The repertoire 
of graphical methods for analyzing and 
presenting scientific data is growing rap- 
idly. Dot charts, Tukey box plots, graph- 
ing on a log base 2 scale, two-tiered error 
bars, and lowess are some of the many 
graphical methods that are now avail- 
able. 
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