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Table 1. Electrophysiological properties of regenerated synapses. Chemical components were calculated by subtracting the pure electrical 
component, recorded during high-frequency stimulation when the chemical component is depressed, from the composite EPSP evoked at 0.2 Hz. 

- 

Group 
Number Conduction Amplitude Amplitude 

of Number of pairs velocity of electrical of chemical 
connected (mlsec) component component animals 

(mV) (mV) 

Control GI-GI pairs 13 12 of 23 (52 percent) 1.68 t 0.21 1.46 2 0.21 0.66 2 0.11 

GI-GI pairs separated by transection 16 4 of 30 (13 percent) 0.74 t 0.16t 0.85 r 0.12$ 2.42 r 0.581 
[5 of 31 (16 percent)]* 

GI-GI pairs caudal to transection 9 5 of 15 (30 percent) 1.16 t 0.23 1.86 r 0.31 3.00 r 1.7711 

* In one experimental pair, a fixed-latency EPSP was observed but the procedure in high Ca2+ Ringer's solution could not be completed. 1. Significantly different 
from corresponding control value at P <0.05 (two-tailed Student's t-test with Bonferroni correction). 3: P <0.01, SP <0.005. ti Welch procedure used fort- 
test. 

early (electrical) component remained 
constant through all maneuvers, while 
the amplitude of the late (chemical) com- 
ponent fluctuated during repetitive stim- 
ulation and, in some cases, was in- 
creased in high Ca2+ Ringer's (Fig. 2B4). 
Five of 15 pairs of GI's in which both 
cells were located caudal to the site of 
transection (and therefore had both been 
axotomized) were also connected by 
fixed-latency, composite EPSP's. 

The characteristics of the observed 
EPSP's from the three types of GI pairs 
(control, across a scar, and below a scar) 
are compared in Table I .  The calculated 

conduction velocity between pairs of 
cells located caudal to a scar was not 
significantly different from that in con- 
trol animals, and these values agreed 
with previous measurements (7). There- 
fore the conduction velocity of the proxi- 
mal portion of a transected axon is not 
greatly different from that in a control 
axon. However, between cells on oppo- 
site sides of a scar, conduction velocities 
were two to three times lower 
(0.74 r 0.16 versus 1.68 -+ 0.21 d s e c ;  
P < 0.01). From these data we estimate 
the average conduction velocity of the 
regenerated segments beyond the tran- 

section site to be approximately 0.33 mi 
sec. This is consistent with morphologi- 
cal findings that neurites taper as they 
grow into and beyond the scar (4) and 
also with electrophysiological measure- 
ments from antidromic activation of GI's 
(7). The amplitude of the chemical EPSP 
was greater in GI's of spinally transected 
animals, both for cell pairs across and 
below a healed scar. In all control GI 
pairs the electrical component was larger 
than the chemical component. After re- 
covery from spinal transection the situa- 
tion was reversed, so that the EPSP's 
now resembled those of normal adult sea 
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Fig. 1 (left). Synaptic transmission between GI's in untransected larval sea lampreys. (A) 
Stimulation of the caudal cell elicits an EPSP in the rostral GI. In (B) through (F) the upper trace 
shows the action potential elicited by stimulation of the caudal cell and the lower trace shows 
the synaptic response of the rostral cell. (B) In regular Ringer's solution with stimulation at 0.3 
Hz, the EPSP consists of an early electrical component (heavy arrow) and a barely noticeable 
chemical component (light arrow). The electrical component persists unchanged at 3.3 Hz (C) 

R e g u l a r  R t n g e r ' s  2 0  m~ ca2+ and at 33.3 Hz (D) in superimposed traces of about ten sweeps. (E) The electrical component is 
unchanged in 20 mM Ca2+, while the chemical component is now a distinct hump on the falling 

phase. (F) The EPSP persists in 20 mM Ca2+ at 3.3 Hz, indicating that it is monosynap- 
tic. Fig. 2 (right). Synaptic transmission between GI's separated by a healed transection scar. (Al) 

30 mv Surface stimulation of the cord 30.0 mm below the scar elicits synaptic activity in a GI 8.0 mm above the scar. 
mSec  (A2) EPSP's with variable latency in response to cord stimulation (arrow) at 0.3 Hz as in (Al). (A3) 

Elimination of variable-latency EPSP's by addition of 20 rnM Ca2+; thus these are polysynaptic potentials. 
5 msec (A4) With higher stimulus strength a fixed-latency EPSP is recruited that persists in 20 mM Ca2+ at 3.3 Hz 

20 m~ ca2+ (approximately five superimposed traces). Thus, in this preparation, EPSP's that follow at 3.3 Hz with fixed 
latency are probably monosynaptic. (B1) Stimulation of a GI 5.5 mm below the scar elicits monosynaptic, 

composite EPSP's in another GI 1.0 mm above the scar. (B2) The electrical component (heavy arrow) has a constant amplitude and latency, while 
the chemical component (light arrow) has a variable amplitude. (B3) Constancy of the electrical component at 3.3 Hz while the chemical 
component decays in amplitude with repetitive stimulation. (B4) Persistence of the EPSP in 20 mM Ca2+ even at 3.3 Hz. Therefore the 
connection is monosynaptic. Note the increase in the amplitude of the chemical component in high Ca2* Ringer's solution compared with regular 
Ringer's. The action potential in the presynaptic GI deteriorated during the experiment. 
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lampreys, in which the chemical compo- 
nent is also usually larger than the elec- 
trical component. 

The reason for the increase in chemi- 
cal EPSP amplitude in the regenerated 
synapses is not yet known. One possibil- 
ity is that GI's which had been discon- 
nected from some of their synaptic input 
developed denervation supersensitivity. 
Consistent with this is the finding that, 
when both GI's were below the transec- 
tion, the chemical EPSP was also in- 
creased (although because of the small 
sample size this was not statistically ver- 
ifiable), while the electrical component 
was not. Two other possibilities, that 
regenerating connections are formed 
closer to the cell body or include more 
points of synaptic contact, are both less 
likely because the electrical components 
in the regenerated synapses were re- 
duced. 

The unequivocal demonstration of 
functional synapse formation by regener- 
ating neurites ideally should involve si- 
multaneous impalement of both the pre- 
and postsynaptic cells because (i) it is 
possible that synaptic activity evoked by 
extracellular stimulation might result 
from antidromic activation of axon col- 
laterals of cells on the same side of the 
lesion as the target neuron and (ii) regen- 
erated axons might release substances 
diffusely into the extracellular environ- 
ment and activate neurons nonsynapti- 
cally. Such direct evidence has been 
obtained in invertebrate ganglia (lo), but 
in the vertebrate CNS synaptic regenera- 
tion has been suggested by less direct 
methods. Morphological evidence has 
been found for the formation of synapses 
by regenerating fibers in the spinal cords 
of lampreys (l l) ,  bony fish (12), and 
amphibians (13). A combination of ana- 
tomical, behavioral, and evoked-poten- 
tial studies has suggested regeneration of 
retinotectal synaptic connections in fish 
and amphibians (14). Stimulation of re- 
generated Mauthner axons has evoked 
compound action potentials in ventral 
roots of Xenopus tadpoles (15). Finally, 
excitation of muscle nerves in the fore- 
arms of frogs that had recovered from 
lesions of the second dorsal root elicited 
short-latency EPSP's in ipsilateral motor 
neurons (16). The present study shows 
that regenerated [as opposed to collater- 
ally sprouted (17)] axons of vertebrate 
CNS neurons form functional synaptic 
connections. This suggests that similar 
connections may well be formed by re- 
generating axons from mammalian grafts 
and bridges (2, 3), where the distance of 
axon growth is similar to that in the 
lamprey spinal cord. 

We previously showed that the regen- 
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erating neurites of GI's and other neu- 
rons of the lamprey CNS grow selective- 
ly in the direction of their original paths 
(4, 5, 18). Whether these axons show 
similar specificity in their choice of post- 
synaptic targets remains to be deter- 
mined. 
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Huntington's Disease: Two Families with Differing 
Clinical Features Show Linkage to the GS Probe 

Abstract. To test the hypothesis that interfamily variability in Huntington's 
Disease (HD) is due to mutation at different loci, linkage analysis was undertaken in 
two large HD kindreds that differed in ethnicity, age-at-onset, and neurologic and 
psychiatric features. Both families showed linkage of the HD locus to the G8 probe. 
Several recombinants were documented in each family, and the best estimate of the 
recombination fraction for the two families was 6 percent with a 95 percent 
confidence interval of 0 to 12 percent. Although the data support the existence of a 
single HD locus, use of the G8 probe for presymptomatic testing in these kindreds 
u~ould have resulted in a 12 percent error rate in genotype assignment at the HD 
locus. 
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Huntington's disease (HD) (I) is an 
inherited neuropsychiatric disorder, 
characterized by gradually worsening 
chorea, impairment of voluntary move- 
ments, dementia, and a variety of emo- 
tional symptoms, particularly severe de- 
pression (2, 3). The symptoms progress 
without remission until patients are 
physically incapacitated and severely 
impaired in cognition. Death occurs 15 
years after onset (on the average) usually 
from subdural hematoma due to head 
trauma or from suffocation due to aspira- 
tion of food. The disease is inherited as 
an autosomal dominant trait, with onset 
of symptoms usually delayed until mid- 
dle adult life. The paternal transmission 
effect is well documented in HD, but its 
cause is not understood. Affected chil- 
dren of affected fathers tend to have a 
significantly earlier onset than the affect- 
ed children of an affected mother (4). 

*TO whom corres ondence should be addressed at The disease is severe and the offspring the Department oF~sychiatry, Johns Hopkins Hos- 
pital. are at high risk (50 percent) for eventual- 
 present address: Department of Pediatrics, Van- ly having symptoms. H ~ ~ ~ ~ ~ ~ ,  because derbilt University School of Medicine, Nashville, 
Tennessee 37232. of the delayed onset, even offspring of 
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