prevent coagulation and freezing of blood samples at the -1.9° C seawater temperature. To calculate P_aN_2 we corrected the inert gas content for dilution. The latter was determined by marking the flush solution with tritiated water (seals I and 2) or calculating the hemoglobin ratio of the diluted sample to undiluted blood obtained simultaneously from the sampling line (seals 3 and 4).

- 12. G. L. Kooyman et al., Respir. Physiol. 12, 271 (1971).
 W. M. Zapol et al., J. Appl. Physiol. 47, 968
- (1979).
- (1979).14. The solubility coefficient for homogenized seal blubber and muscle was determined by Van

Slyke analysis after tonometry 37°C at $\alpha_{blubber} = 0.065$ and $\alpha_{muscle} = 0.018$. Supported by the NSF Division of Polar Pro-

15. grams grant 8100212, SFB Kardiologie 30 of the Deutsche Forschungsgemeinschaft, and Landesamt fur Forschung, Nordrhein-Westfalen, Duesseldorf. Studies were performed in accord-ance with NMFS permit No. 394. We thank the National Science Foundation, Antarctic Services, Inc., and the U.S. Navy for field assistance. We also thank F. Klocke and H. Rahn for their invaluable advice on measuring nitrogen tensions

13 February 1985; accepted 28 May 1985

Effects of Genomic Position on the Expression of Transduced Copies of the white Gene of Drosophila

Abstract. The white gene of Drosophila is expressed normally when introduced at many different sites in the genome by P-element-mediated DNA transformation, but is expressed abnormally when inserted at two particular genomic positions. It is now demonstrated that the mutant expression in these two cases is caused by the surrounding chromosomal region into which the white gene has been inserted. The white gene could be moved from these two positions, where it confers a mutant phenotype, to other positions in the genome where it confers a wild-type phenotype. However, flies in which white has been moved to one new location have an unusual mosaic phenotype.

ROBERT LEVIS TULLE HAZELRIGG GERALD M. RUBIN Department of Biochemistry, University of California, Berkeley 94720

The relation between the chromosomal location of a gene and its expression has been studied in Drosophila by means of chromosomal rearrangements such as inversions and translocations. Rearrangements can result in the inactivation of genes located at some distance from the rearrangement breakpoints. This inactivation commonly occurs in only a portion of the cells in which the gene is normally expressed, causing the fly to have a mosaic phenotype. Such variegating position effects are usually associated with rearrangements that bring euchromatic genes into the proximity of centromeric heterochromatin (1).

The development of the technique of P-element-mediated DNA transformation in Drosophila has expanded our ability to study genomic position effects. A gene, carried within a P transposable element, can be introduced at many genomic positions, and its expression at these different positions can be compared (2). Several genes that have been transformed into the germline by this method show proper developmentally regulated expression at a variety of euchromatic positions (2, 3).

The white gene confers an essentially wild-type (red-eyed) phenotype (4) when transduced to any of at least 20 different

chromosomal locations by P-element vectors (5, 6). In contrast, three cases have been reported in which a transduced white gene confers a mutant mosaic eye color (5, 6). Flies carrying one copy of the transduced white gene $A^{R}4-3$ are more darkly pigmented in the anterior portion of their eyes than in the posterior portion. This transduced gene is located near the centromeric heterochromatin of chromosome arm 2L. Another transformant, A4-4, has a transduced white gene at the end of the right arm of chromosome 3 and has a yellow eye color with scattered flecks of red (5). Gehring et al. (6) have reported a third mosaic transformant, $P(w^{var})$, that has red-orange variegated eyes, and a transduced white gene at the left end of chromosome 2.

We have suggested that the mutant phenotypes of A^R4-3 and A4-4 are the result of genomic position effects because we could not detect alterations of their transduced white DNA that might account for the mutant phenotypes (7). Furthermore, the *white* gene in the $A^{R}4$ -3 transformant is located adjacent to centromeric heterochromatin, which is capable of eliciting variegating position effects (1). However, their mutant phenotypes might be due to mutations within the transduced genes that were not detectable by the DNA blotting methods used. To test this possibility we have moved the transduced white gene in $A^{R}4-3$ and A4-4 to new positions. Relocating the gene should result in a wildtype eye color at most new positions if its mutant phenotype is due to a position effect, but not if it is due to a mutation intrinsic to the gene.

To relocate the transduced white gene in A^R4-3 and A4-4, we mobilized the Pwhite transposon in these two strains (Fig. 1). The P-white transposon cannot catalyze its own transposition, but can be induced to transpose by injecting a nondefective P element. Embryos of each strain were injected with plasmid DNA containing the "wings-clipped" P element, which is a P element with a deletion in a portion of one of the terminal inverted repeats (8). The "wingsclipped" P element can induce the transposition of P-element transposons, but does not itself integrate into the chromosomes (8). Therefore, the P-white transposon should transpose in the germ cells of some of the injected embryos but should be stable in subsequent generations.

Progeny of the injected embryos having eye colors different from A^R4-3 and A4-4 were chosen for further analysis and are referred to as revertants. Seventeen independent revertants were recovered from the progeny of injected A^R4-3 embryos and five independent revertants were recovered from the progeny of the injected A4-4 embryos (9). Hybridization of white gene DNA to polytene chromosomes (10) resulted in the identification of 13 new chromosomal locations of the P-white transposon among the revertants of A^R4-3 and two new locations among the revertants of A4-4 (11). The sites to which the P-white transposon moved were distributed over the euchromatic portions of all of the major chromosome arms (Fig. 2). Restriction digest analyses (12) of the DNA of these revertants are consistent with there being a single intact white gene at each of these new sites. An example of a DNA blot hybridization which was part of this analysis is shown in Fig. 3. Flies in which the white gene from $A^{R}4-3$ has been inserted at the 24CD site (13) have a new mosaic pattern of pigmentation (described below). Flies having a mobilized white gene at any one of the other new sites had a wild-type eve color, as judged by visual inspection (14). We conclude that the mutant phenotypes of the parental transformants $A^{R}4-3$ and A4-4 are the result of genomic position effects, as the same copy of the white gene that confers a mutant phenotype in each of these parental transformants could confer a wild-type phenotype at other sites.

In addition to the revertants described above, the transduced white gene remained within the same chromosomal region as in the original mutant transformant in six of the revertants of A^R4-3 and three of the revertants of A4-4, as determined by in situ hybridization of polytene chromosomes. None of the three A4-4 revertants in which the white gene remained in the original region had a completely wild-type eye color. Two of these had orange eyes with scattered darker spots, while the third had red eyes dotted with darker spots. Among the derivatives of the other original mutant, A^R4-3, four of the six revertants in which the transduced white gene remained at the base of chromosome arm 2L had a completely wild-type phenotype. The other two such derivatives had only a very small region of unpigmented tissue along the posterior border. Even though there was no apparent change in the chromosomal position of the P-white transposon in these A^R4-3 and A4-4 derivatives, DNA blot-hybridization analysis (12) indicates that in every case there were structural changes in the transposon or flanking DNA. Part of the analysis of the derivatives of A^R4-3 is shown in Fig. 3. We cannot deduce the nature of the changes that took place from these blots. The changes may include transpositions to nearby sites, changes within the transposon, or deletions or other rearrangements of the DNA adjacent to the transposon which are too small to be detected cytologically. Further analysis of these events may aid in defining the sequence elements within the flanking DNA that modify the expression of white in the original mutant transformants.

The mobilization of the P-white transposon of A^R4-3 also produced a derivative with a heritable, novel mosaic pattern of eye pigmentation (15). The transduced white gene of this derivative is located in the 24CD cytogenetic region (13) and we will refer to it as $A^{R}4-24$. The ventral halves of the eves in the $A^{R}4-24$ flies are more darkly pigmented than the dorsal halves (Fig. 4C). This pattern is like that observed in A^R4-3 flies in that one part of the eye is reproducibly more darkly pigmented than the other. However, the eye pigmentation patterns of A^R4-24 and A^R4-3 are oriented perpendicular to each other.

 $A^{R}4-3$ and $A^{R}4-24$ are fundamentally different from other *white* position effect mutants in which the locations of patches of pigmented and unpigmented tissue vary, more or less at random, in the eyes of flies carrying the same mutant allele. The reproducible patterns of pigmentation in $A^{R}4-3$ and $A^{R}4-24$ indicate that the phenotypic expression of *white*, at least in these mutants, must be sensitive to positional information in the developing eye (16).

9 AUGUST 1985

 $A^{R}4-3$ and $A^{R}4-24$ differ in the effect of gene dosage on the pigmentation pattern. Flies with two copies of $A^{R}4-3$ (Fig. 4B) have a larger portion of their eyes darkly pigmented than flies with one copy (Fig. 4A), and this portion has a more wildtype color. In flies with two doses of $A^{R}4-24$ (Fig. 4D), the area of darkly pigmented eye tissue remains nearly the same or may even be slightly less than in flies with one dose (Fig. 4C). The lightly pigmented dorsal half of the eye of flies with two doses of $A^{R}4-24$ is even more lightly pigmented than that of flies with one dose.

A^R4-3 and A^R4-24 are similar in the effect of the z^1 allele of the *zeste* (*z*) gene on the eye pigmentation pattern. The z^1 allele is recessive to z^+ in most cases in its interaction with normal or transduced white genes (5, 6, 17). In addition, two doses of a normal or transduced white gene are usually required in combination with z^1 to reduce the level of eye pigmentation (5, 6, 18). A^R4-3 and A^R4-24 are unusual in that the position of the pigment border shifts in heterozygous $z^1w^-/$

 z^+w^- females carrying one copy of the transduced white gene (19). In such A^R4-24 females, the pigment boundary is displaced toward the anterior-ventral corner (Fig. 4E), whereas in A^R4-3 it has moved in the direction of the anterior edge (5). In males that are hemizygous for z^1w^- and carry one copy of A^R4-24, only a small region of the eye in the anterior-ventral corner is pigmented (Fig. 4F) (20). Thus, the transduced white genes in A^R4-24 and A^R4-3 are hypersensitive to the z^1 allele, which has the effect of decreasing the area of pigmentation.

We believe that the mosaic mutant phenotype of $A^{R}4-24$ is probably the result of a genomic position effect. In initial experiments designed to induce further transpositions of $A^{R}4-24$, we have recovered flies with a wild-type eye color. The chromosomal region in which the *white* gene is inserted in $A^{R}4-24$ would not be expected to inactivate an inserted euchromatic gene (21). A transduced gene may be more sensitive to position effects than a gene in a chromo-

("wings-clipped") (8) was injected into embryos (23) homozygous or hemizygous for w^{1118} and homozygous for the transposon 3R $P[(w,ry)A^{R}]$ 4-3 or P[(w,ry)A] 4-4. (The notation P[(w,ry)A] indicates one of a series of P-element transposon constructs carrying the white and rosy genes; the 4-3 and 4-4 suffixes refer to fly strains with this transposon inserted at particular sites.) The injected plasmid DNA causes the destabilization of the transposon in some of the cells of the germline of the injected embryo. The G0 flies that grew from the injected embryos all had the mutant eve color of their parents. These G0 flies were then mated to w^{1118} flies [this allele contains a partial deletion of the white gene and these flies have bleached white eyes (5)]. The plus in the diagram denotes a normal autosome without a transposon. The resulting G1 progeny carried a single copy of the original P[w] transposon and therefore had the parental mutant eye color, unless a transposition or other genomic rearrangement induced by the P element had taken place in the germline of the G0. For each revertant the chromosome (or chromosomes) bearing the white gene that confers the revertant eye color was identified by sex linkage for insertions on the X chromosome, or by its segregation from dominantly marked autosomes. When the transposon had moved to a new chromosome, it was genetically isolated from the chromosome bearing the original A^R4-3 or A4-4 gene. Fig. 2 (right). New sites of P-white insertions in derivatives of A^R4-3 and A4-4. The euchromatic portions of the five major chromosome arms are represented by horizontal lines, oriented with their centromeres (large closed circles) to the right. The original locations of the A^R4-3 and A4-4 transposons are indicated by the open and closed heavy arrows, respectively. New sites of P-white transposons are marked along the lines with open circles for derivatives of A^R4-3 and with closed circles for derivatives of A4-4. Above each circle is noted the cytogenetic region, according to the system of Bridges (24). Two independent insertions occurred in the 92B region in revertants of A^R4-3, but these were found by DNA blot analysis (12) to have occurred at different sites or be in opposite orientations (lanes 3 and 4 of the left panel of Fig. 3).

Fig. 3. DNA blot hybridization analysis of derivatives of A^R4-3 (5). DNA extracted from adult flies was digested with Bam HI, separated by electrophoresis on a 0.6 percent agarose gel, blotted onto nitrocellulose, and hybridized with a nick-translated plasmid DNA probe containing the Bam HI (+4.7)-Eco RI(+6.6) segment of white. This probe hybridized to the Bam HI fragment spanning the junction between one end of the transposon and the flanking DNA. All of the flies had the w^{1118} allele in

place of the normal white gene; w¹¹¹⁸ contains a deletion of part of the white gene including all of the DNA complementary to the probe used in this hybridization. Therefore, the only hybridization is to the transduced white gene. Lane 1 of both panels contains DNA from the parent line, A^R4-3. Lanes 2 to 6 of the left panel contain the DNA's of revertants of A^R4-3 in which P-white is known to have transposed to new sites on the basis of in situ hybridizations to polytene chromosomes. Lanes 2 to 7 of the right panel contain the DNA's of revertants of A^R4-3 in which, by in situ hybridization, the transposon appears to remain at its original position. The more intense hybridization in lanes 2 to 4 reflect a greater amount of DNA inadvertently loaded in these lanes. The distance of migration of markers of a Hind III digest of phage λ DNA are indicated at the far right.

somal rearrangement, because of the small size of the transduced segment (22).

In conclusion, this study establishes the utility of P-element-mediated DNA transformation for the creation and analysis of position effect mutants. We have shown that the mutant expression of a transduced white gene at each of two chromosomal locations is due to a posi-

tion effect; the wild-type expression of the transduced white gene was restored after it was induced to transpose to new locations. We have also recovered phenotypic revertants in which nearby transpositions or local rearrangements of flanking sequences have occurred. Injection of the "wings-clipped" P element is an efficient method for inducing such transpositions and rearrangements;

Fig. 4. Mosaic pigment pat-terns. An eye of a fly of the following genotypes is shown: (A) w^{1118}/w^{1118} ; P[(w,ry)A^R]4-3/+; (B) w^{1118}/w^{1118} ; P[(w,ry)- $A^{R}_{14-3}(w,ry)A^{R}_{14-3};$ (C) $w^{1118}_{1/2}(w,ry)A^{R}_{14-3};$ (C) $w^{1118}_{1/2}W^{1118};$ P[(w/ry)A^{R}_{14-24/+}; (D) $w^{1118}_{1/2}w^{1118};$ P[(w,ry)A^{R}_{14-24/+}; (E) $z^{1}w^{1118}_{1/2}v^{1/118};$ P[(w,ry)A^{R}_{14-24/+}; (E) 24/+; (F) $z^1 w^{1118} cv/Y$; P[(w,ry)-A^R]4-24/+. Each fly was grown at 25°C and was 5 days old before the photograph was taken. Dorsal is toward the top in all photographs and anterior to the left in all except panel B where anterior is to the right.

these alterations were recovered approximately ten times more frequently than the original insertions of the plasmid containing the P-white transposon when it was coinjected with a P-element helper (5). Furthermore, when the P-white transposon was induced to transpose, it moved to a wide variety of new sites scattered throughout the euchromatin, indicating that P elements are not restricted during transposition to nearby chromosomal sites. The presence of white at one of these new sites, at 24CD, results in a novel mosaic eye pigment pattern, suggesting that expression of the white gene at this site is sensitive to cell position in the eye.

References and Notes

- E. B. Lewis, in Advances in Genetics, M. Demerec, Ed. (Academic Press, New York, 1950), vol. 3, p. 73; W. K. Baker, in Advances in Genetics, E. W. Caspari, Ed. (Academic Press, New York, 1968), vol. 14, p. 133; J. B. Spofford, in The Genetics and Biology of Drosophila, M. Ashburner and E. Novitski, Eds. (Academic Press, London, 1976), vol. 1c, p. 955.
 A. C. Spradling and G. M. Rubin, Cell 34, 47 (1983).
- (1983).
- S. B. Scholnick, B. A. Morgan, J. Hirsh, *ibid.*, p. 37; D. A. Goldberg, J. W. Posakony, T. Maniatis, *ibid.*, p. 59.
 The white gene product is required for the deposition of pigments in the eye, as well as in a number of other tissues; in null mutants the eyes and these other tissues are white Eye a review. number of otner tissues; in null mutants the eyes and these other tissues are white. For a review of white, see B. H. Judd, in *The Genetics and Biology of* Drosophila, M. Ashburner and E. Novitski, Eds. (Academic Press, London, 1976), vol. 1b, p. 767. T. Hazelrigg, R. Levis, G. M. Rubin, *Cell* 36, 469 (1984).
- 5.
- H. Hazeringg, R. Levis, G. M. Rubin, Cell 36, 469 (1984).
 W. J. Gehring et al., EMBO J. 3, 2077 (1984).
 The A^R4-3 transposon contains a rearrangement 3' to the transcribed region of the white gene.
 For details of the sequences rearranged and experimental evidence that this rearrangement is not directly responsible for the mutar theory. 6. 7.
- type, see (5). 8. R. E. Karess and G. M. Rubin, *Cell* 38, 135 (1984).
- 9. The five A4-4 revertants and 17 A^R4-3 reverthat is arose in the G1 progeny of 32 and 41 fertile injected flies, respectively. White-eyed G1 prog-eny were also observed. We assume that these descended from the germ cells of G0 flies in descended from the germ cells of G0 files in which the P-white transposon was partially or completely excised. Both types of events are induced by P elements [(8); K. O'Hare and G. M. Rubin, Cell 34, 25 (1983); R. A. Voelker et al., Genetics 107, 279 (1984); S. B. Daniels et al., ibid. 109, 95 (1985)].
- al., ibid. 109, 95 (1985)].
 Males of each revertant stock were mated to w¹¹⁸ females; polytene chromosome squashes were prepared from the F1 larvae by a method devised by J. Lim of the University of Wisconsin at Eau Claire (unpublished). These were hybridized with a ³H-labeled complementary RNA white probe (5). The sites of hybridization were scored by referring to the photographs of G. Lefevre, in *The Genetics and Biology of* Drosophila, M. Ashburner and E. Novitski, Eds. (Academic Press. New York 1976) vol Eds. (Academic Press, New York, 1976), vol.
- 1a, p. 31.
 11. The 13 new sites were found in 11 revertants of A^R4-3; two of the revertants carried the transduced white at two new sites, 45D+94E and 12BC+92B.
- The preparation of genomic DNA and the hy-bridization of DNA filter blots were performed 12. bridization of DNA filter blots were performed as described (5). Three DNA blots were done for each revertant. The first blot (5) showed the number of sites at which the *white* DNA was inserted. The other two blots were tests for whether or not the transduced *white* DNA re-mained intact. For revertants of A4-4, genomic DNA digested with a combination of Xba I and Eco RI was probed on one blot with both the Bam HI(+1.4)-Hind III (+3.3) and Hind III (+3.3)-Bam HI(+4.7) *white* DNA fragments (where the numbers in parentheses refer to map (where the numbers in parentheses refer to map positions in kilobases relative to the point of

insertion of the copia element in the whiteinsertion of the copia element in the white-apricot allele; for a map of white, see R. Levis, P. M. Bingham, G. M. Rubin, Proc. Natl. Acad. Sci. U.S.A. 79, 564 (1982); for a map of the transposons, see (5). This probe hybridizes to a Sci. D.3.A. 19, 504 (1952), for a hiap of the transposons, see (5). This probe hybridizes to a 5.9-kilobase (kb) fragment in this digest representing the 5' half of the white DNA of the transposon. The w¹¹¹⁸ allele does not hybridize with his probe. An identical DNA blot was hybridized with a probe containing both the Sal I(-2,7)-Sal I(-1,3) and Sal I(-1,3)-Sal I(-0,5) segments. This probe hybridizes to a 5.8-kb fragment in this digest representing the 3' half of white in the transposon plus a 6.2-kb fragment from w¹¹¹⁸. For revertants of A^R4-3, genomic DNA digested with Xba I and Eco RI was hybridized with a probe containing the Xba I (+0,7)-Eco RI (+6.6) white segment. This segment hybridizes to the 5.9-kb fragment representing the 5' half of the white DNA in the transposon. A Hind III digest of A^R4-3 revertants was hybridized with the Bam HI(+1.4)-Hansposon. A find in digest of A +5 rever-tants was hybridized with the Bam HI(+1.4)– Hind III(+3.3) white segment that hybridizes to the 6.2-kb band. This band represents the 3' half of white in the A^R+3 transposon and does not hybridize to w^{1118} DNA.

- The designation 24CD refers to a polytene chro-mosome region in the maps of C. B. Bridges
- Both cytogenetic and blot analysis indicate that the three wild-type revertants of A new sites of white on the second chromosome also retain the transposon at the original site (near the centromeric heterochromatin of chro-mosome arm 2L). This does not prove that transposition of P-transposons is replicative, however, since it might have been the copy of $A^{R}4-3$ on the other homolog or the sister chromatid of the injected embryo which transposed. For these three revertants, we have not con-structed strains that carry white at these new sites alone. Therefore, we can only infer that the wild-type phenotype of each of these revertants was caused by the *white* gene at the new site. The chromosome containing this derivative also carried the parental A^R4-3 transposon. The pres-
- ence of this chromosome resulted in a nearly wild-type eye color. The original and new sites were subsequently separated by recombination to reveal the novel mosaic phenotype conferred

by the gene at the new site. Certain features of eye development demon-strate the existence of positional information in the eye. An equator of symmetry in photorecepthe eye. An equator of symmetry in photorecep-tor arrangement bisects the eye into dorsal and ventral halves. A preferential boundary for cell clones is located parallel to the equator but does not always coincide with it [H. J. Becker, Z. Indukt. Vererb. Lehre **88**, 333 (1957); W. K. Baker, Dev. Biol. **62**, 447 (1978); D. F. Ready, T. E. Hanson, S. Benzer, *ibid.* **53**, 217 (1976); J. A. Campos-Ortega and M. Waitz, Wilhelm Roux Arch. Etwischlungsmech. Oce. **184**, 155 (1979) Arch. Entwicklungsmech. Org. **184**, 155 (1978)]. We do not know the precise position of the differential pigment border in the eyes of A^R4-24 flies (Fig. 4C) relative to these other two boundaries or whether there is a relation between them. It is also possible that there is a relation between the pigment pattern in the eyes of A^{R_4} -3 flies (Fig. 4A) and the morphogenetic furrow, which moves from the posterior to the anterior across the eye-antennal imaginal disk of the third-instar larva

M. Gans, Bull. Biol. Fr. Belg. Suppl. 38, 1 (1953) J. W.

[1] W. Jack and B. H. Judd, Proc. Natl. Acad.
 Sci. U.S.A. 76, 1368 (1979); W. M. Gelbart and
 C.-T. Wu, Genetics 102, 179 (1982).

The 11 wild-type revertants with new insertions The 11 wild-type revertants with new insertions of white on autosomes have been tested for the interaction of a single copy of the P-white trans-poson with z^1 . Males of the genotype $z^1w^{1118}cv$; P[w]/+ and females of the genotype $z^1w^{1118}cv$; z^+w^{118} ; P[w]/+ were constructed (cv is the genetic abbreviation for the crossveinless gene). All have a wild-type phenotype (do not interact with z^1 when present in a single copy) with the excernion of the two transposons located in 928 exception of the two transposons located in 92B, which had a red-brown eye color in the females. This eye color is indicative of a weak interaction.

Flies that are hemizygous or homozygous for z^1w^- and carry either one or two copies of the A^R 4-24 transduced *white* gene have similar phenotypes

Intercalary heterochromatin may exist within otherwise euchromatic regions. However, 24CD has not been noted as a site of intercalary heterochromatin [E. V. Ananiev *et al.*, *Chromo-soma* (Berl.) **70**, 1 (1978)]. Furthermore, there is no evidence for the induction by intercalary heterochromatin of mosaic position effects on rearranged euchromatic genes (1). We cannot

now rule out the possibility that the P-white transposon in $A^{R}4-3$ may have carried flanking sequences with it in its transposition to 24CD. We have shown a difference in the distance between the transposon and the next adjacent Bam HI site in flanking DNA on one side of the sites of insertion in $A^{R}4-3$ and $A^{R}4-24$ (12). However, we have not proved that the DNA flanking the insertion in A^{R} -24 originates from the 24CD region.

Transduced while genes may also be more sensi-tive to position effects in their interaction with z^1 22

than are rearranged white genes that are part of

- 23
- than are rearranged white genes that are part of larger translocations (5). A. C. Spradling and G. M. Rubin, Science 218, 341 (1982). C. B. Bridges, J. Hered. 26, 60 (1935). We thank T. Laverty for performing the in situ hybridizations. Supported by the Damon Run-yon-Walter Winchell Foundation and the Amer-ican Cancer Society (T.H.) and a grant from the National Institutes of Health. 25
- 14 March 1985; accepted 6 June 1985

Hepatitis B Virus DNA Sequences in Lymphoid Cells from Patients with AIDS and AIDS-Related Complex

Abstract. A lymphotropic virus HTLV-III/LAV was recently identified as the etiologic agent of the acquired immune deficiency syndrome (AIDS). In a study of concomitant hepatitis B infections in patients with AIDS or the AIDS-related complex, DNA sequences of hepatitis B virus (HBV) were found in fresh and cultured lymphocytes from patients with AIDS even in the absence of conventional HBV serological markers. Furthermore, the restriction DNA pattern was consistent with the integration of the viral DNA. These results should prompt additional studies to reevaluate a possible role of HBV as a cofactor in AIDS in addition to the HTLV-III/ LAV causal agent.

F. LAURE

D. ZAGURY

Laboratoire de Physiologie Cellulaire, Université Pierre et Marie Curie, Paris, and Institut J. Godinot, Reims, France A. G. SAIMOT Pathologie Infectieuse et Tropicale,

Hopital Claude Bernard, Paris, France R. C. GALLO

B. H. HAHN

Laboratory of Tumor Cell Biology, National Cancer Institute, Bethesda, Maryland 20205 C. BRECHOT Unité de Recombinaison et Expression Génétique, INSERM Unit 163. CNRS-LA-271 Institut Pasteur, Paris, France,

and Unité d'Hépatologie, Hopital Laennec, Paris

A human T-lymphotropic retrovirus (HTLV-III, LAV) (1-5) has been isolated from patients with the acquired immune deficiency syndrome (AIDS) or AIDS-related complex (ARC) and from clinically asymptomatic individuals (3,6). This virus has been causally related to AIDS and ARC, and it appears to be a necessary etiologic agent of these syndromes (7). However, infection by HTLV-III/LAV induces different responses depending on the individuals, suggesting that one or more other factors, such as hepatitis B virus (HBV), cytomegalovirus (CMV), or Epstein-Barr virus (EBV) (8), might also have a role in the pathogenic mechanism that leads to immune deficiency or might enhance the likelihood of disease manifestations of HTLV-III/LAV infection.

Indeed, on the basis of epidemiological and biological considerations, several authors have proposed an etiologic role for HBV (9). Serological markers of HBV have frequently been detected in patients with AIDS and in people at high risk for AIDS (for example, homosexual men, hemophiliacs, and intravenous drug abusers), and HBV DNA sequences have been identified in bone marrow cells (10) and mononuclear blood cells of such subjects (11, 12). These data prompted us to investigate concomitant hepatitis B infections in patients with AIDS and ARC. We report here that HBV DNA sequences were present in lymphocytes derived from AIDS patients who were serologically HBV-positive or HBV-negative. In the lymphocyte populations assayed, we also detected a common pattern consistent with the integration of the HBV DNA and with free monomeric viral forms.

Lymphoid cell DNA from four patients, two with AIDS (one of them with Kaposi's sarcoma) and two with ARC, were assessed. That each of the patients was infected with HTLV-III/LAV was demonstrated by (i) the presence of antibodies to HTLV-III in the serum samples detected by indirect immunofluorescence as described (13), (ii) the identification of reverse transcriptase activity (RT) in the supernatant of primary mononuclear cell cultures and H9 cocultures, and (iii) the detection of HTLV-III antigens p15 and p24 in acetone-fixed cultured lymphocytes by indirect immunofluorescence in the presence of specific monoclonal antibodies (1, 14).

Serological markers for HBV were