
between colonies within rivers (D,,), and 
21.3 percent within colonies (H,). Differ- 
ences between river systems within the 
major groups (D,,) are negligible (0.4 
percent). 

Management of the endangered Arizo- 
na populations is proceeding at several 
levels. Remaining natural habitats in Ari- 
zona are protected from future develop- 
ment, and efforts to control the preda- 
ceous and exotic G, afinis are under 
way (18). Several springs and marshes 
within the Gila drainage are being re- 
stocked with P, o,  occidentalis derived 
from a hatchery population originating at 
Monkey Spring (location C) (19). Al- 
though restocking is a logical step to- 
ward maintaining this species in Arizo- 
na, the current plan has a flaw. Monkey 
Spring is a thermally stable, isolated 
springhead, and the resident fish are 
genetically invariant by our criteria (Ta- 
ble 1). In addition, topminnows from 
Monkey Spring display low fecundity 
(20). A better choice for restocking might 
be wild or first generation fish from a 
thermally fluctuating natural environ- 
ment such as Sharp Spring (location D). 
These topminnows are genetically the 
most variable of the Arizona populations 
(Table I),  and females show high fecun- 
dity (6). 

It is critical that the three major groups 
of P. occidentalis remain discrete in na- 
ture since 53 percent of the genetic diver- 
sity in this species results from inter- 
group differences. Hence, repopulation 
efforts in extreme southeastern Arizona 
should employ stocks from San Bernar- 
dino Ranch, Arizona (location E), or 
other localities within the upper Yaqui 
basin of Mexico (group 2). However, 
experimental mixing of stocks within 
each of the groups could increase local 
genetic diversity. Intragroup hybrids 
might prove to be more successful colo- 
nists than any stock deriving from a 
single population. Localized intragroup 
mixing could reverse effects of popula- 
tion subdivision caused by recent habitat 
destruction. Time for experimental stud- 
ies of hybridization, fitness, and adap- 
tive plasticity with most endangered spe- 
cies is limited. Yet such studies are feasi- 
ble with this small, short-lived, vivipa- 
rous fish, and conservation efforts based 
on genetic knowledge of remnant popu- 
lations are possible. 
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Reciprocal Inhibition and Postinhibitory Rebound Produce 
Reverberation in a Locomotor Pattern Generator 

Abstract. The central pattern generator for swimming in the pteropod mollusk 
Clione limacina consists of at least four pedal interneurons, two each controlling 
parapodial upstroke and downstroke. The two sets of antagonistic interneurons are 
linked by reciprocal monosynaptic inhibitory synapses, and all exhibit apparently 
strong postinhibitory rebound. This simple neuronal network produces reverberating 
alternate cyclic activity in the absence of tonic drive or apparent feedback modula- 
tion. 

RICHARD A. SATTERLIE 
Department of Zoology, 
Arizona State University, 
Tempe 85287, and 
Friday Harbor Laboratories, 
Friday Harbor, Washington 98250 

Patterned rhythmic activity can be 
generated in neuronal circuits in two 
ways, by including endogenously active 
neurons in the circuit (endogenous oscil- 
lators) or by making specific synaptic 
connections between neurons that are 
not spontaneously active (network oscil- 
lators) (1). In the latter case patterned 
activity is shaped not only by network 
synaptic interconnections, but also by 
intrinsic properties of central pattern 
generator neurons and, in many cases, 
by tonic or phasic drive from outside the 
pattern generator. In perhaps the sim- 
plest circuit capable of generating an 
alternating two-phase activity cycle [two 
antagonistic neurons connected by recip- 
rocal inhibitory connections ( 2 ) ] ,  both 
intrinsic burst-terminating properties of 
component cells and an overall tonic 
drive to the network are necessary for 
the production of continuous alternating 
activity (1). The addition of another in- 

trinsic membrane property (postinhibi- 
tory rebound) to a similar two-phase 
circuit generates stable cyclic activity 
without tonic drive in a computer-mod- 
eled network (3). Postinhibitory rebound 
contributes to the generation of rhythmic 
activity in a number of central pattern 
generator circuits (4). Here I report on a 
central pattern generator network that 
includes reciprocal inhibitory connec- 
tions between antagonistic pattern gen- 
erator interneurons, each of which ex- 
hibits strong postinhibitory rebound. 
This network produces continuous, sta- 
ble oscillations in the apparent absence 
of (i) tonic drive to the network and (ii) 
intrinsic oscillating properties of member 
neurons. The network directly controls 
swimming in the pteropod mollusk 
Clione limacina. 

Forward or hovering swimming in 
Clione is accomplished by alternate dor- 
sal and ventral flexions of a pair of 
laterally projecting winglike parapodia. 
Swimming is a continuous, spontaneous 
activity. High-speed film analyses indi- 
cate that the two wings move in synchro- 
ny with virtually symmetrical upstroke 
and downstroke movements (5). The pat- 
tern generator for flapping wing move- 
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ments is restricted to the pedal ganglia, 
and it operates in the absence of periph- 
eral sensory feedback (6). 

Premotor swim interneurons were 
identified electrophysiologically and 
morphologically (7). Two classes of 
swim interneurons were found, one with 
phasic spike activity associated with 
wing upswing (upswing-interneurons) 
and the other similarly associated with 
wing downswing (downswing-interneu- 
rons). In both groups, a single over- 
shooting spike (up to 70-mV amplitude 
and 40- to 100-msec duration) alternates 

I 
1 second 

CP 

Fig. 1. (A) Simultaneous intracellular record- 
ing from a pair of antagonistic swim interneu- 
rons (middle trace, upswing interneuron; bot- 
tom trace, downswing interneuron). The top 
trace is a current monitor. The cyclic activity 
is exactly antiphasic. Stimulating the down- 
swing interneuron with a long hyperpolarizing 
current (3 nA) totally stopped swimming for 
the duration of the current pulse; swimming 
immediately resumed at the termination of the 
pulse. (B) Tracing of a dye-filled downswing 
interneuron showing the main branching pat- 
tern in the pedal ganglia. (C) Similar tracing of 
an antagonistic pair of swim interneurons. 
Only one pedal ganglion is shown. Axon 
processes of the two cells interdigitate in the 
lateral (lower) and medial (upper) neuropil. 
Abbreviations: CP, cerebro-pedal connective; 
D, downswing interneuron; PC, pedal com- 
missure; U, upswing interneuron; W, wing 
nerve. 
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with a single inhibitory postsynaptic po- 
tential (IPSP) (up to 20-mV and 100-msec 
duration) (Fig. 1A). The two groups of 
interneurons fire in exact antiphase so 
that a spike in one immediately precedes 
the IPSP of the other (maximum delay, 4 
msec) (Fig. 1A). The swimming rhythm 
can be altered by intracellularly stimulat- 
ing with depolarizing or hyperpolarizing 
currents into individual upswing or 
downswing interneurons (Fig. 1A). 

Only four swim interneurons have 
been found, including one upswing and 
one downswing interneuron in each ped- 
al ganglion (8). All four cells are similar 
in morphology. Interneuron cell bodies 
are 20 to 35 ym in diameter and have a 
single axon that bifurcates in the ipsilat- 
era1 pedal ganglion (Fig. 1B). One branch 
provides arborizations in the lateral 
neuropil, near the emergence of the wing 
nerve (area of motorneuron branching). 
The other main branch runs to the con- 
tralateral pedal ganglion via the pedal 
commissure and repeatedly branches, 
again in the lateral neuropil (Fig. 1B). 
Fine processes of ipsilateral interneu- 
rons interdigitate in two areas-in the 
lateral neuropil near the upswing-inter- 
neuron cell body and in the medial 
neuropil. Processes of contralateral in- 
terneurons also extend to these areas. 
Upswing-interneuron cell bodies are lo- 
cated in the lateral portion of each pedal 
ganglion, whereas downswing interneu- 
ron cell bodies are found near the origin 
of the cerebropedal connective (Fig. 1C). 

Bilateral coordination of activity in the 
contralateral pair of downswing inter- 
neurons is accomplished through strong 
electrical coupling so that stimulation of 
spiking in one cell always induces simul- 
taneous firing in the contralateral homo- 
logue (Fig. 2A). Similar coupling has not 
been demonstrated between contralater- 
a1 upswing-interneurons since the lateral 
position of the cell bodies makes simulta- 
neous penetration difficult. 

Synaptic transmission was stopped by 
bathing the preparation in high M~~~ 
saline to test the possibility of endoge- 
nous production of cyclic electrical ac- 
tivity in swim interneurons (9). All swim- 
ming activity and all firing activity in 
interneurons disappeared, suggesting 
that the interneurons are not spontane- 
ously active. With this treatment, inter- 
neurons could be induced to spike by 
depolarizing the cell soma. Similarly, 
interneurons would spike at the termina- 
tion of injected hyperpolarizing currents, 
suggesting the presence of postinhibitory 
rebound in these cells (Fig. 2A). Further 
evidence for a rebound effect was ob- 
tained by stimulating an interneuron with 

a "conditioning" hyperpolarizing cur- 
rent pulse followed by a normally sub- 
threshold depolarizing pulse. The depo- 
larizing pulse would frequently induce 
firing even though neither hyperpolariz- 
ing nor depolarizing pulses alone would 
stimulate a spike (Fig. 2B). The relative- 
ly small hyperpolarizing currents needed 
to induce rebound firing in swim inter- 
neurons (as little as 1 nA in some cells) 
suggests that the rebound effect is rela- 
tively strong in these cells. 

The short (under 5 msec), constant la- 
tency between upswing-interneuron spikes 

L. 

1 second 

I: 
0 . 5  second 

t-fL1; 

0 . 5  second 

Fig. 2. (A) Intracellular recording from a pair 
of downswing interneurons bathed in high 
Mg2+ seawater. Stimulating one interneuron 
with a hyperpolarizing current pulse (bottom 
trace) hyperpolarized the contralateral homo- 
logue (middle trace). Both cells fired a single 
simultaneous spike at the termination of the 
stimulus. The top trace is a current monitor. 
(B) Similar recording from a downswing inter- 
neuron. A subthreshold depolarizing current 
(large arrow) triggered a spike only if preced- 
ed by a "conditioning" hyperpolarization 
(small arrow). The bottom trace is a current 
monitor. (C) Dual recordings from an antago- 
nistic pair of swim interneurons in high MgZ+- 
high Ca2+ seawater. Both paired traces repre- 
sent recordings from the same set of interneu- 
rons. Induced spikes, through intracellular 
depolarizations (arrows) triggered a short-la- 
tency IPSP in the antagonistic interneuron, 
indicating that the two are linked by recipro- 
cal monosynaptic inhibitory synapses. Stimu- 
lating injected currents: (A) 3.5 nA, (B) 1.5 
nA, and (C) 3 nA. 



and downswing-interneuron IPSP's, and A neuronal cell types in this preparation, 
between downswing-interneuron spikes ---'--'-'-I- the Clione swimming system seems to be 
and upswing-interneuron IPSP's, sug- an excellent model system for the study 
gests that monosynaptic, reciprocal in- 

$ ~ h ~ 4 ~ ) w h ~ ~ , ' u  of central and peripheral control of a 
hibitory connections exist between the two-phase locomotory behavior. 
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