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selectively localized in cholinergic neu- 
rons and that is involved in the synthesis 
of acetylcholine (9). Injections of NGF 
produced prominent, dose-dependent in- 
creases in ChAT activity in the corpus 
striatum of neonatal rats. 

Sprague-Dawley rats were given NGF 
(30 yg, intracerebroventricularly) (10- 
13) on postnatal days 2, 4, 6, and 8 and 
were decapitated on day 12. Controls 
received the same dose of cytochrome c ,  
a molecule physicochemically similar to 
NGF but lacking trophic activity, or the 
injection vehicle alone. The brains were 
quickly removed, dissected on ice (14), 
and analyzed for ChAT activity and pro- 
tein content (15, 16). Also measured 
were the activities of tyrosine hydroxy- 
lase, a marker of peripheral sympathetic 
and central catecholaminergic neurons 
(13,  and glutamate decarboxylase, a 
marker for neurons containing y-amino- 
butyric acid (GABA), which are intrinsic 
to the corpus striatum and a number of 
other brain regions (18). NGF injections 
produced significant increases in ChAT 
activity in the corpus striatum, but did 
not alter the activity of tyrosine hydrox- 

!I C h A T  B - 
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Fig. 1. (A) Effect of NGF treatment on the 
activity of neurotransmitter enzymes in the 
corpus striatum and ventral midbrain and 
substantia nigra of neonatal rats. Animals 
received 30 kg of NGF (closed bars) or the 
same dose of cytochrome c or injection vehi- 
cle alone (open bars) on postnatal days 2,4, 6, 
and 8 and were decapitated on day 12. There 
was no significant difference in ChAT activity 
between controls that received cytochrome c 
and those that received vehicle alone. Prein- 
cubation of the ChAT assay mixture from 
control animals with 1 to 30 kg of NGF had no 
effect on enzyme activity. Values are means 
+ standard errors. The asterisk indicates a 
significant difference (P < 0.001, Student's t- 
test). Control values for enzyme activity were 
as follows: ChAT, 105 i: 8 nmollhour per 
milligram of protein; glutamate decarboxylase 
(GAD), 9.5 i: 1.4 nmollhour; and tyrosine 
hydroxylase (TH), 1997 * 290 pmollhour. (B) 
ChAT activity in the corpus striatum of neo- 
natal rats injected with different NGF prepa- 
rations. Animals were injected with 10 pg of 
routinely prepared NGF (closed bar) or with 
NGF further purified by electrofocusing and 
gel filtration (shaded bar) in the schedule used 
in (A). (11). Enzyme activity was determined 
after decapitation on day 12. Results for both 
NGF preparations were significantly different 
from the control value (P < 0.05, Student's t- 
test). 

ylase or glutamate decarboxylase (Fig. 
1A). No change in ChAT activity was 
produced when NGF was injected pe- 
ripherally (19) with the same dose and 
schedule used for the CNS injections. 

Most procedures for isolating mouse 
NGF yield preparations contaminated 
with renin (20), y-globulin (21), and pos- 
sibly other molecules that may produce 
significant physiological and behavioral 
effects. For example, after intracranial 
injections of one of these NGF prepara- 
tions, the renin contaminant elicited 
polydipsia, increased appetite for sodi- 
um, and increased brain ornithine decar- 
boxylase activity through production of 
angiotensin I1 (22). Although very little 
renin activity was present in our NGF 
samples (II), we submitted NGF to two 
further chromatographic steps: prepara- 
tive electrofocusing followed by gel fil- 
tration (11). NGF prepared in this man- 
ner was devoid of renin activity and, as 
shown by polyacrylamide gel analysis, 
was several percent purer than the start- 
ing material, with no change in bioacti- 
vity in vitro (11). This isolation scheme 
ensures that the activity must reside in 
molecules that are very similar if not 
identical to NGF. The preparation was 
compared to the starting material for its 
effects on ChAT activity in the corpus 
striatum. The same schedule and route 
were used to deliver repeated 10-yg 
doses. Virtually identical increases in 
ChAT activity were detected (Fig. 1B). 

The dose-response relation between 
NGF and ChAT activity is shown in Fig. 
2. Even small NGF doses (1 to 3 yg) 
produced increases in ChAT activity; 
more robust effects were seen at higher 
doses. The dose-dependent response of 
cholinergic neurons to NGF suggests 
that the effect was receptor-mediated. 
Further studies will be required to identi- 
fy and characterize NGF receptors on 
striatal cholinergic neurons and to deter- 
mine the mechanism responsible for the 
effect on ChAT activity. 

Several observations suggest that en- 
dogenous NGF plays a physiological role 
in basal forebrain and striatal cholinergic 
neurons. Significant levels of messenger 
RNA encoding NGF (23) and of material 
that reacts with antibodies to NGF (24) 
have been found in the brain. Trophic 
material reactive with NGF antibodies is 
also present in cultures of striatal astro- 
cytes (25). In addition, NGF receptors 
have been detected in the CNS (26), and 
their level appears to be developmental- 
ly regulated in the chick forebrain (27). 
Our ability to demonstrate prominent 
changes in a specific marker for choliner- 
gic neurons, but not in markers for cate- 

cholaminergic or GABA-containing cells, 
is in keeping with the results of prior 
neurochemical studies of the effect of 
NGF on forebrain neurons (5,28). These 
findings complement morphological 
studies showing that NGF is selectively 
transported retrogradely to neurons of 
the basal forebrain cholinergic complex 
(29), and they suggest that, in the CNS, 
endogenous NGF and its receptor may 
selectively mediate events in cholinergic 
neurons. The strongest evidence for the 
importance of endogenous NGF to pe- 
ripheral neurons has come from experi- 
ments in which antibodies to NGF were 
administered to developing animals. 
Antibody-mediated sequestration of 
NGF produced destruction of sensory 
and sympathetic neurons (4, 30). Before 
concluding that endogenous NGF does 
play a role in the function of CNS cholin- 
ergic neurons, it will be necessary to 
demonstrate that the viability or function 
of these neurons is affected by intracere- 
bra1 injection of NGF antibodies. 

We find it interesting that developing 
cholinergic neurons of both the basal 
forebrain and the striatum responded to 
NGF injections, for, although they use 
the same neurotransmitter, these neuro- 
nal populations differ in several ways. 
Cholinergic neurons in the striatum are 
large and have extensively arborized lo- 
cal axon collaterals. They appear to be 
local circuit neurons (31). By contrast, 
neurons of the basal forebrain project 
their axons over long distances. Those of 
the medial septa1 nucleus and vertical 
limb nucleus of the diagonal band send 
fibers to the hippocampus, while those of 
the substantia innominata and nucleus 
basalis project to the neocortex and 
amygdala (32). Striatal neurons that can 
be tentatively identified as cholinergic 
(33) are tonically active (three to six 

NGF injected (yg) 

Fig. 2. Dose-response curve for NGF and 
ChAT activity in the corpus striatum of neo- 
natal rats. The injection schedule and time of 
sacrifice are given in the legend to Fig. 1. 
Control injections were as described in the 
legend to Fig. 1A. Values are mean & stan- 
dard errors. 



impulses per second) and seldom show 
any response to limb movements during 
performance of a task (34). On the other 
hand, neurons of the nucleus basalis 
have a higher tonic firing rate and show 
responses to a variety of task-related 
events (35). It is unclear whether specific 
features of CNS neurons can be used to 
predict whether they will respond to a 
particular neuronotrophic factor. The 
fact that developing cholinergic neurons 
of both the basal forebrain and striatum 
responded to NGF suggests that differ- 
ences in morphology and physiology 
may not preclude a response to the same 
trophic agent. The same pattern was 
observed for the response of PNS neu- 
rons to NGF and to another trophic 
agent (1, 2, 4). 

Our study did not address the re- 
sponse of mature striatal cholinergic 
neurons to NGF; however, cholinergic 
neurons of the basal forebrain do re- 
spond beyond the neonatal period (5). 
Interestingly, NGF produced much 
greater increases in ChAT activity in the 
septum of mature animals in which par- 
tial transection of the fimbria had pro- 
duced axotomy of some septa1 fibers (7). 
It appears that the sensitivity of lesioned 
cholinergic neurons to NGF was, in part, 
restored to the level found in developing 
animals. It will be important to compare 
the responses of intact and lesioned ma- 
ture striatal neurons to NGF. 

Dysfunction or death of cholinergic 
neurons appears to be a key feature of 
several human neurodegenerative disor- 
ders, including Alzheimer's disease (36) 
and Huntington's chorea. In the latter 
disorder, involuntary choreiform move- 
ments are combined with changes in 
personality and mentation and later with 
progressive dementia (37). A hallmark of 
the disorder is neuronal loss in the cau- 
date and putamen. Small neurons are 
primarily affected; however, large neu- 
rons are often shrunken or show degen- 
erative changes, and in advanced lesions 
they may be lost (37,38). Neurochemical 
studies have consistently demonstrated 
deficits in glutamic acid decarboxylase 
and ChAT activity (39). That the cholin- 
ergic deficit may be functionally signifi- 
cant was suggested by a clinical study in 
which chorea was improved by adminis- 
tration of physostigmine, a centrally act- 
ing anticholinesterase (40). There are, as 
yet, no data to indicate a role for NGF in 
Alzheimer's disease or Huntington's 
chorea. Nevertheless, the demonstration 
that the cholinergic neuronal groups af- 
fected in these disorders respond to 
NGF should stimulate a search for re- 
gional abnormalities in the synthesis or 
utilization of NGF or a similar factor. 

Moreover, if animal studies continue to 
show that lesioned central cholinergic 
neurons respond to NGF, this will sug- 
gest that administration of NGF may 
help to maintain the function of these 
populations in the neurodegenerative 
disorders that involve them. 
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Memory Processing of Serial Lists 
by Pigeons, Monkeys, and People 

Abstract. List memory of pigeons, monkeys, and humans was tested with lists of 
four visual items (travel slides for animals and kaleidoscope patterns for humans). 
Retention interval increases for list-item memory revealed a consistent mod(fication 
of the serial-position function shape: a monotonically increasing function at the 
shortest interval, a U-shaped function at intermediate intervals, and a monotonically 
decreasing function at the longest interval. The time course of these changes was 
fastest for pigeons, intermediate for monkeys, and slowest for humans. 
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The U-shaped serial-position function 
is a prominent benchmark of our under- 
standing of memory processing. Typical- 
ly recognition or recall memory is better 
for the first list items (primacy effect) 
and the last list items (recency effect) 
than it is for the middle items (1). The 
primacy effect has been traditionally 
thought to index long-term memory and 
the recency effect to index short-term 
memory. The form of the serial-position 
function along with the analyses of its 
primacy and recency effects has contrib- 
uted to the support or demise of many 
theories of memory, from the early asso- 
ciation network theories (2) to the more 
recent dual-process theories (3). 

The importance of the serial-position 
function in testing theories of human 
memory processing makes it a natural 
choice for testing animal memory. Only 
recently have procedures been devel- 
oped that allow researchers to test ani- 
mal serial-position functions (4). Varia- 
bles with proven effects on human serial- 
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position functions can now be tested on 
animal serial-position functions to com- 
pare memory functions and cognitive 
processes and to examine the evolution 
of cognition. 

We now report similar changes in the 
form of the serial-position function for 
pigeons ( n  = 4), monkeys ( n  = 2), and 
humans ( n  = 6) when retention interval 
was controlled. An immediate test re- 
vealed no primacy effect, but the effect 
emerged at intermediate tests to produce 
a U-shaped function, and the recency 
effect dissipated at the longest intervals. 
This qualitative similarity implies similar 
memory mechanisms. 

The task for all three species was 
a serial-probe-recognition task. Trials 
were begun by pressing down a three- 
position T lever (monkeys and humans) 
or pecking on a 9 by 9.3 cm clear window 
(pigeons). Lists of color slides were rear- 
projected one at a time on the upper of 
two 12 by 9 cm screens separated 17 cm 
(center to center). Each of four memory 
items was displayed for 1 second (hu- 
mans and monkeys) or 2 seconds (pi- 
geons) with a 1-second interval between 
items. A probe item was projected on the 
lower screen after a delay (retention in- 
terval) from the last list item. If the probe 
item was a repeat of one of the list items 
("same" trial), a correct response by 
humans or monkeys was a lever move- 
ment to the right and by pigeons a peck 
to a right disk (lighted red). Otherwise 
(on "different" trials) a left lever move- 
ment or a left disk (lighted green) peck 
was correct. Humans sat in a chair and 
held the lever box on their laps, monkeys 
were restrained in a primate chair, and 

pigeons worked in a Skinner box. Mon- 
keys' correct responses were rewarded 
with a tone (500 Hz) plus a banana pellet 
or orange juice, pigeons with tone plus 
2.8 seconds of mixed grain, and humans 
with tone only. Incorrect responses pro- 
duced a lighted time-out period (5 sec- 
onds for humans and monkeys and 10 
seconds for pigeons). 

Test items for the pigeons (Columba 
livia) and monkeys (Macaca mulatta) 
were travel slides unique to that trial 
(limited to one trial per session) from a 
collection of 3000. Test items for the 
humans (two male and four female, 21 to 
41 years old) were trial-unique kaleido- 
scope slides from a collection of 550. 
Kaleidoscope patterns prevented what 
would have been a performance ceiling 
effect with travel slides (5). Sessions 
were randomized sequences of ten 
"same" and ten "different" trials with 
the probe delay constant. Pigeons and 
monkeys were tested in four randomized 
blocks of six delays. Humans were test- 
ed in two randomized blocks of eight 
delays; the delays and sequence used at 
each delay were counterbalanced within 
and across human subjects. One se- 
quence of particular items was used to 
test pigeons, two to test monkeys, and 
four to sixteen to test the humans. 

The average serial-position functions 
are shown in Fig. 1. For each species, 
the 0-second delay functions show that 
memory for the first serial position was 
poor but progressively improved toward 
the end of the list. These serial-position 
functions markedly changed with probe 
delay; the primacy effect appeared, and 
by the middle two probe delays the seri- 
al-position functions had become U- 
shaped, showing primacy and recency 
effects for all three species. Further 
probe delay increases produced a pro- 
gressive decline in memory toward the 
end of the list. These serial-position 
function changes were significant 
(P < 0.03) as tested by polynomial trend 
analyses (6). 

These serial-position function changes 
are similar for all three species, but take 
place in about 10 seconds in pigeons, 30 
seconds in monkeys, and 100 seconds in 
humans. This difference is important in 
the understanding of animal cognitive 
processes; the time scale for animals 
seems to be compressed relative to ours. 

Human serial-position functions are 
typically obtained from recall (not recog- 
nition) tests. The retention interval is not 
precisely controlled (there is a free recall 
period), which probably accounts for 
subjects' showing only one of the effects 
described here: dissipation of the recen- 
cy effect (7, 8) .  First-item recall is "de- 

287 




