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icosahedral phase is the insight it may 
provide into the structure of metallic 
glasses. 

A transmission electron diffraction 
pattern from the icosahedral phase of 

Pentagonal and Icosahedral Order A10.86Mn0.14 in a plane normal to a five- 
fold symmetry axis (4) is shown in Fig. 2. 

in Rapidly Cooled Metals Because any structure factor must have 
inversion symmetry, the underlying five- 

David R. Nelsot 

One of the most remarkable discover- 
ies in the history of crystallography was 
announced last year, when Shechtman 
and colleagues observed tenfold symme- 
try axes in patterns of Bragg diffraction 
spots from a rapidly cooled alloy of 
aluminum and manganese (1). A theorem 
of classical crystallography states that 
five- or tenfold symmetry axes can never 
appear in a truly periodic crystal-that 
is, one constructed from a single unit cell 
that repeats indefinitely in space. Spuri- 
ous Bragg patterns with tenfold symme- 
try can be produced through macroscop- 
ic twinning of an ordinary crystal; such 
spurious patterns have been seen, for 
example, in small gold particles (2). The 
experiments of Shechtman et al., howev- 
er, clearly indicate that the tenfold sym- 
metry pattern in the aluminum-manga- 
nese alloy is an intrinsic property, re- 
flecting the fundamental microscopic ar- 
rangement of atoms in the material. 
Needless to say, there is currently great 
excitement in this field as experimental- 
ists and theorists try to understand and 
explain this new structure. 

At present, there is no published the- 
ory of these alloys that is satisfactory in 
all details. There are, however, mathe- 
matical models that have many features 
in common with the observed diffraction 
patterns. We shall review some of these 
mathematical models and discuss their 
relation to the new phase of aluminum- 
manganese. We shall also discuss some 
other materials with nonstandard diffrac- 
tion patterns that have been discovered 
in recent years. 

fold axis shows up as an array of Bragg 
I and Bertrand I. Halperin spots with a tenfold symmetry. The an- 

gular modulation of the diffraction pat- 
tern shows that the orientations of icosa- 
hedral packing units in the material are 

The Icosahedral Phase of correlated over a distance at least as 

Aluminum-Manganese 

The full point symmetry group of the 
experimentally observed diffraction pat- 
tern of this alloy corresponds to a Platon- 
ic solid called the icosahedron (see Fig. 
1). The icosahedron has six fivefold sym- 
metry axes, which can be detected by 
bringing a sample of the new icosahedral 

large as the illumination volume of the 
diffracted beam, which is typically lo4 to 
10' A. Each spot in the diffraction pat- 
tern corresponds to a set of Bragg 
planes, and we can also ask about the 
extent of the translational order embod- 
ied in these density waves. The spots are 
fairly sharp, suggesting a translational 
correlation length of a few hundred ang- 

Summary. The discovery of an alloy of aluminum and manganese with sharp Bragg 
diffraction spots and an icosahedral point group symmetry was announced last year. 
The icosahedral symmetry appears to be an intrinsic property of the material and not 
an artifact of twinning. There are remarkable similarities between the observed 
diffraction patterns and aperiodic tesselations of space called Penrose tiles. The 
relation between the experiments and Penrose tiles, as well as phenomenological 
descriptions of the icosahedral aluminum-manganese alloy as a superposition of 
incommensurate density waves, are reviewed. Other types of exotic crystallography 
are also discussed. 

phase of A1-Mn into the proper orienta- 
tion. There are 10 threefold and 15 two- 
fold symmetry axes as well. The samples 
are made by rapidly cooling an alumi- 
num-rich liquid with approximately 14 
atom-percent manganese; some varia- 
tion in the amount of manganese is possi- 
ble, and manganese can be replaced by 
other transition metals. The molten alloy 
is quenched on a rapidly rotating metal 
wheel, which leads to cooling rates of the 
order of lo6 degrees per second. Such 
large cooling rates are necessary to avoid 
nucleating a conventional crystal such as 
A16Mn, which has a 28-atom orthorhom- 
bic unit cell. This same melt-spinning 

stroms. Many samples have frozen-in 
strains, however, and this correlation 
length might be much larger in strain-free 
specimens. There is no known reason, in 
principle, why the peaks could not be 
infinitely sharp, just as in conventional 
crystals. 

It is possible to simulate an erroneous 
icosahedral diffraction pattern by using 
particle clusters with an overall icosahe- 
dral shape but with conventional local 
crystalline order. The well-known "can- 
nonball" stacking of hard spheres, for 
example, can be used to make tetrahe- 
dral fragments of a perfect fcc crystal. 
Twenty such tetrahedra can be com- 

technique is often used to pepare  amor- bined,-with distortions, to make an ico- 
The authors are at the Lyman of phous metal alloys (3); part of the excite- sahedron (2). The (1 11) faces of the dis- Physics, Harvard University, Cambridge, Massa- 

chusetts 02138. ment surrounding the discovery of the torted tetrahedra meet at twin bound- 
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aries. An explanation such as this has 
been proposed for the icosahedral phase 
of A1-Mn (5). Shechtman et al., howev- 
er, presented several pieces of evidence 
that appear convincingly to rule out the 
twinning interpretation (I); even more 
unambiguous evidence against this hy- 
pothesis is provided by lattice-imaging 
experiments that have been canied out 
in a number of different laboratories (6). 
When the sample is viewed along a five- 
fold symmetry axis, the five coexisting 
sets of atomic planes with normals point- 
ing to the vertices of a regular decagon 
can actually be seen. In the best sam- 
ples, the planes in each set are perfectly 
parallel, and the pattern extends over 
distances of several thousand angstroms. 
The icosahedral order in AI-Mn is an 
intrinsic property and not an artifact of 
twinning. 

Penrose Ties 

Independent of these experimental de- 
velopments, mathematicians and some 
physicists had been exploring the conse- 
quences of the discovery by Penrose in 
1974 of some remarkable, aperiodic, 
two-dimensional tilings with fivefold 
symmetry (7). Several authors suggested 
that these unusual tesselations of space 
might have some relevance to real mate- 
rials (8, 9). MacKay (8) optically Fouri- 
er-transformed a two-dimensional Pen- 
rose pattern and found a tenfold symmet- 
ric diffraction pattern not unlike that 
shown for AI-Mn in Fig. 2. Three-dimen- 
sional generalizations of the Penrose pat- 
terns, based on the icosahedron, have 
been proposed (&lo), The generaliza- 
tion that appears to be most closely 
related to the experiments on Al-Mn was 
discovered by Kramer and Neri (11) and, 
independently, by Levine and Steinhardt 
(12), who had been carrying out their 
own investigation of Penrose patterns 
starting in 1982. Levine and Steinhardt 
were able to Fourier-transform a simpli- 
fied version of this three-dimensional 
Penrose pattern and to show that it had 
&function Bragg peaks. In the planes 
perpendicular to the fivefold and three- 
fold axes, the positions of the most in- 
tense Bragg peaks of the model agreed 
with the experimentally observed spot 
positions of AI-Mn after adjustment of 
the arbitrary lattice constant of the mod- 
el. (The agreement was not so good, 
however, for the simplified model in 
planes normal to the twofold axis.) 

Penrose patterns are constructions in 
which an infinite Euclidean space is 
filled with an admixture of two distinct 

Fig. 1 .  The icosahedron. Six fivefold symme- 
try axes pass through the 12 vertices. The 
three- and twofold symmetry axes are associ- 
ated with the 20 faces and 30 edges, respec- 
tively. 

unit cells. Each type of unit cell can be 
imagined as being occupied by a fixed 
arrangement of atoms, just as in conven- 
tional crystal lattices. It is the existence 
of two unit cells, occurring in an irratio- 
nal proportion, that allows deviations 
from the rules of classical crystallogra- 
phy, which assume that a single unit cell 
is repeated periodically in space. Never- 
theless, the requirement that space be 
completely filled imposes rigid con- 
straints on the allowable Penrose pat- 
terns. This in turn has strong implica- 
tions for the diffraction pattern, or Fouri- 
er transform, of the structure. 

These ideas can be illustrated most 
easily by a two-dimensional Penrose til- 
ing [see (13)l. The basic building blocks 
are the " a m e d  rhombuses" shown in 
Fig. 3. Both the thick and the thin rhom- 
bus have identical edge lengths, and all 
interior angles are integral multiples of 
36". A Penrose tiling is formed when 
these rhombuses are fit together so that 
the edges with single and double-headed 
arrows match (see Fig. 4). In an infinite 
Penrose tiling, the two rhombuses must 
occur in the ratio of the golden mean, 

Fig. 2. Diraction pattern normal to a fivefold 
symmetry axis in the icosahedral phase of Al- 
Mn (4). 

T = (fl + 1)/2, with the larger tile be- 
ing more prevalent (7, 8). Equivalent 
tilings, based on unit cells with the 
shapes of "kites" and "darts," are also 
possible (7). 

Because all interior angles in the tiles 
are multiples of one-tenth of a complete 
rotation, all rhombus edges must point to 
the vertices of a regular decagon. A more 
sophisticated analysis shows that the 
edges are equally distributed among the 
ten vertices (13). It follows immediately 
that there is tenfold, long-range orienta- 
tional order in this system. This orienta- 
tional order is illustrated in Fig. 4, where 
several different decagons with identical 
orientations are highlighted. The Fourier 
transform of any pattern of this kind is 
guaranteed to have a tenfold orientation- 
al modulation. 

Penrose patterns also have a more 
subtle, translational symmetry that is 
responsible for the sharpness of the 
Bragg spots in the diffraction pattern. In 
Fig. 5, we have superimposed on a two- 
dimensional Penrose pattern a grating of 
parallel lines, separated by a distance d 
which corresponds to the wave vectors 
of one of the sharp diffraction peaks, 
according to the standard diffraction law, 
q = + (2?rld)A, where A is a unit vector 
normal to the grid lines. There is a one- 
to-one correspondence between these 
grid lines and rows of rhombuses, con- 
nected by a set of common parallel 
bonds, which are indicated by shading in 
Fig. 5. The shaded rows are typically 
displaced to one side or the other of the 
grid lines, but they remain close to the 
corresponding lines even for a sample of 
infinite size. This finite "wandering" of 
the rows will lead to a decrease in the 
intensity of the Bragg spots, associated 
with diffraction from the grid, but it will 
not cause broadening of the spot. In all, 
there are five families of parallel grid 
lines of spacing d, with normals pointing 
to the vertices of a regular decagon. De 
Bruijn's classification of the possible 
types of Penrose patterns (13) is based 
on the symmetries of these "penta- 
grids." 

This construction suggests that the ob- 
served diffraction pattern will contain a 
"star" of ten sharp Bragg spots at recip- 
rocal lattice vectors, whose values are 
given by Eq. 1. 

where the values for Ai are unit vectors 
pointing to the vertices of a decagon. In a 
strongly interacting system, however, 
ordering with some periodicity will typi- 
cally induce ordering at all "harmonics" 
of the basic period. Here, the "harmon- 
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ic" wave vectors are simply linear com- 
binations of the basis set (Eq. 1) with 
positive integer coefficients. In ordinary 
crystals, this construction leads to a reg- 
ular lattice of diffraction spots in recipro- 
cal space. A peak belongs to the mth 
generation if m is the minimum number 
of elements of the basic star required to 
produce the wave vector of the peak. 
Figure 6 shows the first three genera- 
tions of Bragg spots produced by the 
wave vectors in the basis set (Eq. 1). 
Figure 6 is remarkably similar to the 
experimentally observed diffraction pat- 
tern for A1-Mn shown in Fig. 2. 

Unlike conventional crystals, the dif- 
fraction peaks of a Penrose pattern do 
not lie on a periodic lattice in reciprocal 
space. The crucial difference is the exis- 
tence of two irrationally related length 
scales. As shown in Fig. 7, two elements 
of the tenfold basis set combine to give 
another basis vector multiplied by the 
golden mean. Because of this incommen- 
surability, peaks can be generated arbi- 
trarily close to any given position by 
taking increasingly complex linear com- 
binations of the fundamental basis set. 
However, we might expect a decreasing 
hierarchy of peak intensities, depending 
on how many elements of the star were 
required to make a particular peak. 

If we allow negative as well as positive 
integer coefficients, all reciprocal lattice 
peaks can be expressed as combinations 
of just five vectors pointing to the verti- 
ces on a pentagon in reciprocal space 
(see Fig. 7). Hence, it is convenient to 
use five "Miller indices" to specify a 
particular spot position. This observa- 
tion makes plausible de Bruijn's result 
that the vertices of the two-dimensional 
Penrose tiling in real space are related to 
a projection of a five-dimensional, sim- 
ple hypercubic lattice into two dimen- 
sions (13). Kramer and Neri (11) general- 
ized de Bruijn's projection technique to 
produce a three-dimensional Penrose 
pattern. Here, the building blocks are fat 
and thin rhombohedra, again in the ratio 
of the golden mean. The interior solid 
angles of these rhombohedra are all inte- 
gral multiples of one-twentieth of 47r. 
Elser and, independently, Duneau and 
Katz have devised an elegant technique 
for computing the diffraction pattern of a 
three-dimensional Penrose pattern, re- 
garded as the projection of a six-dimen- 
sional hypercubic lattice (14). Like Le- 
vine and Steinhardt (12), they found 6- 
function peaks with an icosahedral sym- 
metry in reciprocal space. In contrast to 
the simplified pattern studied by Levine 
and Steinhardt (12), there is now excel- 
lent agreement with the experimentally 

Fig. 3 .  Arrowed rhombuses, which are the 
building blocks of the two-dimensional Pen- 
rose patterns. 

observed diffraction patterns normal to 
the twofold, as well as to the three- and 
fivefold, symmetry axes. The positions 
of the most intense twofold peaks scale 
with 7-' in the Levine-Steinhardt diffrac- 
tion pattern; these peaks scale with T - ~  

in the experiments. 
Structures containing several incom- 

mensurate spatial periodicities, which 
are not simply periodic but nevertheless 
have a diffraction pattern with &function 
Bragg peaks, might be called "quasicrys- 
tals," by analogy with the term "quasi- 
periodic motion" that is used for simple 
dynamic systems having two incommen- 
surate periods. We shall employ the term 
"quasicrystal" in this general sense be- 
low, although Levine and Steinhardt (12) 
imposed some additional restrictions in 
their definition. 

Incommensurate Icosahedral 

Density Waves 

As an alternative to a description such 
as the Penrose construction, which fo- 
cuses on the positions of atoms in physi- 
cal space, icosahedral quasicrystals can 
also be described in terms of the density 
of atoms, p(r), or, more conveniently, in 
terms of the Fourier transform of the 
density, p,, in reciprocal space. This 
approach, which is based on Landau's 
description of conventional crystalliza- 
tion (15), has been applied to icosahedral 
crystals by a number of investigators 
(16-1 9). 

We start by describing the free energy 
F of a liquid as a function of the devi- 
ation of the density p(r) from its mean 
value po, as in Eq. 2. 

+ J d r [ ~ ( 6 ~ ) '  + ~ ( 6 ~ ) '  + . . .I (2) 

where Gp(r) = p(r) - po. The quadratic 
term is nonlocal and represents the ef- 
fects of interactions in the liquid that 
promote ordering. The second term, 
which is local in our approximation, rep- 
resents the nonlinearities that prevent 

p(r) from deviating too far from its mean 
value in the ordered phase. In the liquid, 
we neglect these nonlinearities and find 
that the Fourier transform of the nonlo- 
cal kernel, ~ ( q ) ,  is inversely proportion- 
al to the liquid structure factor, S(q), 
which arises from thermal fluctuations in 
the density as given by Eq. 3. 

where kg  is Boltzmann's constant and T 
is temperature (in kelvins). 

To test for possible crystalline phases, 
we expand p(r) in a discrete set of recip- 
rocal lattice vectors {G) characterizing 
the crystal. 

The free energy becomes 

For a suitable choice of the signs and 
magnitudes of the coefficients and for a 
suitable choice of the function K(G), we 
can expect that the state of lowest free 
energy will be a reciprocal quasilattice 
with icosahedral symmetry or, in two 
dimensions, the tenfold symmetric pat- 
tern illustrated in Fig. 6. The Fourier 
components that are easiest to form will 
be those for which ~ ( q )  is smallest, 
corresponding to peaks in the structure 
factor. The nonlinearities in Eq. 5 lead to 
the "harmonic" reciprocal space peaks 
discussed above in the context of the 
Penrose tiles, and they lock together the 
phases of various Fourier components. 

A hypothetical liquid structure factor 
that might lead to a two-dimensional 
"crystal" with the symmetry of the Pen- 
rose tiles is shown in Fig. 8. There is a 
sharp peak at qo, which is the radius of 
the decagon of brightest spots in Fig. 6. 
The second generation of spots in Fig. 6 
occurs at radii that are 0.618, 1.176, 
1.618, 1.902, and 2.0 times qo. We have 
made our structure factor large at these 
positions as well. Figure 8 is a rather 
unusual structure factor for a two-dimen- 
sional liquid, and consequently we 
would not expect two-dimensional pen- 
tagonal crystals to be very common. 

In three dimensions, however, all the 
experimentally observed peaks in A1-Mn 
are combinations of reciprocal lattice 
vectors that point to the vertices of an 
icosahedron of radius go (17). Now there 
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are second generation peaks at distances 
1.052, 1.701, and 2.0 times qo. In alloys 
that form metallic glasses (20), the struc- 
ture factor has one pronounced peak that 
is broad enough to accommodate order- 
ing at both a fundamental wave vector qo 
and at 1.052 qo. There is, in addition, a 
smaller peak at 1.7 qo and a shoulder at 
2.0 qo. These observations make the 
formation of three-dimensional icosahe- 
dral crystals from an undercooled liquid 
alloy somewhat less surprising. 

Other Exotic Crystallographies 

Quasicrystals with two incommensu- 
rate periodicities have actually been ob- 
served in the past. In 2H-TaSe2, for 
example, there are one-dimensional 
charge density modulations superim- 
posed on a conventional ionic lattice 
(21). The periodicity of the charge densi- 
ty wave is determined by the geometry 
of the Fermi surface and can, in general, 
be incommensurate with the underlying 

crystalline lattice. Krypton overlayers 
on a graphite substrate can form an in- 
commensurate two-dimensional crystal 
whose lattice constant is a continuous 
function of temperature and pressure 
(22). There are three-dimensional incom- 
mensurate spin density waves in chromi- 
um (23). In all these systems, sharp 
diffraction peaks are expected at all 
wave vectors that are linear combina- 
tions of two sets of reciprocal lattice 
vectors with an irrational relationship. 

Fig. 4 (top left). Two-dimensional Penrose tiling, illustrating how the 
arrowed rhombuses (Fig. 3) fit together. Three decagons, all with the 
same orientation, are shown in boldface. All decagons contain five 
thick and five thin rhombuses. Fig. 5 (top right). A regularly 
spaced diffraction grid is superimposed on the Penrose pattern of Fig. 
4. Each shaded row of tiles may be associated with a particular grid 
line. Four similar sets of grid lines with the same spacing d may be 
constructed at angles of 36" and 72" to the set shown. Fig. 6 
(bottom right). First three generations of intensity maxima in recipro- 
cal space for a two-dimensional Penrose tiling. Symbols: (e) first 
generation; (+) second generation; (0) third generation. 
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What distinguishes the new phase of 
Al-Mn from all previous systems is its 
icosahedral symmetry. A consequence 
of this symmetry is the locking of the 
incommensurate length scales in particu- 
lar ratios, determined by geometry (see, 
for example, Fig. 7). In conventional 
incommensurate crystals, the ratio of 
periodicities is a continuous function of 
external parameters such as temperature 
or impurity concentration. The analogy 
between icosahedral A1-Mn and conven- 
tional incommensurate systems is clearly 
presented and exploited in the papers by 
Bak (16). 

Another kind of exotic crystallography 
reflects the distinction between orienta- 
tional and translational order. It is possi- 
ble to imagine phases of matter with 
long-range order in the orientations of 
local crystallographic axes but with 
short-range translational order. A famil- 
iar example is the nematic liquid-crys- 
tal phase, in which rod-like molecules 
align themselves parallel to some chosen 
axis. 

A more surprising example is the hex- 
atic phase, which appears in theories of 
dislocation-mediated melting in two di- 
mensions (24). Hexatics are liquids with 
extended correlations in the orientations 
of local hexagonal packing units. Bulk 
hexatic phases have been observed in 
certain smectic liquid crystals (25), in 
which molecules are stacked in two- 
dimensional liquid-like layers. In the 
hexatic phase, there is a sixfold modula- 
tion in the in-plane x-ray diffraction pat- 
tern, with intensity maxima at positions 
characteristic of a two-dimensional trian- 
gular lattice. The peaks of the hexatic are 
not sharp 6-functions, however. The 
translational correlation length, as mea- 
sured bv the inverse radial width of the 
Bragg spots, is finite and varies continu- 
ously with temperature. In the material 
95SBC, translational correlation lengths 
roughly as large as 500 A (about 100 
molecular diameters) have been mea- 
sured in the hexatic phase (26). 

In two dimensions, it is natural to 
suppose that particles in a liquid will 
arrange themselves to form short-range 
hexagonal rather than pentagonal order. 
As pointed out by Frank (27), however, 
there are energetic reasons for the icosa- 
hedron to be preferred in three dimen- 
sions. In 1981, Steinhardt and co-work- 
ers studied icosahedral orientational or- 
der in a molecular dynamics simulation 
of an undercooled Lennard-Jones liquid 
(28). They observed icosahedral correla- 
tions that grew with undercooling and 
proposed an icosahedral analog of the 
hexatic phase. It is possible that the 

J 8 

6 Fig. 7 (left) Decomposition of the decagon of 

44  
brightest spots in Fig. 6 into a pentagonal set 
of five basis vectors. Two of these vectors can 

be combined to give a vector which is the negative of the golden mean times another element of 
the set: q' = q, + q5 = -%(I + fl)q3. Fig. 8 (right). Hypothetical liquid structure factor 
that might give rise to a two-dimensional Penrose crystal at low temperatures. The large arrow 
at qo corresponds to the radius of the primary peaks in Fig. 6. The radii of the second-generation 
peaks in Fig. 6 are marked by smaller arrows. 

icosahedral phase of A1-Mn is a kineti- 
cally frozen version of such an icosahe- 
dral "liquid crystal," with a large but 
finite translational correlation length. 
The translational order would then be 
expected to be broken up by disloca- 
tions, in analogy to what happens in two- 
dimensional hexatics (24). Few disloca- 
tions appear in lattice images (4), howev- 
er, so that the icosahedral liquid crystal 
interpretation appears to be an unlikely 
one for Al-Mn. The finite translational 
correlation lengths observed experimen- 
tally (29) are probably due to frozen-in 
strains. 

Open Questions 

Although models based on the Penrose 
tiles properly account for the peak posi- 
tions in the Al-Mn diffraction patterns, 
we do not yet have a good understanding 
of the peak intensities. Knowing the in- 
tensities amounts to knowing how the 
aluminum and manganese atoms are dis- 
tributed in the two rhombohedra1 unit 
cells. Icosahedral crystals form over a 
composition range of about 10 to 25 
atom-percent manganese, which further 
complicates the issue. We would also 
like to know what energetics favor for- 
mation of these cells. Can we predict in 
advance which alloys would be likely to 
form an icosahedral phase? How do 
these materials grow? 

Other questions concern defects. We 
might, for example, try to make an edge 
dislocation by removing a half-row of 
shaded rhombuses in Fig. 5. Although 
the remaining tiles fit neatly together, the 
arrows on the edges of the rhombuses no 
longer match (see Fig. 4). If there are 
forces corresponding to these arrows, 
edge dislocations formed in this way will 
be partials, connected by a stacking 
fault. Levine and colleagues have con- 

structed a hydrodynamic theory of icosa- 
hedral crystals (18) and have found that 
dislocations are possible but that they 
must be characterized by six-index Bur- 
gers vectors. It is convenient to use five- 
index Burgers vectors in two dimen- 
sions. Unlike ordinary dislocations, 
these defects involve rearrangements of 
particles at arbitrary distances from the 
dislocation core. It is not yet known 
whether these defects will occur natural- 
ly in a growing crystal, and, once pre- 
sent, whether they will be able to move 
under deformation. 

The cooling techniques employed to 
make icosahedral Al-Mn are commonly 
used to fabricate metallic glasses. It will 
be interesting to see whether icosahedral 
Al-Mn can be reconciled with our under- 
standing of these systems. If the alloy is 
cooled very rapidly, the icosahedral 
crystal can be bypassed and an A1-Mn 
glass can be made (30). Many metallic 
glasses are believed to contain short- 
range icosahedral order, broken up by 
wedge disclination lines (31). This 0rdc.r 
is conveniently measured with respect 
to an ideal icosahedral template (called 
polytope {3,3,5}), which is only defect- 
free when embedded in the curved sur- 
face of a four-dimensional sphere. A 
good description of the structure factor 
of glassy metals can be obtained by use 
of this approach (32). The ground states 
in these theories are ordered arrays of 
disclination lines. The Frank-Kasper 
phases of transition metal alloys, which 
contain many icosahedra, are common 
examples. It is also possible to construct 
an aperiodic Frank-Kasper phase with 
long-range icosahedral order, notwith- 
standing the presence of a dense network 
of disclination lines (17). The precise 
relationship if any, between icosahedral 
Al-Mn and the icosahedra in metallic 
glasses and the Frank-Kasper phases is 
another open question. 
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Neurotrophic Factors 

Hans Thoenen and David Edgar 

The development and maintenance of 
function of the nervous system results 
from the concerted interaction of a great 
variety of genetic and epigenetic regula- 
tory mechanisms. Transplantation and 
ablation experiments performed during 
this century have demonstrated that the 
survival of developing vertebrate neu- 
rons can be determined by their fields of 
innervation (1). So far, however, only 
one trophic factor has been shown to be 
responsible for this epigenetic determi- 
nation of neuronal survival: the protein 
nerve growth factor (NGF) was demon- 
strated to be required for the survival of 
developing peripheral sympathetic and 
sensory neurons by showing that neu- 
tralization of endogenous NGF by anti- 
bodies to NGF (anti-NGF) resulted in 
the death of these neurons (2). More 
recently, numerous tissue culture experi- 
ments have been used to show that NGF 
is only one of a number of molecules able 
to maintain the survival of embryonic 
neurons in vitro, implying that such mol- 
ecules might also function as trophic 
factors to support neuronal survival in 
vivo (3). The central thesis of this article 
is that in order to prove that putative 
trophic factors (detected by experiments 
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in vitro) do have a physiological role, it is 
necessary to purify them to produce spe- 
cific antibodies to them. Accordingly, 
the consequences of neutralization of the 
endogenous molecules in vivo-and 
hence their physiological role-can then 
be established. 

Nerve Growth Factor 

The detection of large amounts of 
NGF in the submandibular gland of the 
male mouse some 30 years ago was a 
prerequisite for its purification, neces- 
sary for the production of anti-NGF to 
delineate the neurotrophic actions of 
NGF in vivo (2). In addition, determina- 
tion of the amino acid sequence of mouse 
NGF more than a decade ago (4) provid- 
ed the information necessary for its re- 
cent molecular cloning (5). This work 
has now led to the elucidation of the 
structure of the NGF precursor and its 
genomic organization. Thus, the major 
part of the precursor sequence has been 
shown to be on the amino terminal side 
of P-NGF (the active subunit of the NGF 
molecule), whereas the carboxyl termi- 
nal arginine is followed only by two 
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amino acids. The region coding for P- 
NGF represents about one-third of the 
total precursor messenger RNA 
(mRNA). Analysis of the organization of 
mouse and human genomes has shown 
that the NGF gene is present as a single 
copy, and that all the information for the 
P-NGF sequence is located in a single 
exon. Moreover, the amino acid se- 
quence homology of mouse and human 
NGF is more than 90 percent, as de- 
duced from the genomic DNA sequence 
(5). 

A sensitive two-site enzyme immuno- 
assay allowing determination of the NGF 
present in effector organs has only re- 
cently been developed, allowing a major 
gap in the NGF story to be closed (6). 
These investigations demonstrated a cor- 
relation between the density of sympa- 
thetic innervation and the levels of NGF 
in the corresponding peripheral target 
tissues; experiments with tissue culture 
have shown that the local concentration 
of NGF determines the extent of ramifi- 
cation of sympathetic nerve fibers in 
vitro (7), implying that the levels of NGF 
in target tissues may be responsible for 
the density of sympathetic innervation. 
Tissue culture experiments have also 
shown that target tissues can synthesize 
NGF in vitro (8), and recent work with 
nucleic acid probes to quantify the 
mRNA for NGF demonstrates that lev- 
els of NGF are correlated with the 
amounts of its mRNA (9). Thus, the rate 
of synthesis of NGF in target tissues is 
probably determined by regulation of 
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