
numbers. But, says Mazur, "the more 
general definition of a unit comes into 
play when mathematicians look at what 
they call algebraic integers. These are 
expressions that act like integers but are 
a bit more complicated. " 

An example of a system of algebraic 
integers is the collection of all numbers 
of the form A+BV% where A and B are 
ordinary integers. You can add and mul- 
tiply numbers of this form and the an- 
swer will always be a number of the 
same form. The units of a system of 
algebraic integers are those algebraic in- 
tegers whose reciprocals are also alge- 
braic integers. So, for example, in the 
system of algebraic integers of the form 
A+B*, 1 + is a unit since its re- 
ciprocal is -1 + V?. In fact, Mazur 
notes, any unit in this system is either a 

power of 1 + V? or a power of its recip- 
rocal or the negative of any of these. 

Other systems of algebraic integers 
can be more complicated and their units 
can be difficult to determine. Harold 
Stark of the Massachusetts Institute of 
Technology and the University of Cali- 
fornia in San Diego conjectured that 
there is an amazing relationship between 
certain expressions involving the loga- 
rithm of these units of algebraic integers 
and the behavior of particular functions, 
called non-Abelian L functions, L(s), at 
the point where s is 0. He proposed that 
you can start with these functions from 
analysis, L(s), and get expressions in- 
volving the logarithms of units of alge- 
braic integers and, in special cases, get 
the logarithms of the units themselves. 
What is surprising is that Stark thereby 

connects analysis and number theory. 
Stark showed that his conjecture is 

true in some cases. And although no one 
yet has an inkling of how to prove the 
conjecture in general, work on it has 
suggested several new mathematical 
ideas. 

Tate recently wrote a book on these 
developments and proved the conjecture 
in another special case. Tate's proof then 
led to new questions about the units of 
algebraic integers and Chinburg reported 
on recent research on these questions. 

Other talks at the meeting were on 
problems relating number theory to alge- 
bra, algebraic geometry, and analysis. 
The theme, says Mazur, "is connecting 
what once seemed to be the unconnecta- 
blew-a possiblity that is bound to be 
exciting.-GINA KOLATA 

When Are Viscous Fingers Stable? 
Recent research concludes that a single, stable finger can form 

when a lower viscosity fluid pushes against one of higher viscosity 

Interest in viscous fingering, a dec- 
ades-old problem in the fluid dynamics 
literature, has taken on new life in the 
last few months. Activity is on two 
fronts, which already look as though 
they are quite closely related. 

In the first area, theorists find they can 
now explain the persistence over long 
times of the distinctive finger patterns, 
although a complete quantitative de- 
scription of the shapes is not yet in hand. 
At the same time, experimentalists and 
theorists have been jointly exploring the 
limits of the fingers' stability and find it 
to be not unlimited. A low surface ten- 
sion at the interface between the two 
fluids, a large interface velocity, and 
fluctuations or noise at the interface all 
degrade the stability and give rise to 
distortions in the fingers in both numeri- 
cal simulations and experiments. 

The second area concerns the recently 
fashionable topic of fractal behavior in 
physical systems. Fractal objects have a 
property called self-similarity-that is, 
they have similar features at all length 
scales and therefore look the same at all 
magnifications-and are characterized 
by an effective fractional dimension, 
rather than the integer 1, 2, and 3 of 
curves, surfaces, and volumes. 

Self-similarity is a kind of symmetry, 
in this case invariance under a change in 
length scale. This sort of symmetry was 
a crucial ingredient in the development 
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of the theory of phase transitions (critical 
phenomena) over a decade ago, and 
more recently it has figured in the behav- 
ior known as chaos in nonlinear dynami- 
cal systems (Science, 5 November 1982, 
p. 554). Now scientists hope that it will 
play a similarly powerful role in under- 
standing other physical phenomena. The 
recent observation of fractal viscous fin- 
gers, to be discussed in a second article, 
is therefore causing much excitement. 

The question of the stability and shape 
of viscous fingers is part of a more 
general domain of inquiry called pattern 
formation. Physical systems that evolve 
under conditions far from equilibrium 
often take on characteristic shapes or 
patterns that are governed by a balance 
between competing forces acting on the 
system during its growth. Fluids are an 
especially fertile ground for such pro- 
cesses, as exemplified by the wonderful 
patterns of whorls and swirls that occur 
at flow rates between the laminar and 
completely turbulent regimes (Science, 8 
July 1983, p. 140). 

The mathematically simplest example 
and hence the prototype whose under- 
standing should help with the solution of 
more complex problems in pattern for- 
mation is the single finger that can occur 
when a lower viscosity fluid pushes 
against one of higher viscosity. 

A key event in the modern history of 
viscous fingering was a 1958 publication 

by Philip Saffman (now at the California 
Institute of Technology) and the late Sir 
Geoffrey Taylor of the University of 
Cambridge describing the displacement 
of a viscous fluid, such as oil, by a less 
viscous fluid, such as water, in a cell 
comprising two closely spaced flat 
plates. This flat-plate configuration is 
called a Hele-Shaw cell, after the British 
engineer J. H. S. Hele-Shaw, who in- 
vented it in 1898. As a kind of two- 
dimensional wind tunnel for liquids, it 
was useful for studying fluid flow past 
obstructions, such as ship hulls. 

Saffman and Taylor were more in- 
trigued, however, that the mathematics 
of their two-fluid experiment was also 
the same as that for flow in porous 
media, a problem of great interest to 
petroleum engineers and civil engineers. 
For example, one of the methods of 
enhancing the productivity of an oil field 
is by pumping water or carbon dioxide 
gas into the ground through one well in 
order to force more oil to flow to neigh- 
boring wells. The formation of fingers of 
water or gas in the oil, as was observed 
to occur in laboratory models, plainly 
affects the efficiency of the recovery, 
although there are probably other equal- 
ly important factors in real oil fields, 
such as faults in the rock. 

Whether or not the Hele-Shaw cell 
really does provide a model system for 
fluid flow in porous media, the distinc- 
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tive fingering patterns investigated by 
Saffman and Taylor have emerged as a 
subject worthy of investigation in their 
own right. 

In the case where the viscosity of one 
fluid is much less than that of the other, 
Saffman and Taylor found that an initial- 
ly flat interface between the two became 
unstable as the less viscous fluid pushed 
against its counterpart; that is, small 
bumps formed and grew into fingers. 
However, one of the fingers quickly be- 
came dominant, so that after some time 
the others withered, leaving the victor to 
grow at a steady velocity dictated by the 
pressure on the fluid. 

Upon reaching this steady state, which 
occurred for a wide range of velocities, 
the finger occupied about half the width 
of the Hele-Shaw cell as it continued its 
march down the length of the channel. A 
typical experiment took a half-hour or so 
for a cell 91 centimeters long, 2.54 centi- 
meters wide, and 0.8 millimeters thick. 

On the theoretical side, Saffman and 
Taylor found a continuous family of ana- 
lytical solutions for the steady-state fin- 
ger shape in the limit of zero surface 
tension at the interface between the two 
fluids. Although there was no unique 
solution for the finger under a given set 
of conditions, the one whose width was 
half the cell width matched the experi- 
mental profile quite well. 

While the absence of surface tension 
makes the mathematics tractable, sur- 
face tension is one of two competing 
forces whose balance determines the fin- 
ger size and must ultimately be taken 
account of. 

In brief, the velocity at any point in 
either fluid is proportional to the pres- 
sure gradient there. Because the gradient 
is highest just ahead of an advancing 
finger, growth of the finger is further 
enhanced. This is why a bump on the 
initially flat interface grows into a finger 
in the first place. However, as the finger 
elongates, the interface area accordingly 
also increases, whereas the surface ten- 
sion attempts to minimize the area, Sur- 
face tension therefore inhibits growth of 
multiple fingers and acts as a stabilizing 
influence on a single finger. 

The following year, Taylor and Saff- 
man pointed out a further complication. 
By means of a technique called linear 
stability analysis, in which it is possible 
to determine if small perturbations will 
grow and hence destabilize a pattern, the 
investigators found that all the mathe- 
matical finger solutions were unstable. 
This finding, which means that the finger 
patterns should not reach a steady-state 
condition but should break up into some- 
thing more complex and less orderly, 

was in complete disagreement with the 
experimental results. 

The next chapter in the question of the 
stability of viscous fingers came in 1981, 
when John McLean (now at TRW, Inc., 
Redondo Beach, California) and Saffman 
carried out numerical calculations at Cal- 
tech that included surface tension. In 
their calculations, the investigators ob- 
tained the steady-state shapes of viscous 
fingers, finding a continuous increase in 
the finger width as the surface tension 
increased. But, once again, linear stabil- 
ity analysis turned up the conclusion that 
these numerical finger solutions were 
unstable to perturbations. 

Surface tension is one of 
two competing forces 

whose balance determines 
the finger size. 

One explanation for the discrepancy 
between theory and experiment could be 
that for some reason the steady-state 
solutions arrived at theoretically are not 
the same ones the physical system of two 
viscous fluids actually chooses. Subse- 
quent analysis by J. M. Vanden-Broeck 
of the University of Wisconsin suggest- 
ed, for example, that there is a multiplic- 
ity of solutions for the steady-state equa- 
tions. One way of avoiding unnecessary 
assumptions is to calculate the actual 
time behavior. The main difficulty is that 
the equations of motion together with the 
boundary conditions comprise a nonlin- 
ear problem that is not soluble analyti- 
cally and requires a clever technique and 
a big computer to simulate. 

Two years ago, GrCtar Tryggvason 
(now at the Courant Institute of Mathe- 
matical Sciences in New York) and Has- 
san Aref of Brown University applied a 
specific version of a more general nu- 
merical technique called the boundary 
integral method to the viscous finger 
problem (I). Boundary integral method 
refers to a property of many so-called 
stratified flow systems that it is only 
necessary to track with time the evolu- 
tion of the interface between the fluids. 
The fluid flow away from the interface is 
uniquely determined by the interface 
motion. This feature greatly reduces the 
computational burden. In the context of 
viscous fingering, the specific approach 
adopted by Tryggvason and Aref, fol- 
lowing the earlier work of G. de Josselin 
da Jong at the University of California at 
Berkeley, takes the name vortex sheet 
method because the only place the fluids 
exhibit any vorticity is at the interface. 

The approach was to generate small 

perturbations in a flat interface and cal- 
culate their subsequent time evolution. 
The perturbations were in the form of 
randomly selected collections of sine 
waves of varying wavelength. Their sim- 
ulations included fluids with identical or 
nearly identical viscosities, as well as 
those with a large viscosity contrast. In 
the limit where the viscosity of one fluid 
was vanishly small, Tryggvason and 
Aref found the same type of single finger 
observed experimentally (although these 
and subsequent simulations generated 
narrower fingers than the steady-state 
calculations) and no evidence for insta- 
bilities. 

The single finger that dominates grows 
from the so-called most unstable pertur- 
bation, which has a wavelength fixed by 
the surface tension and the velocity of 
the interface, the viscosities of the fluids, 
and the width and thickness of the cell. 
Fluid dynamics, in fact, is notorious for 
its dimensionless numbers, and these 
quantities make up such a number for the 
Hele-Shaw cell. Dimensionless numbers 
determine scaling properties of the fluid 
flow. In this case, for example, the num- 
ber is called the capillary number and is 
proportional to the ratio of the interface 
velocity and the surface tension, which 
means that reducing the surface tension 
by a factor of 2 or doubling the velocity 
have identical effects. Since experimen- 
tally it is hard to change the surface 
tension, one achieves the same end by 
applying different pressures to the fluid 
in the cell and thereby changing the 
velocity. 

The results of Tryggvason and Aref 
would seem to imply that the viscous 
fingers are in fact stable and that the 
earlier linear stability analyses were 
somehow in error. This year at least 
three groups have looked more deeply at 
the finger stability problem and the reso- 
lution may finally be at hand. 

First, David Kessler of Rutgers Uni- 
versity, Piscataway, New Jersey and 
Herbert Levine of Schlumberger-Doll 
Research, Ridgefield, Connecticut re- 
turned to the steady-state finger solu- 
tions and reformulated the stability anal- 
ysis. They report that, when the surface 
tension is properly accounted for, the 
solutions are linearly stable after all, 
provided that the surface tension is not 
so small as to invalidate the numerical 
methods used (2). 

Apparently, the reason that the earlier 
linear stability analyses reached the in- 
correct conclusion is that the surface 
tension was introduced only as a small 
parameter, a kind of perturbation itself, 
to use in an expansion around the zero- 
surface tension solution. Kessler and Le- 
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vine argued that the introduction of any 
finite surface tension completely alters 
the analysis. Inclusion of the surface 
tension made it impossible to do the 
stability analysis analytically, but nu- 
merical solutions were obtainable. 

Second, at the Exxon Research and 
Engineering Company, Annandale, New 
Jersey, Anthony DeGregoria and Leon- 
ard Schwartz attacked the stability issue 
by numerically simulating the growth of 
small perturbations on the tips of fingers 
having the Saffman-Taylor steady-state 
shapes. They concluded that the Angers $ 
were linearly stable (that is, small pertur- $ 
bations did not grow) but were nonlin- 3 
early unstable (large perturbations did -o 
grow) (3). 

The Exxon calculations proceeded in d 
two parts. The first was to reproduce the $ 
fingers in a way similar to that of Trygg- f 
vason and Aref; that is by following the $ - 
interface, in this case a single sine wave. 2 
However, DeGregoria and Schwartz $ 

time evolution of a perturbation on a flat : 4 used a different numerical implementa- O 

tion of the boundary integral method that Tip splitting 

allowed them to simulate very low sur- Sequence of growth stages for viscous finger- 
ing when the sudace tension at the interface face tensions. Wheh the surface tension the is low. Times are 90, 110, 

is low, the simulations require high spa- 140,171, and210 seconds after the start of the 
tial resolution, which means that more experiment. 
p0ihtS have to be calculated to accurate- 
ly trace the interface, and this increases grow enough to dominate the subsequent 
the computational burden. Second, to time evolution of the finger before sliding 
determine the stability of the fingers, the into the damping regions down the sides 
theorists introduced deformations, such of the finger. 
as notches, near the tip of the finger and Third, at the University of Chicago, 
followed their fates. David Bensimon has calculated in a lin- 

Small notches placed at the tip were earized model the effect of noise on the 
found to initially grow, but they subse- growth of viscous fingers (4). Experi- 
quently decayed. Presumably, the tradi- mentally, one does not neatly cut notch- 
tional linear stability analysis would es into the tip of a liquid finger, but 
have concluded that these perturbations imperfections in the experimental appa- 
would destabilize the fingers because the ratus effectively do this automatically. It 
analysis would only "see" the early is extremely difficult to build a Hele- 
growth stage. According to the simula- Shaw cell with perfectly flat and parallel 
tions of DeGregoria and Schwartz, the plates, for example. Researchers call the 
perturbations initially grow because of random imperfections introduced in this 
the high pressure gradient at the finger way noise. In numerical simulation, 
tip. However, as the tip continues to noise is introduced by making the inter- 
move down the Hele-Shaw cell, the per- face position vary randomly. 
turbation slides down the side of the Bensimon found that the noise needed 
finger to a region of lower pressure gradi- to destabilize a growing finger decreases 
ent, where the relative influence of the exponentially as the interface velocity 
surface tension is larger and its growth is increases or, equivalently, as the surface 
dampened. tension decreases. In this way, they have 

Larger notches caused a phenomenon come full circle to the original analysis of 
known as tip splitting, in which the finger Saffman and Taylor. As the surface ten- 
bifurcated and then continued to grow as sion vanishes, no noise at all is required 
a symmetric pair of fingers. It was also to destabilize the fingers. Numerical sim- 
possible to introduce asymmetric bifur- ulations at Chicago similar in spirit to 
cations in which only one of the pair those at Exxon, where noise has also 
continued down the channel, while the been seen to have a destabilizing effect 
other remained in a vestigial form. In on otherwise stable fingers, confirm 
either case, the proposed explanation is these conclusions. 
that large perturbations initially can Experimental confirmation of these in- 

stabilities is a tricky business, partly 
because of the huge effect that the details 
of the wetting of the walls and plates of 
the Hele-Shaw cell can have on the for- 
mation and evolution of the fingers. All 
the theorists used a quite simplified mod- 
el of this wetting. Nonetheless, confir- 
mations are beginning to come in. At 
Stafiford University, for example, 
Chang-Won Park (now at Union Car- 
bide, Bound Brook, New Jersey) and 
George Homsy have recently completed 
experiments using a much wider Hele- 
Shaw cell than Saffman and Taylor did in 
the original experiments (5). According 
to the scaling in the dimerisionless capil- 
lary number relevant to flow in the Hele- 
Shaw cell, increasing the cell width has 
the same effect as decreasing the surface 
tension, thereby making observation of 
the tip-splitting instability easier. 

For small capillary number (large sur- 
face tension), the Stanford experinient- 
ers found fingers of air pushing into a 
glycerine-water mixture of the same size 
and shape as seen by Saffman and Tay- 
lor. As they increased the capillary num- 
ber, however, they observed the onset of 
an asymmetric tip splitting in which the 
dominant subfinger grew to the size and 
at the rate of standard, stable fingers (see 
photo). Tip splitting occurred at regular 
intervals, so that this scenario repeated 
itself periodically. 

In experiments still in progress at Chi- 
cago that are aimed at quantitatively 
checking the various theoretical predic- 
tions, Patrick Tabeling and Albert Lib- 
chaber are seeing quite similar effects. 
Above a certain value of the capillary 
number, they observe an asymmetrical 
deformation in which one side of the 
finger grows a little more than the other. 
Tip splitting occurs at still higher capil- 
lary numbers. 

Taken together, these investigations 
seem to be putting a lid on one aspect of 
the viscous fingering. The recent work 
suggests that stable fingers exist over a 
wide range of capillary numbers, includ- 
ing very large values, but that they be- 
come increasingly liable to small pertur- 
bations as the capillary number grows. If 
a stable finger does not form, the fluid 
behavior becomes much more complex 
and may exhibit fractal behavior, as will 
be discussed in the second article. 

-ARTHUR L. ROBINSON 
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