
Research Mews- 

Must "Hard Problems" Be Hard? 
Computer scientists have new hope that they 

will be able to learn how hard problems really are 

Mathematicians have a joke that the 
way to live forever is to choose a prob- 
lem that is so important that you cannot 
die until you solve it. Then never work 
on it. I[n the field of computational com- 
plexity theory, the polynomial hierarchy 
problem was beginning to look as if it 
would be suitable for someone who 
wants to become immortal. It is diffi- 
c u l t - ~ ~  difficult that, as Ronald Graham 
of AT&T Bell Laboratories puts it, 
"many mathematicians have broken 
their pencils on it." It is important- 
perhaps the most important problem in 
theoretical computer science. And, until 
recently, it looked as if it was unlike- 
ly to be solved in the foreseeable fu- 
ture. 

But now Andrew Yao of Stanford Uni- 
versity has announced a difficult and 
complex proof that, although it does not 
directly solve the problem, may at least 
give mathematicians a foot in the door. It 
is, says Graham, "one of the most strik- 
ing developments yet," in work on the 
problem. Although Yao is still in the 
process of writing up his 25 or so page 
result, already mathematicians from 
around the world have begun phoning 
him and leaving electronic messages of 
congratulations on his computer. 

The problem is to decide just how hard 
it is to solve problems on computers. 
Researchers have classified groups of 
problems according to how much time 
they seem to require for their solutions 
and have generated what they call a 
"pol!inomical hierarchy" of classes of 
problems that seem to be increasingly 
difficult to solve. The questions are, Is 
this hierarchy real? Does it reflect the 
true nature of problems or does it merely 
reflect our own inadequacies in solving 
them? Could it be that even the hardest 
problems at the top of the hierarchy are 
actually easily solvable? Most computer 
scientists believe that the hierarchy is 
real, but proving it is quite a different 
matter. This is the problem in which Yao 
has made a dent. 

At the bottom of the hierarchy are the 
problems that are easiest to solve. These 
are problems that can be solved in a 
number of steps that is only a polynomial 
function of the size of the problem. For 
example, a problem with n variables 
might be solved in n2 steps. This is a 

good situation since the number of com- 
putations grows only slowly as the prob- 
lem size gets larger. If n goes from 10 to 
20, for example, the number of steps, n2, 
only quadruples. Since, in computer sci- 
ence, the number of steps needed to 
solve a problem is proportional to the 
amount of time needed, the researchers 
coined the term polynomial time, or P, to 
describe this group of problems. 

One example of a polynomial time 
problem, according to Graham, is that of 
pairing acquaintances. You have a group 
consisting of equal numbers of men and 
women, each of whom knows some of 
the others. Can you pair each man with a 
woman he knows? This problem occurs 
in other guises as a problem in graph 
theory and design of networks. 

Yao's proof is "very 
intricate and deep rather 
than just a clever trick." 

After the polynomial time problems, 
the problems in the hierarchy get more 
and more complicated. All of them are 
suspected to be exponential time prob- 
lems, meaning that the only general solu- 
tions for them require a number of com- 
putations that is an exponential function 
of the size of a problem. For example, a 
problem with n variables might require 
2" steps, which is an exponential func- 
tion of n. In this case, if n increases from 
10 to 20, the number of steps necessary 
to solve the problem increases 1000-fold. 
The exponential time problems take so 
long to solve that, in most cases, it is 
completely impossible to even think of 
grinding out their solutions on a comput- 
er and researchers have had to deal with 
special cases or approximations to their 
solutions instead. 

The second step In the hierarchy is the 
set of problems classified as NP, for 
nondeterministic polynomial time. These 
are problems that have no known poly- 
nomial time algorithms, but, given a pos- 
sible solution, you could check it in 
polynomial time. 

One of the best known NP problems is 
the notorious traveling salesman prob- 
lem. A salesman has to plan a route that 

takes him to, say, 60 cities, passing 
through each one only once but only has 
enough time to go, say, 5000 miles. Is 
there a route that allows this? "It is 
certainly easy to check that a given route 
works, but finding it yourself is certainly 
hard," says Michael Sipser of Massa- 
chusetts Institute of Technology. Yet 
this problem is an immensely important 
one and plagues numerous corporations, 
including airlines that must plan routes 
and telephone companies that must de- 
cide the best order to drill holes during 
the fabrication of printed circuit boards. 

One way to solve the traveling sales- 
man problem is to try all possible routes, 
looking for the shortest, and, in fact, 
although this method is cumbersome and 
far from clever, no one has ever found a 
significantly better way that will work 
for all possible traveling salesman prob- 
lems and that will always give the short- 
est route as its answer. But, if there are 
60 cities, this method would take more 
than 10" steps, and the number of steps 
increases astronomically as the number 
of cities is increased. In order to get 
answers to practical traveling salesman 
problems, computer scientists have de- 
vised methods that are faster than the 
brute force one but that are not guaran- 
teed always to find the best route. What 
they promise instead is to give a route 
that is not too bad. 

Another well-known NP problem is 
the Hamiltonian circuit problem. You 
are given a graph, which is a set of 
points, some of which are connected by 
lines, and are asked to decide, Is there a 
circuit connecting the points so that each 
point is in the circuit and the circuit goes 
through each point only once? It is like 
the traveling salesman problem, only 
you are not asked to find the shortest 
route-all you are asked is whether a 
route can even be drawn. 

As hard as the NP problems are, they 
are only the beginning. In the hierarchy 
classification, computer scientists distin- 
guish them because they all have the 
form, "There exists . . ." and the prob- 
lem is to answer yes or no. In the case of 
the traveling salesman problems, this is 
formulated as "There exists a 5000 mile 
route." The Hamiltonian circuit problem 
is of the form, "There exists a Hamilto- 
nian circuit. " 
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Building Boolean circuits 
--- ~ - 

The "and" and "or" gates along u'ith the negation make up the circuit. With these, you c a t ~  
build a 4 input parity circuit with depth 4. But if you squeeze the depth of this circuit dowt~ to 2,  
its u'idth blows up. [Source: Michael Sipser] 

The next step up the hierarchy is the one move. The game is short but it still 
set of problems that are formulated, may be hard to tell who will win. For the 
"For all . . . there exists . . . ." "For fourth level. the total number of moves 
example," says Sipser, "the lines of a in the game is three. Once again, the 
graph might represent roads in the north- question is, Who will win the game? 
east. One-half might be impassable be- "Polynomial space can also be seen as a 
cause of snow. Is there guaranteed to be game," says Karp, "but it is agame with 
a Hamiltonian circuit?" Or, "For all no fixed number of moves. It is a game 
ways of pulling out half the edges of a like chess or Go and the problem is to 
graph, is there a Hamiltonian circuit?" decide who will win after the first move 

The fourth step up is problems of the has been made by the first player." 
form, "For all . . . there exists . . . for The question that plagues computer 
all . . . there exists . . . ." For all ways scientists is to determine whether the 
that you can find to pull out one-half of polynomial hierarchy is real or whether 
the edges out of a graph there exist one the classes actually are all the same, 
half of these that I can choose to put which would mean that all the problems 
back so that for all ways you can find of in the hierarchy are really solvable 
pulling out one-fourth of these there ex- quickly, in polynomial time. And, if 
ists a Hamiltonian circuit made up of the there is at least some true distinction 
remainder. The fifth step is problems of between problems in the hierarchy, is 
the form "For all . . . there exists . . . the entire hierarchy distinct or does 
for all . . . there exists . . . for all . . . some of it collapse? Assuming there is a 
there exists . . ." The hierarchy goes up hierarchy, where does it stop? Finally, is 
in this way and at the top of it are polynomial space different from the rest 
problems that mathematicians call of the hierarchy? 
"polynomial space. " 

Richard Karp of the University of Cal- 
ifornia at Berkeley says you can think of 
the polynomial hierarchy as games with 
alternating moves. Polynomial time 
problems are like solitaire. There is only 
one player and the outcome is fixed. The 
third level of the hierarchy is like a game 
where you and your opponent each have 

These questions are of immense practi- 
cal importance because they essentially 
ask whether problems that arise daily 
have straightforward, although as yet 
undiscovered, solutions or whether they 
are as dificult as they appear. If the 
polynomial hierarchy is real, the best that 
can be hoped for is approximate solutions 
to these very difficult problems. 

For awhile, it looked to many re- 
searchers as if the way to get at the 
polynomial hierarchy problem is with 
mathematical logic. The idea was to look 
at the logical structure of the problems 
by getting outside them, into what is 
really another world. Suppose, the logi- 
cians reasoned, there were an oracle-an 
all-knowing creature that could answer 
one particular type of question for you. 
For example, the oracle might have a list 
of every possible graph with a Hamilto- 
nian circuit. Then if you wanted to know 
if your graph has a Hamiltonian circuit, 
all you would have to do is ask the oracle 
if your graph is on his list. 

But the oracle work had a curious 
outcome. What happened was that two 
groups of researchers, John Gill of Stan- 
ford and Robert Solovay of the Universi- 
ty of California at Berkeley and, inde- 
pendently, Theodore Baker, now at 
Florida State University, and Alan Sel- 
man of Iowa State University showed 
that there exist oracles that make the 
class of problems called NP, the second 
class of the hierarchy, collapse into the 
first class, P. On the other hand, there 
are other oracles that make P and NP 
completely different. This result, says 
Juris Hartmanis of Cornell University, 
"came as a great shock." 

Still, it seemed to computer scientists 
that if the polynomial hierarchy really is 
a hierarchy, then there should be an 
oracle that can separate the whole string 
of classes of problems. But they were 
stymied. They were able to show that 
there are oracles that can separate the 
fourth class of problems from P and NP 
but no one could extend the separation 
any farther. 

Then, a few years ago, Sipser, work- 
ing with Merrick Furst and James Saxe 
of Carnegie-Mellon University, found 
another way to get at the polynomial 
hierarchy problem. They discovered, 
says Sipser, that "the problem can es- 
sentially be phrased as a question about 
Boolean circuits." These circuits, famil- 
iar to computer hardware designers, are 
networks of gates that compute "ands" 
and "ors." Computer information is 
stored as bits, which are 0's and 1's. To 
work with these bits, the computer com- 
bines them with "and" and "or" func- 
tions. "Once you have these circuits, 
you can compute all kinds of things," 
Sipser says. "Now imagine that you are 
making networks to tell you how to solve 
problems in the class P and problems in 
the class NP. If you can prove that the 
network has to be really big for NP but 
not for P, then you have proved that P 
does not equal NP." 

However, no one knows how to prove 
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that these Boolean circuits have to be 
really big for problems in NP and for 
problems farther up the polynomial hier- 
archy. So what Sipser and his colleagues 
did was to look at restricted versions of 
the network. Suppose that the networks 
can grow as wide as you want but that 
their depth is limited. Then, Sipser 
asked., Can you prove that there is a 
difference between classes in the polyno- 
mial hierarchy? The three investigators 
looked at the parity function, which sim- 
ply computes whether there is an even or 
odd number of ones in a string of bits and 
showed that, if they limit the depth of the 
circuit, the width of it blows up so that it 
is bigger than any polynomial. At about 
the same time, Miklos Ajtai of Hungary, 
who is now at IBM in San Jose, proved a 
similar result. 

But this finding, impressive as it was, 
was not enough to show that the polyno- 
mial hierarchy is distinct in this restrict- 
ed circumstance. This result was finally 
obtained by Yao, who now has shown 
that the width of the Boolean circuit for 
the parity function increases even faster 
than Sipser, Furst, and Saxe and Ajtai 
found. It grows exponentially, which is 
incomparably faster than polynomial 
growth. And, as a consequence and ex- 

tension of his result, he showed that 
there exists an oracle for which the poly- 
nomial hierarchy is distinct. 

It is, says Yao, "a difficult proof." 
Sipser describes it as "very intricate and 
deep rather than just a clever trick.'' But 
Yao, Sipser, and others think the impli- 
cations of the proof go far beyond the 
immediate discovery that the polynomial 
hierarchy is separable in the strange world 
of oracles. In fact, Yao remarks, his 
work is "a positive step" toward proving 
that the polynomial hierarchy may be 
distinct without oracles, although math- 
ematicians find the oracle approach con- 
troversial. Some are enthusiastic where- 
as others say that the results have no 
obvious connection to the real world. 

The true importance of Yao's proof, 
according to even the oracle skeptics, is 
that it shows that a combinatorial ap- 
proach, using Boolean circuits, might be 
used to get at the polynomial hierarchy 
problem. 

Graham explains, "To many people, 
Andy's result provides real evidence that 
there's a lot to be learned by looking at 
sophisticated combinatorial arguments. 
People could never really get their hands 
on circuits until now. I expect that this 
will give people renewed impetus to push 

this approach. There is a lot more hope 
now that the circuits will give you some- 
thing. " 

If the circuits really are to solve the 
polynomial hierarchy problem, and with- 
out an oracle, then researchers will have 
to extend their results to unrestricted 
circuits, those that can grow to any 
depth necessary. How feasible is this? 
Sipser, for one, suspects that it can be 
done. "I have some ideas on how to go 
to unrestricted circuits," he says. "Let's 
just say that I am confident enough to 
invest my time on it." 

And, finally, there is a small but not 
insignificant practical application of this 
highly abstract research. Certain kinds 
of circuits, called programmable logic 
arrays, are easy to put on chips and, 
Sipser points out, "they have intrinsic 
depth limits." Computer engineers had 
noticed that there are certain kinds of 
operations that simply could not be put 
on these circuits, a key one being the 
parity function and another being multi- 
plication. "Everyone knew that you 
can't do parity or multiplication on a 
programmable logic array, but no one 
could prove it," Sipser remarks. "Now 
we know why these things are impossi- 
ble. "-GINA KOLATA 

Synchrotron Radiation Takes Over at Orsay 
Once a small, piggyback operation, the LURE laboratory now has 
exclusive use of all Orsay accelerators and is building a new one 

Those used to a "small science" style 
of research now often have to travel to 
large centralized research facilities in 
order to do forefront experiments. This 
article is one of a series in which Science 
looks at such centers in Europe. 

Orsay. The rags to riches tale of the 
clerk who rises to become president of 
the company applies at least in part to 
the L,aboratory for the Use of Electro- 
magnetic Radiation (LURE in French) 
here at the University of Paris-South. As 
of 1 January, LURE assumed full re- 
sponsibility (hardware, personnel, and 
admimistration) for the accelerators for- 
merly operated for high energy physi- 
cists by Orsay's Linear Accelerator Lab- 
oratory (LAL) and now dedicates them 
to the production of ultraviolet and x-ray 
synchrotron light. 

Now renamed the Laboratory AndrC 
Lagarigue (after its founder), LAL has 
by no means gone out of business. Its 
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high energy physicists, as is the custom 
nowadays in Europe, carry out their 
elementary particle experiments at the 
large laboratories CERN near Geneva 
and DESY in Hamburg. At the same 
time, from its meager start in 1972 as a 
single research group siphoning off ultra- 
violet synchrotron light from the ACO 
electron-positron storage ring at LAL, 
LURE has grown into a major research 
center serving over 400 scientists. 

In addition to 130 former LAL engi- 
neers, technicians, and support staff in- 
herited as part of the restructuring, 
LURE is gaining a 2-billion-electron-volt 
(GeV) electron linear accelerator (the 
one from which LAL got its name) and a 
1.85-GeV electron-positron storage ring 
named DCI, which serves as the x-ray 
source for 11 instruments. The labora- 
tory already had taken control in 1975 of 
the smaller 547-million-electron-volt 
(MeV) ACO, which generates ultraviolet 
light for a dozen experimental stations. 

At 20 years of age, ACO is ancient as 
storage rings go and, of course, was not 
designed with synchrotron radiation in 
mind anyway. LURE is nearing the end 
of the civil construction phase of a pro- 
ject to build Super ACO, an 800-MeV 
machine that should be ready for experi- 
menters in a little under 2 years. Super 
ACO will compare favorably with dedi- 
cated ultraviolet synchrotron sources in 
Berlin and at Brookhaven National Lab- 
oratory (Science, 15 March, p. 1323), but 
it will also be quite innovative. 

Most notably, Super ACO will be the 
first synchrotron facility to rely on a 
special kind of magnet called an undula- 
tor as the primary source of radiation, 
which will make for an extremely bright 
light. As frosting on the cake, it will also 
store a beam of positrons rather than 
electrons in order to enhance the stabil- 
ity and lifetime of the beam and thereby 
allow longer uninterrupted periods of 
bright light for researchers. 
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