
Conclusion 

Online databases for use by the gener- 
al public have been available for little 
more than a decade, but in that short 
time the volume of items available has 
grown more than a thousandfold. Al- 
though limited in subject coverage ini- 
tially, there are now databases that ap- 
peal to users in virtually all disciplines. 
The number of services has increased as 
has the value received per dollar (even 
though the price per hour for given data- 
bases may have doubled in 10 years, the 
number of records in the databases has 
far more than doubled). Online systems 
have become much more sophisticated 
and at the same time intermediary sys- 
tems have been developed to make them 
easier to use. The fledgling activities of 
the early 1970's are a part of a successful 
industry with entrepreneurs appearing 
everywhere. Research and development 
is continuing and the research and devel- 
opment, together with the enthusiasm 
and excitement of the entrepreneurs, 
may well lead to the day when using 
online databases is as routine an activity 
as using telephones. 
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Intelligent Tutoring Systems 
John R. Anderson, C. Franklin Boyle, Brian J .  Reiser 

Computer systems for intelligent tu- ment of training in the mathematics and 
toring are being developed to provide the science topics that are requisite for en- 
student with the same instructional ad- trance to the scientific community and to 
vantage that a sophisticated human tutor the high-technology world. 
can provide (1, 2). A good private tutor There are now over 10,000 pieces of 

Summary. Cognitive psychology, artificial intelligence, and computer technology 
have advanced to the point where it is feasible to build computer systems that are as 
effective as intelligent human tutors. Computer tutors based on a set of pedagogical 
principles derived from the ACT* theory of cognition have been developed for 
teaching students to do proofs in geometry and to write computer programs in the 
language LISP. 

understands the student and responds to educational software available. Almost 
the student's special needs. From its all of this software can be classified as 
beginnings, the computer has been computer-assisted instruction (CAI) in 
viewed as capable of providing such in- contrast to intelligent computer-assisted 
struction, thereby having the potential to instruction (ICAI) or programs that sim- 
improve the quality of education. Of ulate understanding of the domain they 
particular importance is the improve- teach and that can respond specifically 
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to the student's problem-solving strate- 
gies. A large fraction of CAI software is 
of low quality and accounts for much of 
the teacher disenchantment with the 
computer (3, 4). 

There have been attempts to bring 
artificial intelligence techniques to bear 
in development of ICAI (2, 5), but this 
has been viewed as impractical and has 
been largely relegated to the research 
laboratory. One of the reasons was the 
high cost of ICAI. It was common to 
require a million-dollar machine to inter- 
act with one student. and often the re- 
sponse time of the machine was slow. A 
second reason was the large amount of 
time associated with creating education- 
al software. It is thought to take 200 
hours to create 1 hour's worth of con- 
ventional CAI, and the time associated 
with ICAI is thought to be an order of 
magnitude greater. Finally, there was no 
established paradigm for enabling stu- 
dents to acquire knowledge. Early ICAI 
efforts often were ill-focused attempts to 
interact intelligently with the student 
without any clear understanding of the 
impact of those interactions on learning. 

These obstacles to past efforts at ICAI 
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are now being overcome. The cost of 
computing hardware is dropping rapidly. 
Soon personal computers will be able 
to provide intelligent tutoring. For in- 
stance, the personal computers envi- 
sioned for use at the Carnegie-Mellon 
campus (6) in 1986 will be adequately 
powerful. Furthermore, advances in arti- 
ficial intelligence techniques have pro- 
vided more efficient methods for achiev- 
ing intelligent programs. 

Advances in artificial intelligence and 
cognitive psychology have also meant 
real gains in the time to create instruc- 
tional lessons. For instance, we can cre- 
ate instructional lessons at a rate that is 
faster than the 200 to 1 typically cited for 
conventional educational software. This 
is because ICAI can be generative; that 
is, it is not necessary to specify every 
interaction with the student, but only the 
general problem-solving principles from 
which these interactions can be generat- 
ed. 

Finally, advances in cognitive science 
have: provided a theoretical basis for 
designing educational software that can 
be effective. We now have models of 
how successful students perform various 
cognitive tasks (7, 8) .  This enables one to 
be precise about instructional objectives 
for a particular course of study. Further- 
more, current theories address the issue 
of how the student acquires new cogni- 
tive skills. The learning principles de- 
rived from these theories provide the 
direction needed in the design of instruc- 
tional software. We have based our work 
on the ACT" theory of cognition (9, 10). 
In this article, we review briefly the 
assumptions from the ACT* theory that 
are relevant to the design of tutoring 
systems and then describe our approach 
to intelligent tutoring based on this the- 
ory. We present two examples of this 
work, a tutor for high school geometry 
ancl one for LISP programming. 

The ACT-Based Approach to 

Intelligent Tutoring 

The ACT* theory has been embodied 
in computer programs that simulate 
many aspects of human cognition. The 
ACT* theory, which is an attempt to 
identify the principal factors that affect 
human cognition and organize them into 
a complete cognitive theory, consists of 
a set of assumptions about a declarative 
mt:mory and a procedural memory. We 
have found that only certain aspects of 
the theory are relevant to the tutoring of 
cognitive skills-in particular, the proce- 
dural assumptions. 

The procedural component in the 

ACT* theory takes the form of a produc- 
tion system. A production system is a set 
of rules in which each rule represents a 
unit of a skill. Productions are used in 
many cognitive theories (11, 12). Much 
of human cognition appears to unfold as 
a sequence of actions evoked by various 
patterns of knowledge. These steps of 
cognition are given by rules that specify 
which actions to perform under a partic- 
ular set of conditions. An English ap- 
proximation of a production from one of 
the ACT* computer simulations for 
proving a theorem of geometry is the 
following: 

IF  the goal is to prove AUVW 
= AXYZ, 

THEN set as subgoals to - - 
1) prove UV =XY - - 
2) prove VW =YZ 
3) prove LUVW = LXYZ 

This is a backward inference rule that 
embodies the side-angle-side rule of ge- 
ometry. The rule says that when the 
goal is to prove a pair of triangles con- 
gruent, that goal can be achieved by 
trying to prove corresponding pairs of 
segments and their included angles con- 
gruent. The theory does not claim that 
the production exists in this form in the 
student's head, but rather that the stu- 
dent's thought processes follow these 
rules. 

One can also have forward inference 
rules such as: 

IF  the goal is to make an infer- 
ence from the facts that - 
XY = UV, LXYZ = 
LUVW, and = m, 

THEN infer that AUVW 
= AXYZ because of the 
side-angle-side postulate. 

We have successfully used rules like 
these to simulate the sequence of the 
inferences (correct and incorrect) that 
students report making in trying to solve 
a geometry problem. 

As these examples illustrate, produc- 
tions in the ACT* theory are goal-direct- 
ed; that is, their conditions include a 
specific goal. These productions can ap- 
ply only when a goal is set. This goal- 
directed character of cognition proves to 
be the key to much of the tutoring effort. 
It is critical for the student to be aware of 
the goals to be set and achieved to solve 
a problem. 

The conditions of these productions 
contain patterns that must match infor- 
mation held in the student's working 
memory. Working memory, according to 
the ACT* theory, stores what the prob- 
lem-solver currently knows about the 

problem; furthermore, the capacity to 
maintain information in working memory 
is assumed to be limited. It is possible 
that the capacity required for the solu- 
tion of a particular problem will be ex- 
ceeded and thus that critical information 
for the matching of a production will be 
lost. This can result in the failure to 
execute the appropriate production, the 
execution of an inappropriate produc- 
tion, or an error in executing the produc- 
tion. Many errors of learners are due to 
failures of working memory rather than 
to failures of understanding (13). 

A major effort in our tutoring work is 
therefore concerned with helping stu- 
dents to manage working memory load. 
This is accomplished by having the tutor 
encode on the computer screen much of 
the information that a student is likely to 
forget. This enables the student to solve 
the problem more easily and to learn 
from that problem-solving effort. 

In the ACT* theory a learner becomes 
more skilled at a domain by acquiring 
new productions that encode special 
rules for solving problems in that do- 
main. "Knowledge compilation" is the 
name given to the learning mechanisms 
by which new productions are acquired. 
We have used a computer implementa- 
tion of this knowledge compilation 
mechanism to simulate the way students 
learn in a domain (7). The basic feature 
of this mechanism is that it provides new 
rules that summarize many of the pro- 
ductions for the solution of a problem in 
an episode of learning. Therefore, the 
next time the student encounters a simi- 
lar problem-solving context, these new 
rules can produce a more efficient solu- 
tion, one that involves less trial-and- 
error search. 

The technical details of knowledge 
compilation are not important for our 
present purpose; what is important is to 
emphasize that new productions are 
formed only during problem-solving. 
This means that instruction is effective to 
the degree that it can be integrated with 
problem-solving. Therefore, in our tutor- 
ing programs, formal instruction is made 
part of the problem-solving rather than 
preceding the problem-solving. 

We have briefly reviewed four fea- 
tures of the ACT* theory-use of pro- 
ductions, goal structure, working memo- 
ry limitations, and knowledge compila- 
tion-that are the key to the tutoring 
efforts described below. Implications of 
this theory for tutoring include making 
the goal structure explicit, minimizing 
the working-memory load, and giving 
instruction in the problem-solving con- 
text. Another important implication of 
these principles is that students should 
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be given immediate feedback about their 
errors. This will make it easier for the 
student to integrate the instruction about 
errors into the new productions that they 
form. 

These observations point to the value 
of a private tutor who can observe a 
student's problem-solving, provide the 
right instruction at  the right moment, 
correct errors, and identify the problem- 
solving goals. There is evidence that 
private human tutors can be very effec- 
tive at instruction in domains that have a 
significant problem-solving component. 
For  instance, when we compared the 
teaching of programming by human tu- 
tors with classroom instruction of pro- 
gramming, we found a four-to-one ad- 
vantage for the private tutor, as  mea- 
sured by the amount of time required for 
students to get to the same level of 
proficiency. Bloom (14) in his compari- 
sons of private tutoring with classroom 
instruction of cartography and of proba- 
bility found that 98 percent of the stu- 
dents with private tutors performed bet- 
ter than the average classroom student, 
even though all students spent the same 
amount of time learning the topics. The 
poorest students benefited most. There 
was little difference in the achievement 
levels of the best students under the two 
conditions. 

From these general observations 
about the effectiveness of private tutor- 
ing and our own theory, we developed a 
general paradigm for providing students 
with individualized tutoring, which we 
call "model tracing." The model-tracing 
paradigm is built around having a model 
of specific productions for the correct 
solution of the problem by the student 
(called the "ideal model") and produc- 
tions for the errors students can make 
(the bug catalog). The tutor infers which 
rule the student applied by determining 
which one matches the student's re- 
sponse. If it is a correct response, the 
tutor is quiet and continues to trace the 
student's problem-solving. If an mcor- 
rect response has been given, the tutor 
interrupts with appropriate remedial in- 
struction. Other possibilities are that the 
student does not know what to  d o  next 
or that the student's behavior matches 
no production, correct o r  incorrect. Usu- 
ally, this occurs when the student is 
confused. We have found that the best 
thing to d o  in such situations is to tell the 
student what to  do next. If this is ex- 
plained properly, the student is often 
able to get back on a right track. In the 
next two sections we present the geome- 
try and LISP tutors we have developed 
according to this model-tracing para- 
digm. 

The Geometry Tutor 

The geometry tutor (15) is based on 
our earlier work on the problem-solving 
strategies underlying the generation of 
proof in geometry (16). This tutor is 
based on a number of principles derived 
from our learning theory-the use of an 
ideal model, use of a proof graph to 
represent problem structure, instruction 
in context, and immediacy of feedback. 

The Ideal Model for Generating a 

Geometry Proof 

Figure l a  illustrates a geometry proof 
problem as it is initially presented to a 
student by the tutor. This problem is 
considered relatively complex for high 
school students. In it the student has to 
prove the statement printed at  the top of 
the screen and is given the statements at  
the bottom of the screen ("M is midpoint 
of m" and "M is midpoint of m"). As 
in high school geometry textbooks, the 
student is allowed to assume that any 
points that appear collinear are collinear, 
but nothing else can be assumed from the 
diagram. 

At any point in the solution of the 
problem shown in Fig. 1 ,  a number of 
inferences can be made. For  instance, 
from the given fact that M is the mid- 
point of D, it is possible to infer that - 
AM = m. It is also possible to infer 
that L A M F  = i B M E  because they are 
vertical angles. The possible inferences 
can be ordered according to aptness, the 
first of the above inferences being apt in 
this context, but the second one not. 

In this type of problem-solving, stu- 
dents also reason backward from a state- 
ment to be proved to statements that will 
prove them. Thus, a student can reason 
backward from the goal of proving M is 
the midpoint of EF to the subgoal of - -  
proving M E  = M F  by applying the defi- 
nition of midpoint. It is then possible to  
reason backward from this subgoal. For  
instance, the student might reason back- 
ward from the goal of proving ME = MF 
to the subgoal of proving AAME 
= ABMF by applying the rule that cor- 
responding parts of two triangles are 
congruent if the triangles are congruent. 
Alternatively, a student might reason 
backward from the goal of proving ME - = M F  to the subgoals of proving - - -  
ME = AM and AM =- M F  with the in- 
tention of using the transitive property of 
congruence to deduce that ME = m. 
Again, these backward inferences can be 
ordered as to their aptness with the first 
two inferences being quite apt in this 
context, but the last one not. 

The aptness of an inference is not an 
absolute property of the rule of geometry 
that authorizes it. Instead, as indicated 
above, the aptness of an inference de- 
pends on the context in which it occurs. 
As another example, in this problem 
it is not strategic in reasoning forward 
to make the inference that i A M F  - 
I B M E .  However, another inference 
about vertical angles, i AMC = i B M D  
is quite apt, particularly after the student 
establishes that = BM and MC = m. 
Then the congruences of the two pairs of 
sides and the congruence of the angles 
can be used to show that AAMC 
r ABMD by the side-angle-side postu- 
late. 

Thus, our ideal model for generating 
proofs in geometry involves both for- 
ward and backward inference rules with 
contextual restrictions. The following 
rule of forward inference makes use of 
the congruence of two vertical angles. 
This conclusion will then enable a side- 
angle-side inference to  be made. 

I F  X Y = m a n d n = Y W  
and there are triangles 
AXYZ and AUYW where 
X, Y, and W are collinear 
points and U,  Y, and Z are 
collinear points 

THEN infer i X Y Z  = i U Y W  by 
vertical angles. 

As an instance of a contextually bound 
backward rule, consider the following: 

I F  the goal is to  prove two 
lines parallel and there is a 
transversal 

THEN set as a subgoal to prove 
that alternate interior angles 
are congruent. 

The ideal model contains 200 such 
rules ordered according to aptness. The 
model executes the best inference rule 
that applies in a situation, whether that is 
a backward or a forward rule. This sys- 
tem generates proofs for all of the prob- 
lems in the high school geometry topics 
we have been working with, and the 
proofs are like those generated by human 
subjects. Not all of the inferences the 
system makes are part of the final proof, 
but when it deviates from the final proof, 
it deviates in the way we have observed 
in human subjects. 

In summary, the ideal model is an 
effective and human-like proof system 
that contains a set of rules for making the 
most reasonable inference in a particular 
context. This ideal model defines what 
we are trying to get the student to emu- 
late. 
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The Proof Graph and the 

Goal Structure 

It is important to communicate to the 
student the logical structure of a proof 
ancl the structure of the problem-solving 
process by which a proof is generated. 
Figure 1 ,  a to c, illustrates the proof 
graph that we have developed for this 
purpose. The proof graph is shown at the 
beginning of a geometry proof, in the 
middle of the proof, and at the end of 
thal. proof. Figure l a  illustrates the initial 
presentation of the problem. The student 
can reason forward from the given condi- 
tions and backward from the statement 
to be proved. The student adds to the 
graph by a combination of pointing to 
statements on the screen and by typing 
information. Each logical inference in- 
volves a set of premises, a reason, and a 
conclusion. Reasoning forward, the stu- 
dent points to the premises, types the 
reason, and points to the conclusion (if it 
is already on the screen) or types it. For 
instance, the student might point to the 
premise "M is midpoint of m," type 
the reason "definition of midpoint," and 
type the conclusion ''AM = m." Rea- 
sonilng backward, the student points to  
the conclusion, types the reason, and 
then provides the premises. 

Figure 1, b and c ,  shows some of the 
possible states in the development of a 
proof. The student is finished when there 
is a set of logical inferences connecting 
the given statements to  the statements to 
be proved. Figure l b  illustrates how in- 
ferences can be made from the top and 
the bottom to meet in the middle. Figure 
l c  shows how the screen looks when a 
student achieves a final proof; this stu- 
dent made some inferences that were not 
part of the final proof. 

One function of this formalism is to 
illust~rate the structure of a complete 
proof. High school students typically d o  
not understand how the steps of a proof 
fit together and find this structure help- 
ful. The proof graph also concretely il- 
lustrates critical features of the problem 
space-namely, that inferences can be 
made in both forward and backward 
modes, that there are points a t  which the 
student must choose among several in- 
ference rules, and that the ultimate goal 
is a well-formed logical structure. 

Instruction in Context 

All of the instruction with the geome- 
try tutor is provided in the context of 
solving problems. Only one concept (like 
the side-angle-side rule) is introduced at  
a time and it is accompanied by problems 

- 
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DEF-MIDPOINT 
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M 1s m ~ d p o ~ n t  o f  

M is midpoint of & 
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Fig. 1 .  (a) The geometry tutor's initial representation of the problem; (b) a representation in the 
middle of the problem; and (c) a representation at the solution of the problem; SAS, side-angle- 
side. 
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that make use of the concept. The tutor 
does not allow a student to move to new 
concepts until he or she shows mastery 
of the current concepts. This instruction 
mode differs from instructional modes in 
which lectures are separate from prob- 
lem-solving. Our knowledge compilation 
theory implies that it is critical for in- 
struction and problem-solving to be 
closely juxtaposed. 

Immediacy of Feedback 

The fourth feature of the geometry 
tutor is that it provides immediate feed- 
back on the student's problem-solving 
efforts at each step. Whenever the stu- 
dent makes an incorrect inference, the 
system responds by identifying the error 
in the student's logic. For instance, 
when the student tries to use the side- 
angle-side rule but chooses an incorrect 
pair of angles, the tutor will point this out 

to the student. When the student makes 
an inference that is logical but is not on a 
path that leads to a proof (as determined 
by our ideal model), the tutor allows the 
student to explore that path until he or 
she appears to be lost. Then the tutor 
intervenes and points to a correct path. 

Assessment of the Geometry Tutor 

Three students have now learned ge- 
ometry by use of the tutor in various 
stages of its development. One student 
was of above-average ability, one of av- 
erage ability, and one of below-average 
ability (as defined by their grades in 
mathematics courses). The below-aver- 
age student came to us for remedial 
work, having failed tenth-grade geome- 
try. The other two were in the eighth 
grade and had no formal training in ge- 
ometry. All learned geometry success- 
fully and were solving problems more 

1 assume you are trying to test i t  the number argument 
is equal to 0 There is a special tunction tor testing 
equivalence to 0 Try using that function instead of EQUAL 

CODE FOR fact 

(defun fact (nl 
(cond ((equal ) <ACTION>) 

< RECURSIVE-CASE >I)  

I Write code to get the value ot tact 
Code the te rmna tna  case 

1 M u t t p y  n bv one less than n 
2 Multiply n by fact of one less than n 

3 Add n to the result of tact called with one less than n 
4 Have the tutor choose 
Menu Choice 2 

CODE FOR fact 

(defun tact in1 

" ' Code the condition for the tertninating case " ' 

(cond ((zerop n) 1)  

< RECURSIVE-CASE > I )  

Fig. 2. (a) An early point in 
writing the code for factorial; 

EXAMPLES 

fact (n) tact (n 11 
A (tact 11 = 1 (fact 0 )  = 1 
B (tact 3) = 6 tiact 21 = 2 

complex than are usually assigned in the 
schools. After it was over, all claimed to 
like geometry, which is encouraging 
since classroom geometry is usually the 
least liked of all school subjects (17). An 
experimental classroom in a Pittsburgh 
public high school that has a set of 
powerful computer workstations will test 
the geometry tutor in the fall of 1985. We 
are also working toward establishing the 
geometry tutor on more economical ma- 
chines. Growing understanding about 
how to optimize code and the increasing 
power of personal computers should 
make this feasible. 

b 
(b) the tutor guiding the stu- 
dent in designing the algorithm 

The LISP Tutor 

ln examples A and B what do jou  have to do to get the result 

of tact called w ~ t h  n? 
PRESS IF YOU WANT TO 

The LISP tutor, which is used to teach 
basic programming constructs for the 
writing of LISP programs, has been used 
to teach introductory programming at 
Carnegie-Mellon University. The tutor is 
based on studies of how students learn 
programming (7, 18). As was true of the 
geometry tutor, the design of the LISP 
tutor was guided by an ideal model for 
LISP programming, an interface for 
communicating the goal structure of pro- 
gramming tasks, instruction in context, 
and immediacy of feedback. 

for factorial. 

The Ideal Model for LISP 

Programming 

We have developed a production sys- 
tem capable of simulating the way that 
good students code introductory-level 
LISP programs. Currently, the tutor's 
ideal model contains approximately 325 
production rules, including the two pro- 
ductions shown here: 

IF the goal is to multiply 
NUMBER1 by NUMBER2 

THEN use the function TIMES and 
set as subgoals to code 

NUMBER1 and NUM- 
BER2 

IF the goal is to code a recur- 
sive function, FUNC- 
TION, with an integer ar- 
gument, INTEGER 

THEN use a conditional structure 
and set as subgoals 

1) to code the terminating 
case when INTEGER 
is 0, and 

2) to code the recursive 
case in terms of 
FUNCTION (INTE- 
GER - 1). 
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The first rule codes use of the basic 
LISP function for multiplication. The 
second, a more advanced production, 
defines a recursive function dealing with 
integers. The rule sets a first subgoal to 
code the terminating case for the recur- 
sion. For example, to code a factorial 
function, the first subgoal generates 1 as 
the value of O ! .  The other subgoal defines 
the recursive case in terms of a function 
call with one less than the integer. Thus, 
the factorial of n is computed from the 
factorial of n - I ;  that is, n! = 
n X (n - I)!. 

Both of these productions involve set- 
ting subgoals. LISP code is generated by 
decomposing goals into subgoals, and 
these into further subgoals, until goals 
are set that can be directly achieved. 
Students are taught to program accord- 
ing to the goal decomposition methods in 
the tulor's ideal model. 

The Tutorial Interface 

A major design feature of the interface 
has been to provide the student with a 
structured editor with which to enter 
code. The structured editor automatical- 
ly balances parentheses and provides 
placetiolders for the arguments of each 
function. For example, to define a LISP 
function, one specifies the function "de- 
fun," the name of the function, a param- 
eter list, and the function body. To be- 
gin, the student types a left parenthesis 
and the word "defun." At that point the 
tutor redisplays the code as 

(defun <NAME> <PARAMETERS> 

The symbols in brackets indicate argu- 
ments that must be coded. The tutor 
places the cursor underneath the symbol 
<NAME> and illuminates it to indicate 
that this symbol must be coded next. 

This structured editor relieves stu- 
dents of the burden of balancing paren- 
theses and checking syntax, thus en- 
abling them to focus on the aspects of 
LISP that are conceptually more diffi- 
cult. Our results demonstrate that en- 
abling students to pay more attention to 
the central conceptual issues in program- 
ming leads to faster learning of these 
major skills, with no deficit in the stu- 
dent's knowledge of syntax. In addition, 
the s.tructured editor facilitates commu- 
nicat~ion between the student and the 
tutor. The student types directly into the 
code., replacing one of the placeholding 
symbols, and thus it is always clear 
which part of the problem is being cod- 
ed. In the question-answer format of 
most educational software, the student 

can easily get "out of synch" with the 
tutor when the student is not sure which 
part of the problem the tutor is discuss- 
ing or querying. 

The Goal Structure of LISP 

Programming 

The tutor has been designed to com- 
municate the conceptual structure of 
programming problems. This is accom- 
plished in part by using the placeholders 
to provide a template for the rest of the 
problem solution. The tutor also commu- 
nicates the goal structure in its guidance 
in planning LISP programs. When re- 
quested or when the student encounters 
sufficient difficulty, the tutor initiates a 
planning mode in which it leads the stu- 
dent through the design of an algorithm 
to accomplish the current portion of the 
problem. Thus, the student learns how a 
complex problem can be broken down 
into simpler problems to be solved. In 
both coding and planning modes, a spe- 
cial goals window reminds the student 
about the current goal in solving the 
problem. 

Instruction in Context 

As in the geometry tutor, instruction is 
provided in the context of solving prob- 
lems. After each new concept is intro- 
duced, the student is given a number of 
problems designed to put that concept to 
use. The instruction can then be tailored 
to the difficulties encountered and can be 
provided while the student is trying to 
apply new skills rather than merely read- 
ing about them. 

Immediacy of Feedback 

Like the geometry tutor, the LISP 
tutor provides immediate feedback and 
guidance on incorrect and nonstrategic 
steps. In addition to the correct produc- 
tion rules in the ideal model, the tutor 
contains a bug catalog, a collection of 
475 rules that represent errors made by 
novice programmers. The tutor com- 
pares each item of code entered by the 
student to determine which correct or 
incorrect production rule led to that in- 
put. If the input matches a correct rule, 
the tutor is silent and waits for further 
input. If the input is diagnosed as an 
error, the tutor interrupts with advice. 
Thus, the feedback is immediately pro- 
vided, and necessary instruction can be 
given both in general terms and in the 
context of the current problem. 

The tutor also curtails unnecessary 
floundering by providing guidance of 
various sorts. The student can request 
clarification of the current part of the 
problem and can also ask for the next 
step in the solution. In addition, if the 
student has sufficient difficulty in coding 
a particular part of the problem, the tutor 
will intervene. If the current portion of 
code is complex, the tutor initiates a 
planning mode for designing an algo- 
rithm. If the current part of the problem 
is more straightforward, the tutor pro- 
vides the next step, setting the student 
back on one of the correct paths to a 
solution. 

The type of feedback and guidance 
provided by the tutor can be seen in Fig. 
2, a and b. In this example the student is 
writing a recursive function to code the 
factorial of a number. Figure 2a presents 
an early stage in that interaction in which 
the student receives a hint that another 
LISP function is more appropriate than 
the one he or she used. In Fig. 2b, the 
tutor helps the student design an algo- 
rithm after he or she had difficulty in 
coding the recursive case. At the bottom 
of the screen the student has worked out 
some examples of the relation between 
fact (n) and fact (n - I), and he or she is 
being asked to generalize that relation. 

Evaluation of the LISP Tutor 

We have completed two studies of the 
LISP tutor in action. One, completed in 
the summer of 1984, compared ten stu- 
dents learning LISP from the computer 
tutor, ten learning LISP from a human 
tutor, and ten doing all their problem- 
solving on their own (which is the normal 
situation). All three groups of subjects 
read the same instructional material and 
worked on the same problems. The hu- 
man-tutored subjects took 1 1.4 hours, 
the computer-tutored subjects took 15.0 
hours, and the subjects on their own 
took 26.5 hours to cover this material. 
The difference between the two condi- 
tions in which the students were tutored 
was not significant, but both were signifi- 
cantly faster than the students learning 
on their own. The three groups per- 
formed equally well on tests of their 
LISP knowledge. However, this result 
may be deceptive because a number of 
subjects learning on their own did not 
finish the more difficult lessons as a 
result of the amount of time they had 
spent on the earlier lessons. Thus, our 
test scores for that condition are based 
on only the best subjects. 

In the fall of 1984 we assigned ten 
students to the computer tutor and ten 
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students to learning on their own. Both 
groups got the same lectures and read 
the same material. All students complet- 
ed the lessons. However, students work- 
ing with the computer tutor spent 30 
percent less time doing the problems 
associated with the lessons and scored 
43 percent better on the final exam than 
the students working on their own. 

computational power and scientific ad- 
vances in the understanding o f  cognition. 
W e  have focused on the consequences o f  
intelligent tutoring methods for pedago- 
gy. However, we should stress that data 
collected in these pedagogical experi- 
ments advance the science o f  human 
cognition. 
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ically sell for $10,000 to $100,000 and 
superminicomputers sell for $100,000 to 
$500,000. 

3) A new computer class can be pro- 
duced by combining parts in a new way. 
The supercomputer and various micro- 
processor-based computers including 

Multis: A New Class of 
Multiprocessor Computers workstations and multis emerged in this 

fashion. In 1964, the supercomputer 
class was introduced with the CDC-6600, 

C. Gordon Bell although large computers, including 
IBM's Stretch, had been built earlier. 
Seymour Cray's CDC-6600 contained 
about a half-million densely packed, Fre- 
on-cooled transistors connected with 
discrete circuits. Since the CDC-6600, 

Computers so closely reflect electron- 
ic technology that the four generations of 
computers are named, accordingly, the 
vacuum tube, transistor, integrated cir- 
cuit, and microprocessor generations ( I ) .  
Typically, one technology is used until 
the limit o f  work it can handle is reached 
or another technology supersedes it. For 
example, integrated circuits contain as 
many as 2000 transistors on a single 
silicon chip; and microprocessors con- 
tain large-scale and very large scale inte- 
grated (LSI and VLSI )  circuits with as 
many as 2 million transistors per silicon 
chip. Each technology has its own char- 
acteristic cost, speed, power dissipation, 
packing density, and reliability; and the 
different ways in which the technologies 
have been applied have resulted in a 
variety o f  computer classes based on 
price (Fig. 1 ) .  

When a new technology becomes 
available, there are usually three ways to 
make use o f  it, two o f  which generate 
new computer classes: 

1 )  The technology can be used to in- 
crease the performance o f  an existing 
class o f  computers while maintaining the 

cost and selling price, thereby increasing 
the effectiveness for current users. For 
example, mainframe computers were es- 
tablished in 1950 with the Univac I ,  
which cost between $300,000 and $5 mil- 
lion. The best known family o f  main- 
frames was introduced by IBM in 1964 
with the System 360, which was based 
on transistor technology. In the early 
1970's IBM introduced the 370 series. 

Cray has designed nearly all o f  the super- 
computers, which have made use o f  vari- 
ous forms o f  parallel computation to 
execute a single instruction. In Cray's 
latest designs, speed is obtained by pm- 
cessing vectors at over 500 million float- 
ing-point operations per second. Cray's 
supercomputers sell for $4 million to $20 
million. 

In 1971, a single chip processor, the 
which used integrated circuits; and most 
recently the 43xx-380x series, which 
makes use o f  high-performance integrat- Intel 4004 micro~rocessor. was intro- 

duced and used in a wide range of appli- 
cations, from calculators to controllers 

ed circuits, was introduced. 
2) A new, lower cost class o f  comput- 

ers with the same performance as a pre- for microwave ovens. In 1975, Altair 
vious computer can be produced, which 
will result in new applications for com- 
puters. Minicomputers and personal 

introduced the first home computer, 
based on Intel's 8080 microprocessor. 
Today, microprocessors have the fea- 

computers are the best known products 
of  this design path. The first minicom- 
puter, the PDP-8, which was the result 

tures necessary for building high-speed 
computers with virtual memory that 
compare favorably with minicomputers. 

o f  second-generation technology, was 
introduced in 1965 by Digital Equip- 
ment Corporation. By 1972, 91 compa- 
nies had formed to build minicomputers 
with the third-generation technology, in- 

This high-performance component o f  
negligible cost has permitted the intro- 
duction o f  many new classes o f  comput- 

C. Gordon Bell is Vice Chairman of Technology. 
Encore Computer Corporation. Wellesley Hills, 
Massachusetts 02181. tegrated circuits (2). Minicomputers typ- 
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