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Modern supercomputers-the com- 
puters with the largest memories and the 
fastest processors-are making this al- 
ternative approach quite practical. The 
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Numerical Computations 
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Newton established modern mathe- 
matical physics in 1687 with the publica- 
tion o f  his Philosophiae Nnt~rralis Prin- 
cipin Mnthernnticn, in which he showed 
how infinitesimal calculus could be used 
as the fundamental mathematical lan- 
guage o f  science. Since then, calculus 
has been instrumental in the discovery o f  
the laws o f  electromagnetism, gas and 
fluid dynamics, statistical mechanics, 

tion o f  the phenomena o f  nature has been 
less rapid. Here, exact analytic methods 
and linear perturbation methods have 
provided only a tiny subset o f  the set o f  
all possible solutions (the solution space) 
o f  the equations. There are probably vast 
regions o f  the solution space in which the 
character o f  the solutions is qualitatively 
different from the character o f  the known 
analytic solutions. 

Summary. The use of supercomputers and modern color-imaging techniques for 
numerical computation is beginning to fulfill von Neumann's vision that digital 
computers would become the most appropriate tool for solving nonlinear partial 
differential equations. An example of this approach, a model for the gas flow in the 
vicinity of a black hole, is described. From such calculations comes a realization that 
the multidimensional, dynamic solutions of nonlinear partial differential equations can 
exhibit complex behavior compared to what one normally encounters in analytic 
solutions. This complexity includes small-scale chaotic structure and large-scale 
persistently ordered structure. Computational methodology and the aesthetics that 
derive from it are discussed. 

and general relativity. These classical 
laws o f  nature have been described by 
partial differential equations (PDE's) for 
a continuum field. 

The tools o f  calculus have also proved 
powerful for discovering exact analytic 
solutions o f  these equations. Indeed, for 
linear PDE's that are separable, and thus 
reduced to ordinary differential equa- 
tions, such techniques as Fourier analy- 
sis can give all solutions o f  the equa- 
tions. Much o f  theoretical physics is 
based on the results o f  such linear analy- 
sis. However, progress in solving the 
nonlinear PDE's that govern a great por- 
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An alternative approach is to find ap- 
proximate but general solutions for the 
nonlinear PDE's by the use o f  finite 
differences instead o f  infinitesimal differ- 
entials. In this approach, the space-time 
continuum is replaced by a discrete 
space-time lattice o f  events, and the 
PDE's are converted into a large set o f  
coupled algebraic equations. The un- 
knowns in the algebraic equations repre- 
sent the field's values at each point o f  the 
lattice. With enough time, a computer 
can solve the algebraic system for the 
discrete solution. In principle, no sym- 
metry or time independence need be 
imposed. As the spacing o f  the lattice is 
made smaller, the discrete solution 
should approach the one for the continu- 
um. 

result is a revolution in our understand- 
ing o f  the complexity and variety inher- 
ent in the laws o f  nature. Not surprising- 
ly,  these more realistic solutions are al- 
lowing a more constructive interplay 
between theory and experiment or ob- 
servation than has heretofore been possi- 
ble. 

All this was foreseen by John von 
Neumann, who I believe occupies a posi- 
tion similar to that o f  Newton. The math- 
ematician Garrett Birkoff makes this 
point strongly in a recent review article 
about numerical fluid dynamics. He 
paraphrases von Neumann's vision as 
follows ( I ) :  

It seems clear . . . that von Neumann was 
envisioning fluid dynamics as a mathernatical 
science as had Euler, Lagrange, Stokes, Rie- 
mann, and Poincare before him. His main 
point was that mathematicians had nearly 
exhausted analytical methods. which apply 
mainly to linear differential equations and 
special geometries. . . . In short, von Neu- 
mann's proposal was that. with high speed 
digital computers. one could substitute nu- 
merical for analytical methods, tackling non- 
linear problems in general geometries. 

Birkhoff notes that since von Neumann 
made these remarks, computing ma- 
chines have increased in speed by a 
factor o f  one billion and become cheaper 
per computation by a factor o f  ten mil- 
lion. Assessing where we are today, he 
concludes (1): 

. . . numerical fluid mechanics has not and 
will not replace either analytical or experi- 
mental fluid mechanics as a research tool, but 
. . . it complements and supplements them 
invaluably. 

Extending this view from a comment 
on fluid mechanics to a general conclu- 
sion, the mathematician James Glimm 
recently wrote (2):  

Computers will affect science and technology 
at least as profoundly as did the invention of 
calculus. The reasons are the same. As with 
calculus, computers have increased and will 
increase enormously the range of solvable 
problems. The full development of these 
events will occupy decades and the rapid 
progress which we see currently is a strong 
sign that the impact of computing will be 
much greater in the future than it is today. 
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With my colleagues (3),  I have been 
practicing the "von Neumann ap- 
proach" for the past 10 years on a wide 
variety o f  physical problems. Out o f  this 
research has developed a well-defined 
methodology for attacking a broad range 
o f  problems that occur in physics. Our 
approach to complexity complements 
other methods but has unique character- 
istics o f  its own. Many o f  the techniques 
and concepts that are described below 
were developed by M .  L. Norman and 
K.-H. A. Winkler during our research on 
the modeling o f  supersonic gas jets (4). 
Since that research is well documented 
in the literature, I will illustrate the meth- 
odology with a more recent project I 
worked on with John Hawley (5) .  

This project explored what happens 
when gas falls toward a black hole. It is 
not my purpose to explain in detail the 
theory o f  black hole accretion; rather, I 
hope the description o f  this project will 
show the paradigmatic aspects o f  the 
methodology used in any computational 
approach to solving the PDE's that de- 
fine the laws o f  physics. In addition, the 
black hole example exhibits those fea- 
tures o f  complexity that appear to be 
common to many solutions o f  these non- 
linear dynamic PDE's, in particular, a 
large-scale persistently ordered struc- 
ture, which imposes itself on the under- 
lying gas flow. The coherent structure 
is spatially complicated and slowly 
changes with time, but the important 
point is that an approximate simplicity 
and certain morphological features ap- 
pear at a higher level o f  complexity than 
might have been expected. 

Numerical Modeling of 

Black Hole Accretion 

Gas flowing toward black holes is be- 
lieved to be the mechanism that drives 
the "central engine" in quasars and ac- 
tive galactic nuclei. Besides generating 
great luminosity in the vicinity o f  black 
holes, the gas flow may generate the 
bidirectional outflowing jets o f  gas that 
are often observed emerging from galac- 
tic centers (6) .  Because black holes are 
so small, direct observation o f  the gas 
dynamics around them is impossible. 
Therefore, our only hope for an under- 
standing o f  this phenomenon is to solve 
the equations that govern it. 

To  this end, Hawley and I, in collabo- 
ration with James R. Wilson (7, devel- 
oped a computer program that solves the 
general equations that describe relativis- 
tic gas dynamics in the fixed gravitation- 
al field o f  a black hole. The program 

requires the gas flow to be axisymmetric, 
but no other symmetry is imposed. The 
gas obeys the ideal gas law; however, 
shock discontinuities are allowed and are 
modeled by an artificial viscosity (7). No 
effects from real viscosity, heating or 
cooling, radiation, or magnetic fields are 
taken into account in the program. The 
nonlinear, coupled PDE's that describe 
the gas flow (7) closely resemble the 
standard Newtonian ones representing 
mass continuity, energy conservation, 
and the change in momentum caused by 
the effects o f  (relativistic) gravity. The 
solutions o f  these PDE's are the five 
functions needed to specify the density, 
the energy density (or, equivalently, the 
pressure), and the velocity fields on the 
static curved space-time continuum o f  
the black hole. 

Our goal was to discover what hap- 
pens to a rotating gas flow as it falls 
toward a black hole. To  this end. we 
performed a series o f  experiments nu- 
merically. W e  chose appropriate initial 
conditions and boundary values to repre- 
sent such a gas flow, and then we used 
the finite-difference versions o f  the 
PDE's for relativistic gas dynamics to 
calculate the change in the gas flow with 
time. With modern color-imaging tech- 
niques, we could watch the flow develop 
as i f  we were watching an experiment in 
a laboratory. 

W e  model space with a grid based on 
spherical coordinates. In the solutions 
exhibited here, there are 160 evenly 
spaced angular zones from the north pole 
to the south pole and 160 radial zones 
from the surface o f  the black hole to the 
outer spherical boundary (Fig. 1 ) .  The 
radial spacing is increased with distance 
from the hole to keep the grid zones 
approximately square. The PDE's are 
converted to finite-difference equations 
(FDE's) by replacing the differential op- 
erators in the PDE's with Eulerian finite- 
difference operators on the grid (7). 

The resulting PDE's constitute a set o f  
coupled, nonlinear algebraic equations. 
The unknowns are the 160 x 160 = 

25,600 values o f  the five physical varia- 
bles at each time step. The computations 
are started at some instant o f  time by 
assigning all the unknowns initial values, 
and then the equations are solved for 
discrete steps in time. A typical experi- 
ment makes use o f  at least 10,000 time 
steps. Thus, the finite-difference solution 
is a set o f  five variables on a space-time 
lattice o f  250 million points, that is, the 
solution is 1.25 billion numbers. One o f  
the key issues I deal with in this article is 
how to translate this hopeless pile o f  
numbers into recognizable science. 

In the problem described here (a), we 
assumed that a new supply o f  gas had 
begun to fall toward a black hole that had 
previously consumed all the gas in its 
vicinity. To  specify the rotation law for 
the gas, we assumed that all the gas had 
the same value o f  specific angular mo- 
mentum. The calculation was started at 
the time when the inner edge o f  the 
infalling gas had reached a boundary 
radius 50 times the black hole's diame- 
ter, and the gas was assigned a radial 
free-fall velocity appropriate to gas that 
has fallen from infinity. Thereafter gas 
continually poured in across the outer 
boundary. I f  the gas reached the surface 
o f  the hole, it was removed from the 
grid. 

What was the final state o f  the gas 
flow? Before we made our calculations 
there had been little insight into the near- 
hole dynamics o f  nonspherical gas flow. 
However, a number o f  analytic studies 
(7) had given us clues to the character o f  
any such flow. In the exactly soluble 
time-dependent, nonrotating, spherical 
case, the gas flow became supersonic 
before the gas fell into the hole. There- 
fore, as the flow became nonspherical in 
the general case, we expected that shock 
waves would become important. 

In another exactly soluble case, for 
time-independent, nonspherical, rotating 
equilibrium, the natural state for a hot 
pressure-supported gas with constant 
specific angular momentum was an orbit- 
ing thick disk. Such a thick disk (Fig. 1) 
is shaped like a bagel with the black hole 
at the center o f  the bagel hole. The 
closed pressure-contour lines show how 
the pressure decreases with distance 
from a maximum near the surface o f  the 
black hole. Because constant specific 
angular momentum results in a vortex 
flow, the rotational velocity rises with- 
out limit as the axis is approached. 
Therefore, the centrifugal acceleration o f  
the gas will always overcome the gravita- 
tional inward acceleration, resulting in 
an excluded funnel interior to this vortex 
flow. The static funnel wall threads 
through the opening in the bagel hole. 

The first use o f  these analytic solu- 
tions was as calibrators for our program. 
W e  extensively tested (7) various differ- 
encing schemes in our program to deter- 
mine which ones most accurately repro- 
duced the analytic solutions. Second, the 
analytic solutions suggested features for 
us to look for in the general problem. For 
example, do shock fronts develop? How- 
ever, analytic considerations could take 
us only so far. The detailed solution o f  
the fully nonlinear, time-dependent, mul- 
tidimensional, coupled PDE's was need- 
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ed to see whether the incoming, nearly 
spherical, supersonic flow could form a 
highly nonspherical, subsonic, orbiting 
thick disk. 

Exploring the Solution Space 

Having set up  our experiment, we 
began to explore the properties of the 
solution space. The first step was to  
define the dimensionless parameters that 
span the space. For  a given value of one 
parameter specifying the flow, the spe- 
cific angular momentum, the flow will 
change with the variation of another pa- 
rameter, the ratio of the solid angle of the 
incoming flow to the angle subtended by 
the funnel wall. In Fig. 1, the boundary 
conditions for the two extremes of thick 
and thin inflow are indicated. 

Thus, with the initial conditions and 
these boundary values, we selected the 
solution space of the PDE's to be a two- 
parameter (thickness, angular momen- 
tum) family of gas flows in the fixed 
space-time of the black hole. Each com- 
puter run, which shows the development 
of the gas flow in time, is determined by 
one point in that two-parameter solution 
space. Our strategy was to spot-check 
the solution space by computing the re- 
sults for both thick and thin inflows at  a 
number of angular momenta. 

The values of angular momentum were 
determined by the results of analytic 
theory. In Newtonian theory, any parti- 
cle falling toward a llr gravitational po- 
tential finds a turning point a t  some 
radius. In general relativity, the gravita- 
tional pull increases faster than llr;  so 
for sufficiently small angular momenta, 
gravity overwhelms centrifugal accelera- 
tion, and the particle falls into the black 
hole, even though its Newtonian turning 
point would be outside the surface of the 
black hole (7). There is a critical value of 
specific angular momentum at  which this 
effect first occurs. Therefore, for our 
computations we chose values of angular 
momenta that were more than, about, 
and less than this critical value, expect- 
ing qualitatively different behavior in the 
resulting solutions. 

I will describe in detail only one com- 
puter run (8) ,  which resulted from the 
choice of one point in the two-parameter 
solution space. My description will focus 
on the scientific results only insofar as 
they illustrate the scientific methodology 
used in this approach. 

As gas pours onto the grid from the 
outer boundary, it begins to fall toward 
the hole (9). Figure 2 (10) represents a 
cross section of the density field at an 
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Fig. 1. A schematic diagram of 
the black hole accretion prob- 
lem. The black hole in the cen- 
ter creates the gravitational 
field in which the gas flows. 
The gas is orbiting the hole 
with a constant value of spe- 
cific angular momentum. The 
axis of rotation is vertical. and 
the equatorial plane is hori- 
zontal. The diagram is a cross 
section of the gas flow, and the 
contours of pressure for a 
thick disk at static equilibrium 

+ are shown. The pressure de- 
creases outward from the 
pressure maximum near the 
hole. The static funnel wall is 
the closest to the axis the gas 
can come, given its angular 
momentum. Inside this wall 
the funnel is empty. There are 
two classes of boundary con- 
ditions: thin inflow, with gas 
only entering the grid near the 
equatorial plane, and thick in- 

 xis of 
flow, with gas flowing in at all 

' r o t a t i on  angles not excluded by the 
funnel interior. 

early stage in the development of the 
flow, when the gas has just bounced off 
the centrifugal barrier near the hole. A 
single computer run would be represent- 
ed by thousands of such images. The 
spectral order of colors creates a color 
scale (subdivided into 73 intervals) that 
we chose to  be proportional to the loga- 
rithm of density, with blue representing 
the lowest value and red the highest 
value. In each image, each grid zone is 
assigned a color from this scale to repre- 
sent the density of the gas in that zone at  
that moment. N o  color smoothing is 
done (the individual zones can be seen 
near the edge of the grid), so the color 
image accurately represents the results 
from the computation. 

The central black hole and the evacu- 
ated funnel north and south of it are 
visible. From the outer boundary to 
smaller radii, the color gradually shifts 
from orange to redder colors, represent- 
ing the adiabatic compression of the gas. 
There is a black, empty region surround- 
ing the outside of the funnel wall bor- 
dered by thick red lines in an hourglass 
shape. The sudden jump from orange to 
red denotes a funnel-wall standoff shock 
front. This shock front is caused by the 
centrifugal deceleration of the incoming 
supersonic gas. It causes the gas to turn 
abruptly and slide down the inner edges 
of the standoff shock front. 

When the two sliding gas flows (whose 
density has become so high that they are 
shown as dark red) meet at the equatorial 
plane, the gas is diverted inward and 
shoots toward the hole. As this rotating 

gas flow nears the hole, its centrifugal 
acceleration increases faster than the in- 
tense gravitational attraction of the black 
hole. At the last moment, the gas splash- 
es backward off the centrifugal barrier. 
To  avoid the continually incoming gas, 
the gas that splashes back must flow 
above and below the equatorial plane. 
During this process, some of the gas 
begins to build up a thick disk in precise- 
ly the region predicted by analytic the- 
ory. Remarkably, very little gas flows 
into the hole. 

The color image on the cover shows 
the density field of the flow at a later 
time, after a quasi-steady state has been 
established; Fig. 3 shows the pressure 
field at  that time. Because a strong shock 
front causes a much larger jump in pres- 
sure than in density, the color image of 
the pressure field is ideal for locating 
shock fronts (the color scale is propor- 
tional to  the logarithm of the pressure). 
An abrupt jump from dark blue (lowest 
pressure) to bright blue or green across 
the funnel-wall standoff shock front is 
shown. Figures 2 and 3 also show that 
the shock front migrates to a larger radi- 
us with time. This is caused by the 
continual buildup of a high back pressure 
in the thick disk (the red heart-shaped 
region), which pushes the shock front 
outward. 

In Fig. 3 the arrows represent the 
direction of the flow. Note that the shape 
of the thick disk is distorted from the 
equilibrium form shown in Fig. 1 by the 
ram pressure of the inflowing gas, just as  
might be expected intuitively. The in- 



flowing gas is pushed away by the high 
pressure of the thick disk; however, it is 
trapped between the static funnel wall, 
where it is excluded by centrifugal accel- 
eration, and the standoff wall shock. Its 
only means of escape is to flow out 
vertically as a hollow biconical jet. In 
doing so it adiabatically expands, and the 
pressure decreases, as shown by the 
colors changing from red to green to 
blue. The key features of the flow are the 
quasi-stationary patterns shown by the 
colors; the arrows show that gas contin- 
ually flows through those patterns. 

The question now becomes which of 
the features of the particular flow we 
have computed are generic. To answer 
this we have performed many computer 
runs, varying first one parameter and 
then the other (8). We have found that as 
long as the inflow is thick, the standoff 
shock fronts occur. As the angular mo- 
mentum decreases, the general relativis- 
tic effect mentioned above opens a 
"spillway" from the inner edge of the 
thick disk into the hole [an effect predict- 
ed from analytic calculations by Pac- 
zynski (11)l. As more and more gas flows 
into the hole, the flow out of the jet is 
reduced. Finally, when the angular mo- 

mentum is close to the critical value 
expected from general relativistic the- 
ory, all the gas inside the standoff shock 
fronts goes into the hole, and no thick 
disk or jet forms. 

With thin inflow, a similar sequence of 
structures occurs in the thick-disk re- 
gion. However, outside of the disk, no 
standoff shock fronts form and the nar- 
row jet becomes a wide billowy wind. A 
black and white image of this configura- 
tion can be seen in a previous issue of 
Science (12). In the extreme case of thin 
inflow and very low angular momentum, 
the gas falls steadily into the hole. 

In summary, we have found that the 
two-parameter solution space decom- 
poses into regions within which the solu- 
tions share common morphological fea- 
tures. These features are not details of 
the flow but rather large-scale coherent 
patterns in it. For each distinct region of 
the solution space one can make a para- 
digmatic cartoon film of the solution. 
This procedure for characterizing a nu- 
merical function is not so different from 
what one does with analytic functions. 
Consider a sine function. One can draw a 
periodic, oscillatory, constant-amplitude 
graph to represent it without worrying 

about the particular values of the two 
parameters, period and amplitude. In 
both the analytic and numerical case, the 
important feature is the form of the func- 
tion. 

One of the key differences between 
numerical functions and simple analytic 
functions is that numerical functions 
have multidimensional spatial forms that 
are dynamic. That is, both Figs. 2 and 3 
are frames from the same solution; the 
behavior in both figures must be includ- 
ed in the cartoon film representing this 
portion of solution space. The only way 
to understand the solution is to watch the 
color films that represent the solution in 
terms of different physical variables (13). 

In summary, our approach is to com- 
pute discrete solutions to the finite-dif- 
ference PDE's and then to convert these 
numbers into color images that change in 
time. In these images we can observe 
coherent large-scale structures in the 
flow. By performing additional computa- 
tions, we can determine which of these 
structures are generic and over how 
large a region of solution space these 
structures are present. The boundaries 
between qualitatively different struc- 
tures can be identitied by this procedure. 
Finally, analytic methods and intuition 
are used to explain why the structures 
should be there. In some cases, this 
process reveals new phenomena for 
which complete analytic theories can be 
worked out. 

I call this practical approach "explor- 

I ing the phenomonology of solution 
space." This approach has a long history 
that was recently summarized by Za- 
busky (14). He terms the interplay be- 
tween computing, analytic methods, and 
graphic visualization "computational 
synergetics." It is an important method- 

I ology of science and one that is becom- 
ing more widespread. 

I The Ubiquity of Complexity 

I Just how prevalent is the phenomenon 
of complexity? Wolfram (15) gives an 
excellent overview of this question with 
particular emphasis on why the comput- 

I er is so well matched to the study of 
complexity. It seems that most systems 
in nature can exhibit both simple and 

I 
complex behavior. To date, theoretical 
physics has mostly concerned itself with 
simple behavior, since analytic tools 
were well matched to that study. How- 
ever, as computational resources be- - 

Fig. 2. The gas flow, in the thick-inilow case, at the moment the gas begins to splash back from come more powerful and accessible, 
the funnel wall near the hole. The quantity represented is density. The color scheme and more studies are being performed on the 
features are explained in detail in the text. complex behavior of simple systems. 
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A clear statement of the ubiquity of 
complexity, with examples from theoret- 
ical physics, can be found in "Prospec- 
tus for Computational Physics" (16), 
commonly referred to as the Press Re- 
port. This report shows that complexity 
can arise in a variety of ways: in moving 
from a few degrees of freedom to many 
degrees of freedom, from ordinary differ- 
ential equations to PDE's, from simple 
or one-dimensional models of physical 
processes to multidimensional models, 
from low-order to high-order expan- 
sions, from scalar systems to vector or 
tensor systems, and from linear systems 
to nonlinear systems. 

In summary, the Press Report con- 
cludes: 

One sees, then, that complexity arises not 
from 'bad taste in the choice of problems', but 
inevitably as theory advances . . . . 

A similar statement could be made in 
every field of theoretical science. Ulti- 
mately, this is because nature is com- 
plex. Consider the dynamics and forma- 
tion of galaxies, where a hundred billion 
stars interact gravitationally to produce 
the beautiful spiral arms familiar from 
astronomical photographs. At the oppo- 
site extreme of scale, the macromol- 
ecules that underlie life itself perform 
their biological functions largely because 
of the manner in which their thousands 
of component atoms arrange themselves 
in highly ordered large-scale structures. 
We are beginning to acquire the compu- 
tational tools and scientific methodology 
that will allow us to attack these and 
other complexities head on. 

Coexisting Aesthetics 

Finally, let me turn to a disturbing 
feature of the revolution in computing 
techniques. Too often misunderstand- 
ings arise between scientists trained in 
classical analytic methods and those for 
whom numerical methods are the pri- 
mary research tool. One often hears: 
"Numerical solutions are inelegant," or 
"Analytic solutions are simplistic." 
Such comments reveal a clash between 
two coexisting aesthetics derived from 
the nature of the computational tools 
that are used. Rather than define precise- 
ly the principles of both camps, I will 
give examples of their calculational 
goals. 

Much scientific effort in the three cen- 
turies since Newton has been directed 
toward discovering the form of the basic 
laws of physics. Analytic methods have 
been precisely the right tool for that job. 

However, although analytic solutions 
have given us a skeletal view of the 
content of those laws, they have not 
revealed the true complexity of the solu- 
tion space. Therefore, the search for 
form is shifting from the laws to the 
solutions of the equations describing 
those laws. Computational methods are 
the appropriate tools for this latter 
search. 

Many of the classic analytic solutions 
are for fundamental static equilibria. 
What is becoming clear in many areas is 
that there is a new class of dynamic 
equilibria which are just as fundamental. 
These are large-scale coherent structures 
with long lifetimes compared to the un- 
derlying system's dynamical time scales. 
Although many are being studied obser- 
vationally (for example, Jupiter's red 
spot), a growing number are being dis- 
covered numerically. As is the case for 
the soliton (14), the prototype of dynam- 
ic equilibria, for most of these structures 
some underlying mathematical principle 
is at work. It seems to be a general 
property of nonlinear systems that they 
"lock on" to coherent structures that are 
far from the linear regime. 

Many analytic solutions exhibit high 
degrees of spatial or internal symmetry. 

Indeed the power of group theory in 
science attests to symmetry being a fun- 
damental property of nature. However, 
many of the phenomena of nature are 
inherently unsymmetrical and time-de- 
pendent. The beauty of the ever chang- 
ing three-dimensional structure of clouds 
is surely as great as the beauty of a 
perfect crystal. To explore such phe- 
nomena as the clouds requires the abili- 
ty, which numerical tools give us, to 
probe complexity. 

Much of the beauty of analytic func- 
tions comes from their encoding what is 
visually beautiful. For example, the peri- 
odic and oscillatory nature of the sine 
function is better lperceived by a graph of 
the function than by looking at its name. 
Just so, the eye can perceive fundamen- 
tal properties of complex solutions by 
using color images or other computation- 
al devices in situations where closed 
analytic forms are impossible. Thus, the 
visual representation of mathematical 
functions may become the common bond 
between simple analytic functions and 
complex numerical ones. 

As I have attempted to show in my 
example of a black hole, scientists need 
to have an intuition formed from both 
aesthetics. There is no inherent conflict 

Fig. 3. The gas flow at a later time for the same conditions as in Fig. 2. The colors represent the 
pressure gradient. The arrows indicate the direction of the flow. 
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between these two views; both are useful 
for discovering parts of the whole. I hope 
that students today are being trained 
with equal emphasis on analytic and nu- 
merical methodologies. 

Prospectus 

In summary, the prodigious growth in 
computing power is ushering in new ap- 
proaches to complexity in many areas of 
science. Although the shift of method- 
ology and aesthetics was foreseen by 
von Neumann over 30 years ago, the 
fulfillment of his vision is only beginning. 
For his vision to be realized, there are 
two major requirements. First, comput- 
ers must continue their rapid rate of 
increase in speed so  that more and more 
complex problems can be attacked on 
human time scales. Second, there must 
be much greater accessibility to  the full 
range of computational tools that are 
needed so that a "critical mass" of sci- 
entists can work in each field of interest. 
Both of these requirements are likely to 
be met. 
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Computer-Assisted Analysis in 
Organic Synthesis 

E. J .  Corey, Alan K. Long, Stewart D. Rubenstein 

The chemical synthesis of organic 
molecules has proceeded at  an accelerat- 
ing pace for more than a century and a 
half. Since the Wohler synthesis of urea 
in 1828, organic synthesis has had an 
enormous impact on civilization and on 
the development of science itself. Ad- 
vances in the understanding of chemical 
structure, chemical reactivity, stereo- 
chemistry, and biochemistry have been 
due in no small part to  discoveries in 
organic synthesis. Yet all of the synthe- 
ses of the 19th century and most of those 
of the first half of this century were 
developed from a relatively primitive 
conceptual base. Many syntheses, espe- 
cially in the 19th century, were discov- 
ered serendipitously (or opportunistical- 
ly) in the sense that they were accom- 
plished as  unplanned results of explor- 

atory studies of chemical interactions 
between different types of molecules. 
Other syntheses used a series of estab- 
lished reactions to convert a basic struc- 
ture into a somewhat larger molecule. 
Such syntheses involved the successive 
attachment of functional or substituent 
groups through the use of replacement, 
condensation, o r  coupling reactions. 
Thus, the dyes alizarin (1869) and indigo 
(1890) were synthesized by elaboration 
of anthracene and aniline, respectively, 
and the alkaloid tropinone was made 
from cycloheptene (1901). In contrast to 
the vast majority of these early synthe- 
ses, which were based on the availability 
of starting materials that contained a 
major portion of the final atomic frame- 
work, a few syntheses emerged whose 
design depended on the knowledge of 

certain ring-forming reactions that could 
be used to build an atomic framework. 
Among the best examples of these are 
the syntheses of a-terpineol (W. H. Per- 
kin, 1904), camphor (G.  Komppa, 1903; 
W. H. Perkin, 1904), tropinone (R. Rob- 
inson, 1917), and equilinin (W. Bach- 
mann, 1939) (1). 

In the post-World War I1 period, syn- 
thesis attained a different level of sophis- 
tication partly as  a result of the conflu- 
ence of five stimuli: (i) the formulation of 
detailed electronic mechanisms for the 
fundamental organic reactions, (ii) the 
introduction of conformational analysis 
of organic structures and transition 
states based on stereochemical ~ r i n c i -  
ples, (iii) the development of spectro- 
scopic and other physical methods for 
structural analysis, (iv) the use of chro- 
matographic methods of analysis and 
separation, and (v) the discovery and 
application of selective chemical re- 
agents. As a result, the years 1945 to 
1960 saw the accomplishment of a num- 
ber of highly sophisticated syntheses of 
complex molecules, including vitamin A 
( 0 .  Isler, 1949), cortisone (R. Wood- 
ward, R. Robinson, 1951), strychnine (R. 
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