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Genotoxicity of Formaldehyde in Cultured 

occurred at a rate (5 to 10 percent be- 
tween hours 1 and 6) similar to that 
reported previously (13). 

Formaldehyde could inhibit the repair 
of 06-alkylguanine DNA alkyltransfer- 
ase by several mechanisms, including 
steric hindrance of this DNA repair en- 
zyme due to cross-links between DNA 
and DNA-associated proteins formed by 
formaldehyde. Because 06-alkylguanine 
DNA alkyltransferase has a cysteine at 
its active site (9) and aldehydes readily 
bind to cysteine, formaldehyde and alde- 
hydes formed by lipid peroxidation 
caused by formaldehyde-induced mem- 

Human Bronchial Fibroblasts brane damage could inhibit removal of 
06-methylguanine by binding to the ac- 

Abstract. Formaldehyde, a common environmental pollutant, inhibits repair of tive site of the alkyltransferase. This 
06-methylguanine and potentiates the mutagenicity of an alkylating agent, N- hypothesis is supported by recent obser- 
methyl-N-nitrosourea, in normal human jibroblasts. Because formaldehyde alone vations that exposure of human bronchi- 
also causes mutations in human cells, the compound may cause genotoxicity by a al epithelial and fibroblastic cells in vitro 
dual mechanism of directly damaging DNA and inhibiting repair of mutagenic and to formaldehyde or other thiol-binding 
carcinogenic DNA lesions caused by other chemical and physical carcinogens. aldehydes, such as acrolein and 4-hy- 

droxy alkenals, preferentially inhibit 06- 
Formaldehyde is a ubiquitous environ- ine to 7-methylguanine of between 0.029 alkylguanine DNA alkyltransferase ac- 

mental pollutant found in many occupa- and 0.054 were found (Table 1) (12). tivity when compared to that of another 
tional settings and in tobacco smoke, After 5 hours of posttreatment incuba- DNA repair enzyme, uracil DNA glyco- 
consumer products, and exhaust from tion of the cells in NMU-free medium, sylase (14). 
gasoline and diesel combustion (I). The the ratio decreased from a mean of 0.041 To further study the pathobiological 
compound can also be generated by oxi- to 0.009. Therefore only 20 percent of consequences of formaldehyde exposure 
dative metabolism of many xenobiotics the 06-methylguanine observed immedi- and inhibition of 06-methylguanine re- 
(I). For example, the carcinogen N-ni- ately after treatment with NMU for 1 pair, we investigated the cytotoxic and 
trosodimethylamine (DMNA) is metabo- hour remained in DNA 5 hours later. mutagenic effects of formaldehyde and 
lized to equimolar concentrations of This observation is consistent with the NMU separately and in combination. 
methyldiazonium ion and formaldehyde. kinetics of 06-methylguanine and 7- Cytotoxicity was determined by measur- 
Formaldehyde causes single-strand methylguanine repair previously ob- ing the colony-forming efficiency of hu- 
breaks in DNA and DNA-protein cross- served in human skin fibroblasts (13). man fibroblasts that had been exposed to 
links; inhibits DNA excision repair in However, when NMU-treated cells were 100 to 800 pM NMU for 1 hour or 50 to 
human cells (2, 3); is mutagenic in Dro- incubated in the presence of 100 or 300 175 pM formaldehyde for 5 hours or to 
sophila larvae, bacteria, and fungi (4); is pM formaldehyde, a significantly lower both as in the previous experiments, 
a respiratory carcinogen in rodents (5); rate of 06-methylguanine removal was albeit at clonal rather than mass culture 
and has been judged to pose a potential observed in three independent experi- density. Compared to cells growing in 
carcinogenic risk to humans (1). ments. The removal of 7-methylguanine logarithmic phase at clonal density, near- 

The mutagenic and carcinogenic ef- was not affected by formaldehyde and ly confluent and slowly growing cultures 
fects of N-nitrosamines, such as DMNA, 
and N-nitrosamides, such as N-methyl- 
N-nitrosourea(NMU)7 have been Table 1. Effect of formaldehyde on the removal of 06-methylguanine from DNA of human 
to the degree of alk~lat ion at the 06- fibroblasts exposed to NMU. Confluent human bronchial fibroblasts (HBF 357) were used to 
position of guanine in target tissue DNA minimize the effects of cell cycle variations on growing cells. Cells were grown to confluence 
and the ability of the tissue to remove (15 x lo6 to 16 x lo6 cells per flask) in GDS medium (18). Sixteen flasks (four per determina- 

tion) were Incubated with tritiated NMU (1.6 Ciimmol, New England Nuclear) at a concentra- 
this lesion (6-9)' NMU DNA tion of 200 p,M in 0.1 percent (by volume) dimethyl sulfoxide in phosphate-buffered saline (PBS; 
at sites, 06-guanine 4.4 ml per flask) for 1 hour at 37°C. After 1 hour the cells were washed once with PBS and then 
and N7-guanine (10, 11). The 7-methyl- Incubated in the presence or absence of formaldehyde [lo0 or 300 FM in 20 ml of EGM:LHC-1 
guanine lesion is repaired slowly (half- (1: 1) medium (18) per flask] for an additional 5 hours. At indicated times the cells were washed 

life, 40 to 50 hours) (111, while 06-meth- twice with PBS, harvested by trypsinization, and frozen as pellets at -70°C. DNA was purified 
by treatment with proteinase K and ribonuclease followed by phenol extraction and precipita- 

ylguanine is repaired by 06-a1ky1guanine tion in ethanol by standard procedures. The levels of methylated DNA purines were analyzed 
DNA alkyltransferase at a much faster by hydrolyzing the DNA in 0.1M HCI for 1 hour followed by separation by high-performance 
rate. Thus over short periods decreases liquid chromatography (19). Values are ratios of 06-methylguanine to 7-methylguanine. 
in the ratio of 06-methylguanine to 7- 

Experiment 
methylguanine can be used as a measure Treatment Mean 
of 06-methvlnuanine revair. 1 2 3 (percent) - - 

We investigated the repair of promuta- NMU 0.054 0.029 0.039 0.041 (100) 
genic 06-methylguanine lesions induced NMU + fresh medium 0.008 0.006 0.012 0.009* (21) 
by NMU in human bronchial fibroblasts. NMU + 100 FM formaldehyde 0.014 0.014 0.015 0.014* (35) 
After a 1-hour exposure of these cells to NMU + 300 hM formaldehyde 0.024 0.019 0.019 0.021* (52j 
200 pM NMU, ratios of ~ ~ - r n e t h ~ l g u a n -  'Each ratio is significantly different from other ratios (P 5 0.05, Freidman test and Student's t-test). 
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of human fibroblasts repair cytotoxic 
damage and have substantially higher 
survival rates (3). The effect of low con- 
centrations of formaldehyde or NMU or  
both was assessed by measuring the fre- 
quency of induction of 6-thioguanine- 
resistant mutants in human fibroblasts 
after their exposure to  the compounds 
(Fig. 1). Although the exposure times 
differed, on a molar basis formaldehyde 
was three times more mutagenic than 
NMU (Fig. I ) .  As reported by others (15, 
16), NMU and formaldehyde were each 
weak mutagens at  the concentrations 
tested. However, addition of 50 or 75 
FM formaldehyde to 200 FM NMU- 
treated cells resulted in a mutation fre- 
quency that was significantly greater 
than that found with either agent alone. 

Formaldehyde may increase the mu- 
tagenicity of NMU by inhibiting 06- 
methylguanine repair. This hypothesis is 
strengthened when the frequency of 6- 
thioguanine-resistant mutants is ana- 
lyzed as  a function of the logarithm of 
the percentage of survival (Fig. 2). The 
curves for NMU and for formaldehyde 
have similar magnitude and shape. How- 
ever, a much steeper curve is found 
when formaldehyde and NMU are com- 

Fig. 2. Mutagenicity as a function of cytotox- 
icity of formaldehyde, NMU, or 200 F M  
NMU combined with increasing amounts of 
formaldehyde (50 and 75 F M ) .  The asterisk 
indicates 200 pM NMU alone. 

Fig. 1. Analysis of the cyto- 
toxicity and mutagenicity re- 
sulting from treatment of hu- 
man fibroblasts with NMU 
and formaldehyde (20). (A) 
Cytotoxicity of NMU alone (a 
single 1-hour exposure at the 
indicated concentration) and 
of formaldehyde alone (a 1- 
hour exposure at the indicated 
concentration followed by a 
second exposure at the same 
concentration for 4 hours). 
Also shown is the cytotoxicity 
resulting from exposure to 200 
F M  NMU for 1 hour in the 
presence of 50 or 75 pM form- 
aldehyde followed by 4 hours 
of exposure to a fresh solution 
of formaldehyde at the same 
concentration. (B) Frequency 
of 6-thioguanine-resistant mu- 
tants induced as a conse- 
quence of treatment with 
NMU, formaldehyde, or a 
combination of the two. 

bined under conditions known to inhibit 
the repair of 06-methylguanine. This in- 
dicates that the combination of NMU 
and formaldehyde has a higher mutagen- 
ic efficiency than does either agent 
alone. This is to  be expected if the per- 
sistence of the 06-methylguanine lesion 
has a more significant effect on induced 

0 A Forma ldehyde  P I NMU / 

100 60 30 20 
Colony-forming e f f i c i ency  

( %  survival)  

mutation than it does on cell killing. 
Thus there is a good correlation between 
the inhibition of 06-methylguanine re- 
moval and the synergistic increase in 
mutation frequency in the presence of 
formaldehyde. This is also further indi- 
rect evidence that 06-methylguanine is a 
promutagenic DNA lesion. In addition, 
NMU may inhibit the repair of promuta- 
genic lesions caused by formaldehyde. 

The capability of cells to  repair 06- 
methylguanine in DNA is thought to  be 
closely related to  their sensitivity to N- 
nitroso compounds in terms of cytotox- 
icity, mutagenicity, and carcinogenicity 
(6, 10, 13). Because both alkyldiazonium 
ions and aldehydes are formed during 
metabolic activation of N-nitrosamines, 
we recently suggested that such alde- 
hydes act in concert with the alkyldia- 
zonium ions in causing pathological ef- 
fects of N-nitrosamines (17). The results 
presented here are consistent with this 
hypothesis. Furthermore, we speculate 
that the enzyme systems responsible for 
metabolism of aldehydes are important 
in the susceptibility of organs to  the 
carcinogenic effects of N-nitrosamines. 
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Thermosensitivity of a DNA Recognition Site: Activity of a 
Truncated nutL Antiterminator of Coliphage Lambda 

Abstract. Antitermination is an important transcriptional control. In bacterio- 
phage lambda, the presence of the nut antiterminators between the promoters and 
terminators results in relatively unhindered transcription when the lambda N gene 
product and necessary host factors are supplied. This antitermination system has 
been rendered thermosensitive by modification of the nut site. A fragment of A DNA 
[74 base pairs (bp) in length] that contained the 17-bp nutL core sequence, but lacked 
the 8-bp boxA sequence, was cloned in a p,-N-tL1-galK plasmid between the p, 
promoter and gene N .  This fragment mediated antitermination of transcription at 
30"C, as measured by assaying galK gene expression in Escherichia coli. At 42"C, 
however, antitermination at the A tL1 terminator was abolished. Antitermination at 
42°C was restored by replacing the 74-bp nutL fragment with longer sequences 
containing both nutL and boxA or by cloning a synthetic boxA sequence ahead of the 
74-bp nutL fragment. Thus, ejicient antitermination required both boxA and the 17- 
bp nutL core, with the latter becoming conditionally defective when the boxA 
sequence was deleted. 

Termination and antitermination of 
transcription are examples of negative 
and positive regulatory mechanisms that 
control gene expression. Terminator sig- 
nals block the progress of transcription, 
while special recognition sites, such as 
nut (1-5), mark those operons that are 
subject to antitermination. In bacterio- 

phage A the nut sequences, which are 
located downstream of the promoters p~ 
and p, and upstream of a series of termi- 
nators in the phage genome, are the 
recognition sites for the N-dependent 
transcriptional antitermination function. 
The nutL site (Fig. IA) ( I )  functions as 
an antitermination site not only in A but 

P L nutL N t~ 1 

. , , - - , , , --. , , , - - -  , , , , --_  , , . , 7 4 - b p n u t L +  
- - - - -_ 

I -1 1 9 - b p n u t L J  I 
I 

B 
3 5 4 - b p n u t ~ U 9  

H i n c l l  D d e l  H g a l  H g a l  Mbo l l  H a e  Ill H inc l l  

I t + i 
ATGAAGGT GACGCTCTTA AAAATTAAGCCCTGAAGAAGGG C A G C  A T T C  AAAGCAGAAGGCTTTGG GGTGTGTGATAC 

. boxA m~ tor- box C 

Fig. 1. Genetic and physical maps of the control regions of the leftward phage A operon. The 
orientation of the map is opposite to that of the conventional A map (9). (A) Diagrammatic 
representation of the p, promoter, nutL antiterminator, gene N ,  and t , ~  terminator in phage A, 
with transcription originating at pL and terminating at t,, (lower arrow; -N). in the presence of 
gene N product, in conjunction with the nutL antiterminator, transcription proceeds across tLl 
(upper arrow; +N). (B) Restriction map of the nutL region of A. The locations of three A DNA 
fragments are shown: (i) the 74-bp Hga I-Hae I11 fragment (2) containing the 17-bp nutL core 
(10) flanked by 7 bp upstream and 50 bp downstream, including the boxC sequence (4); (ii) the 
119-bp Dde I-Hae I11 fragment, containing the 17-bp nutL core flanked by 57 bp upstream 
[including the boxA sequence (4)]  and 50 bp downstream, including boxC; (iii) the 354-bp 
Hinc 11-Hinc I1 fragment. The coordinates of the restriction sites are specified (9). (C) 
Nucleotide sequence of the nutL region, including the 8-bp boxA, the 17-bp nutL core, and the 
8-bp boxC. Nucleotide numbers (35536 and 35515) refer to the bases to the left of the restriction 
cut (9). (D) Schematic representation of plasmids pDX1, pDE3 (2), and p74nutL-1 derived from 
pK03 (11), which carry the 74-bp nutL sequence. The nutL site is shown in its A-like orientation 
(solid arrow) and in the reverse orientation (dashed arrow). 




