
Human Dioxin-Inducible Cytochrome PI-450: 
Complementary DNA and Amino Acid Sequence 

Abstract. Induction of cytochrome PI-450 has  been linked to susceptibility to 
certain chemically induced cancers in mouse a n d  man. Treatment of the human cell 
line MCF-7 with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) results in high levels of 
aryl hydrocarbon (benzo[a]pyrene) hydroxylase (PI-450) activity. This cell line was 
used to isolate a human P1-450 full-length complementary DNA (cDNA) clone. The 
cDNA is 2566 nucleotides in length, encodes a polyadenylated messenger RNA (2.8 
kilobases in length), a n d  has a continuous reading frame producing a protein with 
512 residues (molecular weight, 58,151). The human PI-450 cDNA andprotein are  63 
percent a n d  80 percent similar to mouse P1-450 cDNA and  protein, respectively. 
Whereas the mouse TCDD-inducible P-450 gene subfamily has two members (PI-450 
and  P3-450), the human TCDD-inducible gene subfamily appears to have only one 
gene (PI-450). 

The compound 2,3,7,8-tetrachlorodi- 
benzo-p-dioxin (TCDD) is a potent in- 
ducer of many proteins including drug- 
metabolizing enzymes such as  the cyto- 
chrome P-450 proteins (1-3). In mice, 
cytochromes PI-450 and P3-450 are dra- 
matically induced by TCDD (4, 5). P I -  
450 is closely associated with aryl hydro- 
carbon (benzo[a]pyrene) hydroxylase 
(AHH) and is responsible for the meta- 
bolic activation of polycyclic hydrocar- 
bons such as  benzo[a]pyrene to form 
reactive carcinogenic intermediates (6). 
Induction of PI-450 by TCDD may play a 
role in the initiation of certain types of 
environmentally caused malignancies; 
TCDD is a cocarcinogen in a mouse 
tumor model system (7) and is a very 
potent promoter of tumorigenesis (8). 
Genetically determined high inducibility 
of A H H  is associated with enhanced risk 
of certain types of chemically induced 
cancers in mice (9) and in cigarette- 
smoking humans (10). The AHH gene 
system, like the al-antitrypsin gene sys- 
tem ( l l ) ,  may be important in relating 
morbidity and mortality to environmen- 
tal chemical exposure via cigarettes o r  
industry (12). 

As a first step in developing an assay 
for genetic susceptibility to  chemically 
induced cancers we determined the com- 
plementary DNA (cDNA) and amino 
acid sequence of human PI-450. When 
the human breast carcinoma cell line 
MCF-7 is treated with TCDD, AHH ac- 
tivity is induced at  a specific activity of 
>20 units per milligram of protein, which 
is a high value for a cell line derived 
from nonhepatic tissue (Fig. 1). Similar 
kinetics of AHH induction were ob- 
served when cells were treated with ben- 
zo[a]anthracene. Polyadenylate-en- 
riched RNA (13) was isolated from lo9 

and inserted into the bacteriophage clon- 
ing vector Xgtll by use of Eco RI linkers 
(14). Clones that hybridized to a mixture 
of 32P-labeled nick-translated full-length 
cDNA inserts of mouse PI-450 and P3- 
450 (5) were plaque-purified, digested 
with Eco RI, and subcloned into the 
Eco RI site of pBR322. Two Eco RI 
inserts from the largest clone were sepa- 
rately purified by agarose gel electropho- 
resis and used to prepare a library of 
DNA fragments (15) in M13 mpl  1. Se- 
quencing was carried out by standard 
M13 cloning protocols and the dideoxy- 
nucleotide sequencing method (5, 16). 
Each stretch of DNA was sequenced at  
least once on both strands and usually 5 
to 20 times. A Stu I fragment of 470 base 
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Fig. 1. Human AHH induction kinetics in 
MCF-7 cells treated with 50 nM TCDD, 50 
FM benzo[a]anthracene (BzAnth), or control 
medium. Specific activity denotes units (pico- 
moles of phenolic benzo[a]pyrene products 

MCF-7 cells that had been treated with formed in-l minute at 37'cjper milligram of 

50 n~ TCDD for 24 hours. ~ ~ ~ b l ~ -  cellular homogenate protein (27). The origin 
and development of the MCF-7 line (28), 

stranded was 'ynthesized after growth and treatment of the cells in culture 
reverse-transcription of RNA; the DNA (29), and preparation of the cells for AHH 
was methylated with Eco RI methylase, assay (27,29)'have been described. 

pairs straddled the one Eco RI site in the 
cDNA; this fragment was sequenced to 
ensure that there was not a second 
Eco RI site. Nucleotide alignment and 
analysis of nucleotide and protein data 
were examined by standard computer 
programs (1 7). 

The human PI-450 cDNA was 2566 
nucleotides long and had a continuous 
reading frame (from nucleotide 87 to 
1625) that could produce a protein of 512 
residues (Figs. 2 and 3). The termination 
codon for both human and mouse PI-450 
messenger RNA (mRNA) was UAG (U, 
uracil; A, adenine; G,  guanine; T ,  thy- 
mine; C, cytosine) (Fig. 2), although only 
UGA has been reported as  the termina- 
tion codon in the more than 280 pub- 
lished sequences of human and mouse 
mRNA's. UAA is the termination codon 
for hamster vimentin mRNA (18), how- 
ever, providing further evidence that 
UGA is not the only termination codon 
in mammals. There were several termi- 
nation codons (including two UGA co- 
dons) in two of the three possible reading 
frames in the 25 bases after the occur- 
rence of the human UAG codon (Fig. 2); 
this is seen near the translation termina- 
tion site of many eukaryotic and pro- 
karyotic genes (19). 

The human and mouse cDNA nucleo- 
tide sequences (Fig. 2) had 63 percent 
similarity overall, with much greater 
similarity (83 percent) in the translating 
regions than in the 5' nontranslating and 
the 3' nontranslating regions (34 percent 
similarity). Of 270 base changes in the 
translating region (17 percent diver- 
gence), 29, 16, and 55 percent occur in 
the first, second, and third codon posi- 
tions, respectively. The large divergence 
in the nontranslating regions, as  com- 
pared with that in the translating regions 
of human and mouse PI-450 cDNA, is 
consistent with the finding that the re- 
gion of cDNA encoding an important 
protein remains much more conserved 
than regions of cDNA that do not (19). 

There was an 80 percent similarity 
between the human and mouse PI-450 
deduced amino acid sequences (Fig. 3). 
In contrast, the human PI-450 protein 
sequence was 68, 79, 68, 35, and 27 
percent similar to mouse P3-450, rat P- 
450c, rat P-450d, rat P-450e, and rat P- 
450scc proteins, respectively (5, 20). Our 
sequencing data thus indicate that we 
have isolated the human P-450 cDNA 
that is equivalent to mouse PI-450 and 
rat P-450c cDNA. The amino acid com- 
position of human and mouse PI-450 
proteins was strikingly similar, including 
the presence of nine cysteine residues in 
both proteins. The mouse P3-450 protein 
has six cysteine residues (5). The molec- 
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ular weight of the human PI-450 protein 
(58,151) is about 1080 less than that of 
the mouse PI-450 protein (59,230). 

When mouse genomic DNA is probed 
with mouse PI-450 or P3-450 full-length 
cDNA clones, the Southern blot hybrid- 
izations are consistent with the existence 
of only two genes in this P-450 family (5). 
In addition, when liver RNA from 
TCDD-treated mice is probed with these 
two full-length clones, mRNA 2.9 kilo- 
bases (kb) and 2.1 kb in length are found 
(21). When a probe derived from the 5' 
end of human cDNA (Fig. 4) was used 
for DNA or RNA blot hybridizations, 
however, all the data were consistent 
with the presence of a single TCDD- 
inducible human P-450 gene. Digestion 
with Xba I and Hind I11 resulted in frag- 
ments 5.2 and 8.8 kb in size, respective- 
ly. These bands did not appear to  differ 
among HeLa,  human placenta, and 
MCF-7 genomic DNA's (Fig. 4A). Di- 
gestion with Kpn I resulted in two frag- 
ments (5.9 and 2.2 kb) in all three human 
genomic DNA preparations; these data 
are consistent with a known Kpn I site in 
the human PI-450 cDNA. The same re- 
sult was obtained under lower hybridiza- 
tion stringencies (22). 

The human 5' cDNA clone hybridized 
to both 2.1- and 2.9-kb mRNA from 3- 
methylcholanthrene-treated C57BLi6J 
inbred mice (Fig. 4B). N o  hybridization 
to untreated MCF-7 cultures was ob- 
served, but in TCDD-treated cultures, a 
single size of mRNA (2.8 kb) hybridized 
strongly to  the probe. A length of 2566 
nucleotides for the cDNA, plus a poly(A) 
region of about 250 nucleotides, would 
produce the human PI-450 mRNA of 
about 2.8 kb. These findings suggest a 
species difference in this TCDD-induc- 
ible P-450 gene subfamily; man probably 
has only PI-450, whereas mouse has both 
PI-450 and P3-450. The functions of hu- 
man PI-450 thus might be divided be- 
tween rodent PI-450 and P3-450. Alterna- 
tively, new functions may have evolved 
in P3-450. 

From the sequence data, it has been 
estimated that the TCDD-inducible P- 
450 gene family diverged from the phe- 
nobarbital-inducible P-450 gene family 
more than 200 million years ago (5, 20) 
and that the PI-450 and P3-450 genes 
separated (probably via gene duplica- 
tion) about 65 million years ago (5). This 
estimate is consistent with the finding of 
at  least two major TCDD-inducible P-450 
proteins in mouse, rat, and rabbit (3, 5). 
Moreover, this calculation predicts that 
human P-450 proteins might not exhibit 
this pattern, because divergence of hu- 
man from rodent would have occurred 
prior to the split of P3-450 from PI-450 
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Fig. 2. Comparison of human and mouse P,-450 cDNA sequences. The initiation codons, the 
cysteine codons believed to participate in the enzyme active-sites (5, 20), the termination 
codons, and the putative poly(A) addition signal (AATAAA) are enclosed in blackened boxes. 
The human sequence is numbered; the mouse sequence is shown only at those positions where 
there was no correlation. 



(23). The data in Fig. 4 support this 
prediction. 

The time required for 1 percent diver- 
gence in amino acid sequence [unit evo- 
lutionary period (UEP) (24)l was esti- 
mated to be 2.1 and 2.4 million years by 
means of comparisons between rabbit 
and rat P-450 proteins (25) and between 
mouse and rat P-450 proteins ( 3 ,  respec- 
tively. If human predecessors separated 
from the rodent line approximately 80 
million years ago (24), the human and 
mouse PI-450 proteins would have di- 
verged between 33 and 38 percent. We 
were surprised to find only 20 percent 

divergence (Fig. 3). These results sug- 
gest the existence of an additional force 
or forces conserving the P1-450 protein 
in these two species. The metabolic acti- 
vation of foreign chemicals or detoxifica- 
tion may contribute to this conservation. 
In any event, there is greater similarity 
between human and mouse PI-450 pro- 
teins (80 percent) than between the 
mouse PI-450 and P3-450 proteins (73 
percent); PI-450 and P3-450 are in the 
same TCDD-inducible P-450 subfamily. 

Knowledge of the cDNA sequence 
should make it possible to look for re- 
striction-fragment length polymorphisms 

2  0  4  0  
Human: M L F P I S M S A T  E F L L A S V I F C  L V F W V I R A S R  P O V P K G L K N P  P G P W G W P L I G  
Mouse: M P S M Y G L  A F V  L  V T V  G  V T T W  T  L  F  

6  0  8  0  1 0 0  
H M L T L G K N P H  L A L S R M S O O Y  G D V L O I R I G S  T P V V V L S G L D  T I R O A L V R O G  D D F K G R P D L Y  

V  S T L  N  K  

1 2 0  1 4 0  1 6 0  
T F T L I S N G O S  M S F S P D S G P V  W A A R R R L A O N  G L K S F S I A S D  P A S S T S C Y L E  E H V S K E A E V L  
S  T  K  T N  A  T  A S  N  Y  

1 8 0  2 0 0  2 2 0  
I S T L O E L M A G  P G H F N P Y R Y V  V V S V T N V I C A  I C F G R R Y D H N  H O E L L S L V N L  N N N F G E V V G S  
V K  K V  E V  D  K L  A  0 0 D  I  S  E T  

2  4  0  2 6 0  2  8  0  
G N P A D F l P l L  R Y L P N P S L N A  F K D L N E K F Y S  F M O K M V K E H Y  K T F E K G H I R D  I T O S L I E H C O  

Y  V  S  D  D  K  L I  R  

3 0 0  3 2 0  3  4  0  
E K O L D E N A N V  O L S D E K I I N I  V L D L F G A G F D  T V T T A I S W S L  M Y L V M N P R V O  R K I O E E L D T V  
D  R  K  D V T  T  . 

3  6  0  3 8 0  4 0 0  
I G R S R R P R L S  D R S H L P Y M E A  F I L E T F R H S S  F V P F T I P H S T  T R D T S L K G F Y  I P K G R C V F V N  

D  O  P O  L  N  C  

4 2 0  4  4 0  
O W O I N H D O K L  W V N P S E F - P E  R F L T P D G A I D  & V L  

V  R E  G D  N  R  S  T .  

5 0 0  
;V::G:KVDM TF" Y G L T M K H  A C C E H F O M O L  R S '  

V  M  S G P O H L O A '  

Fig. 3. Comparison of human and mouse P,-450 protein sequences. The conserved COOH- 
terminal cysteinyl fragment (5, 20) is enclosed in a blackened box. Residues of mouse that do 
not match those of human are shown (30). Abbreviations for amino acids: A, alanine; C, 
cysteine; D, aspartic acid; E, glutamic acid; F, phenylalanine; G, glycine; H, histidine; I, 
isoleucine; K, lysine; L, leucine; M, methionine; N, asparagine; P, proline; Q, glutamine; R, 
arginine; S, serine; T, threonine; V, valine; W, tryptophan; Y, tyrosine. 

Fig. 4. Hybridization A Xba I Hlnd 111 Kpn I B ? -  - 
analyses with the hu- 7 0 
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Eco RI fragment from 
base 1 to base 1521 
(Fig. 2). (A) Southern k b 

blot hybridization. 
Conditions were suffi- 
ciently stringent and 
exposure of the filter 
to the x-ray film was 
short enough to ex- 
clude almost com- - 2 .8  
pletely the cross-hy- 
bridization of the hu- 
man probe with 
C57BW6J mouse 
DNA (lanes 1, 5, and 
9). (B) Northern blot 
hybridization. Po- 
ly(A)-enriched RNA 
was prepared from the liver of C57BLl6J inbred mice that had received 3-methylcholanthrene 
(MeChol) (200 mg per kilogram of body weight) 18 hours before killing and from MCF-7 cells 
that had been exposed to control medium or 50 nM TCDD for 24 hours. Hybridization 
conditions and nick-translation of the probe were as described (5). 
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(RFLP's), which are probes for diagno- 
sis and prediction in a growing number of 
clinical disorders and human family stud- 
ies (11, 26). As has been shown in mice 
(9), the human population exhibits a 
wide range of AHH (P1-450) inducibility 
(10). The finding of human RFLP's rep- 
resenting high and low AHH inducibility 
would be of importance in predicting the 
degree of risk for persons exposed to 
various environmental pollutants. 
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Abstract. The genes encoding the a chain of the human T-cell receptor have been 
mapped to chromosome 14, the chromosome on which the human immunoglobulin 
heavy chain locus resides. Thus, genes encoding two different classes of antigen 
receptor are present on the same chromosome. Furthermore, breaks involving 
chromosome 14 are frequently seen in tumors of T-cell origin. The potential relation 
of these chromosome abnormalities to a-chain genes is discussed. 

The major histocompatibility complex 
(MHC) restricted antigen receptor on T 
lymphocytes is a disulfide-linked hetero- 
dimer and is composed of an a and a p 
chain (I). The complementary DNA 
(cDNA) clones encoding the p chain 
have been isolated and described in mice 
and man (2). The p-chain locus consists 
of several gene segments that encode 
variable (V), diversity (D), joining (J), 
and constant (C) regions of the P-chain 
protein, which is itself related to immu- 
noglobulins. The P chain is encoded on 
chromosome 7 in man (3) and on chro- 
mosome 6 in mouse (4). The locus for 
murine immunoglobulin (Ig) kappa light 
chains is encoded on chromosome 6 as 
we11 (5) ,  although the evolutionary signif- 
icance of this linkage is not understood. 
The a-chain cDNA clones have been 
isolated and characterized in humans (6) 
and in mice (7). The sequence of these a- 
chain cDNA's suggest that, like the P 
chain and the Ig's, the a chain is encoded 
in separate, noncontiguous gene seg- 
ments (V, J, and C). We have now 
mapped the genes encoding the a chain 
and have assigned these genes to human 
chromosome 14. 

We used a series of human-rodent 
somatic cell hybrids, containing charac- 
terizing combinations of human chromo- 
somes (see legend to Fig. 1 for descrip- 
tion of hybrids); the isolation and charac- 
terization of most of these hybrids have 
been described (8) ,  and those not previ- 
ously described are discussed in the leg- 
end to Fig. 1. Hybrid cells were grown in 
culture, and DNA was prepared from 
each hybrid (9). The presence or absence 
of human a-chain genes in each hybrid 
was determined by probing Southern 
blots of genomic DNA with a labeled a- 
chain cDNA probe isolated from the 
human T-cell tumor, HPB-MLT. This 
human a-chain cDNA has been charac- 
terized by one of us (E.P.) and is de- 
scribed in (6). 

Analysis of hybrid DNA's with an a- 
chain cDNA probe by the Southern blot 
method (Fig. 1) shows three Hind I11 
fragments (2.6,4.4, and 9.6 kb) in human 
DNA. A cDNA fragment specific for the 
V region of this particular a chain hy- 
bridizes to the 9.6-kb Hind 111 fragment, 
whereas a cDNA fragment specific for 
the a-chain C region hybridizes to the 
2.6- and 4.4-kb Hind 111 fragments (10). 

b Fig. 1. Southern analy- r 
z r sis of human-rodent cell 
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gested with Hind I11 
and subiected to elec- 
trophoresis through 0.7 

W percent agarose gels. 
-I* Samvles of DNA were 

a "" blotted and hybridized 
*a by the method of Wahl 

et al. (14), except that 
I) rq) 3* y ** the acid depurination 
L step was omitted and 

the gel was irradiated 
with shortwave ultravi- 
olet for 8 minutes prior 

to denaturation. The blots were hybridized with the 1.3-kb insert of pGA5, a cDNA clone that 
encodes the a chain from the human T-cell tumor HPB-MLT. This insert contains variable 
joining and constant region sequences and has been described (6). The upper, middle, and lower 
bands are 9.6,4.4, and 2.6 kb, respectively. The faint bands seen in human DNA are apparently 
unrelated to the a-chain locus since they do not segregate with the major bands. They may 
represent a-chain pseudogenes, which are unlinked to the a-chain locus. The hybrid cell lines in 
(8) were used except for 32-1-A, a human lymphoblast-mouse L-cell hybrid; Cp23, a human 
fibroblast-Chinese hamster ade-B hybrid; Cp24, a human fibrosarcoma-Chinese hamster 
ade-B hybrid; 314-2, a human lymphocyte-Chinese hamster uri-C, ade-G hybrid; 706-Dl, a 
human lymphocyte-Chinese hamster ade-F hybrid. 




