
weak inertial oscillations (the local iner- 
tial period is 14.8 hours), but otherwise 
R,,,, and R,,,, fall off more or less expo- 
nentially with time, with an e-folding 
time of 15 hours. The lagged cross-corre- 
lation between u' and v' shows the weak 
clockwise-rotating inertial oscillations 
and an indication of more counterclock- 
wise than clockwise energy at lower fre- 
quencies. 

The autocorrelations lead to a particu- 
larly simple statistical scheme for opera- 
tional trajectory prediction (10) and also 
imply a horizontal diffusivity (11) of 1100 
m2/sec on this part of the Labrador 
Shelf. This estimate is slightly in error 
because the influence of the wind pre- 
vents the icebergs from following the 
current perfectly. Using length scales 
determined from an Eulerian analysis 
(see below), we estimate that this has 
reduced the Lagrangian autocorrelation 
time by about 1 hour, so that the eddy 
diffusivity should be about 1200 m2/sec. 

We have more than 6000 values of the 
residual velocity (u ' ,  x, t) at GUDRID. 
We first referred these to a frame of 
reference moving with the mean flow 
and then evaluated the correlation func- 
tions f*(r,~), g*(r,~) of longitudinal and 
transverse velocity components, respec- 
tively (12), for spatial separation r and 
time lag T. In doing this we multiplied 
together all velocity pairs for different 
icebergs and accumulated them in bins of 
size 2 hours (as for the autocorrelation) 
by 3.7 km. We also evaluated the lagged 
cross-correlation between longitudinal 
and transverse velocity components; this 
shows the effects of inertial motion, but 
is relatively small and is not discussed 
further here. 

We found that f* and g* are reason- 
ably separable into 

g*(r,~) = g(r)G(~) 
These functions are shown in Figs. 4 and 
5. 

Nondivergent two-dimensional turbu- 
lence would have g = d(rA1dr (13), and 
the data are not inconsistent with this. 
The length scale of the eddies, from the 
value of r for which g(r) = 0, is 31 km, 
comparable with the length scale of 
shelf-edge eddies observed in satellite 
imagery (14). 

The integral time scale (from an aver- 
age of F(T) and G(T) in Fig. 5 )  is about 40 
hours, considerably longer than the cor- 
rected Lagrangian time scale of 16 hours, 
as predicted theoretically (15). 

The functions f*(r,~) and g*(r,~),  with 
or without the assumption of separabil- 
ity, can be Fourier-transformed into the 
wavenumber-frequency energy spec- 

trum of the eddy field (16). We empha- 
size that, as elsewhere (13), drifter data 
can provide information that is not readi- 
ly obtainable from moored current me- 
ters. 
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Abstract. A new method for calculating the stress field in bounded ice shelves is 
used to compare strain rate and deviatoric stress on the Ross Ice Shelf, Antarctica. 
The analysis shows that strain rate (per second) increases as the third power of 
deviatoric stress (in newtons per square meter), with a constant of proportionality 
equal to 2.3 x 

Glaciers flow under gravitationally in- 
duced stresses. The weight of the ice 
causes the glacier to spread and thin in a 
manner dictated by surface conditions, 
basal conditions, and the ice constitutive 
relation between strain rate and applied 
stress. Because of the complex interac- 
tion of these three elements within the 
glacier and because of the difficulty of 
simulating intraglacial conditions in the 
laboratory, the constitutive relation is 
still an issue in glaciology. 

Laboratory investigations (1, 2) have 
yielded a power-law relation between the 
steady-state effective strain-rate (€) and 
the effective deviatoric stress (T), such 
that 

where € and T are defined so as to be 
invariant under coordinate system rota- 
tion (3). The ice-flow law constant A is 
affected by ice fabric and impurity con- 
tent and exhibits an Arrhenius-type tem- 
perature dependence. The value of n is 
approximately 3, but laboratory experi- 
ments are inconclusive for T < 1 bar and 
at temperatures less than - 10°C-the 
typical stress and temperature regime of 
polar glaciers-because strain rates are 
very small and it is difficult to distinguish 

steady-state creep from transient creep. 
Consequently, information on the low- 
stress rheology of ice is best obtained 
from observations of glacier behavior. 
These observations are needed also to 
detect whether the fabric of glacier ice 
(grain size, crystal orientation, and so 
on) significantly affects ice rheology. 

Studies of the closure of boreholes and 
tunnels in glacer ice (3) and of ice-rise 
morphology (4) have yielded in situ esti- 
mates of A and n. Results are ambigu- 
ous, however, due mainly to uncertain- 
ties in associated estimates of basal tem- 
peratures and of stresses within the ice. 
Less ambiguous results have been ob- 
tained from ice shelves-floating plat- 
forms of thick ice that are extensions of 
the inland ice sheet over the ocean. 
There is no friction at the base of an ice 
shelf. Thus, strain rates measured at the 
surface are characteristic of the entire 
thickness, and the spreading stress (T)  in 
a freely floating ice shelf can be ex- 
pressed simply (5) in terms of ice thick- 
ness ( H ) ,  the acceleration due to gravity 
(g) and the densities of seawater (pw) and 
ice (pi) 
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Moreover, the basal temperature is con- for the stress range 0.1 through 1 bar (6), grounded areas exert a back stress (ub) 
strained to be the freezing point of sea- but the analysis was restricted to regions on the ice shelf, reducing creep rates. Ice 
water. where creep appeared to be unaffected rises are of particular interest because it 

Analysis of strain rate and ice-thick- by drag between the floating ice shelf is believed that they regulate not only the 
ness measurements from several ice and either its grounded margins or local- flow of ice shelves but also the flow of 
shelves has yielded estimates of n and A ized grounded areas (ice rises). These many Antarctic glaciers that drain into 

ice shelves (7). We present a method of 
estimating the flow ~ ro~e r t i e s  of ice 

Fig. 1. Radar echogram collected at a 
station in the central region of the Ross Ice 
Shelf (7.5" grid south and 1.5" grid west) 
(Fig. 2). The ice thickness is about 420 m 
and the ice-seawater interface appears as 
the strong, nearly horizontal reflector at 
that depth. Bottom crevasses appear as 
large diffraction hyperbolas. The height of 
the apex of the hyperbola gives the height 
of the crevasse. In this case the height is 
about 120 m. 

shelves affected by suih grounded areas. 
For an ice shelf where creep is restrict- 

ed by drag at the margins or at ice rises, 7 

in Eq. 1 is given by 

where a and p are ratios between hori- 
zontal components of the strain-rate ten- 
sor with a = Qyy/Qxx and P = QXyl~,,; ub 
is a negative, compressive stress and 
serves to reduce the spreading stress T; 
and the expression applies regardless of 
the choice of x-axis. Equations 1 and 3 
have been used to estimate ub on the 
Ross Ice Shelf from measurement of 
strain rate, ice thickness, and surface 
temperature (8). Values of A and n were 
selected on the basis of other measure- 
ments. More recently, Jezek (9) has 

I I I 
1 5  2 . 0  2.5 shown that ub can be deduced from 

Kilornctvrs measurement of the height of bottom 
crevasses, which are fractures that ex- 
tend upward into ice shelves. They form 
when seawater penetrates into the base 
of the ice shelf and ruptures the ice up to 
the level at which englacial stresses 
equal the stress exerted by seawater. 
The crevasses are clearly visible on ra- 
dar reflection records and penetration 
height can be estimated from these rec- 
ords (Fig. 1). 

Jezek's analysis is based on an earlier 
theory by Weertman (10) for calculating 
the height of an isolated crevasse. By 
assuming that the crevasses open along a 
principal stress axis (hence P in Eq. 3 is 
0, and the derived ub acts perpendicular 
to the crevasse), Jezek showed that 

Ub = 2 (PW - pi) gL - 
71 

(4) 

where L  is the height of the bottom 
crevasse. Substituting Eq. 4 into Eq. 3 
gives 

( I  + a + a2) 'I2 2 (pw - pi) 
7 = 

2 + a  [ l g L  

(5 )  
This equation relates the height of bot- 
tom crevasses to the effective stress in a 

6 ' ~  4 0 2  O 0 2O 4OE 
bounded ice shelf. It does not imply that 

(180°) the effective stress is 0 in regions of an 
ice shelf where there are no crevasses, Fig. 2. Map of the Ross Ice Shelf showing the locations of the centers of bottom crevasse fields 

(mottled patches) and of surface strain-rate measurements (stars and circles). The stars because crevasses form when a 
correspond to locations where we have our best estimates of back stress. The insert map shows preexisting crack of a critical length is 
Antarctica and the Ross Ice Shelf. already present. Such planes of weak- 
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ness may be initiated as ice flows over 
and around grounded zones; basal cre- 
vasses often form downstream from such 
areas (11). 

Equations 1, 3 and 4 allow us to calcu- 
late the constants n and A from mea- 
sured strain rates and values of u b  de- 
duced from measured crevasse heights 
on the Ross Ice Shelf (Fig. 2). Our analy- 
sis is limited to regions where bottom 
crevasses form, typically downstream of 
pinning points. 

In general, measurements of strain 
rates were not made close to bottom 
crevasses. Consequently, we interpolat- 
ed values of the back stress (ub) from 
contoured estimates of u b  derived from 
measurements of bottom crevasse 
heights (9). Interpolations were not ac- 
cepted from areas where contours were 
uncertain because of sparse measure- 
ments of complex flow, nor from areas 
where the contours were closely spaced. 
In the remaining areas, we interpolated 
u b  to the sites of strain-rate measure- 
ments, calculated T from Eq. 3, and 
calculated i from the measured surface 
strain-rate data. Figure 3 shows the re- 
sults with log i plotted as a function of 
log T and estimated error bars on the 
"best" data. These were selected by 
assessing regional consistency of u b  val- 
ues and proximity of basal crevasses to 
sites where strain rates were measured. 
Errors include uncertainties of r0.02 
MN m-' in ub and ?1.5 x lo-'' per 
second in measured strain rates (12). 

The least-squares regression line fitted 
to the best data has a slope of n = 3.3, 
with limits of 2.8 and 4.1 for 1 standard 
deviation of the sample. In order to 
compare values of the constant A from 
these results with those from other stud- 
ies, we follow previous investigators (1, 
6) in setting n = 3. Solution of Eq. 1 
for the starred data points in Fig. 3 then 
gives x = (2.3 r 1) x lo-" sec-' (N 
m-2)-3, where is the mean value of 
depth-averaged values of A at the Ross 
Ice Shelf stations (Fig. 2). 

The temperature dependence of A can 
be represented as A = A, exp(-QIRT), 
where A, is constant, Q is the activation 
energy for creep, R is the gas constant, 
and T is temperature in degrees Kelvin. 
Thomas and MacAyeal (8) modelled 
temperatures within the ice shelf and 
used these to calculate values of A at 
Ross Ice Shelf stations where strain rates 
were measured. They assumed n = 3 
and adopted values of Q and A, consis- 
tent with laboratory experiments and 
other measurements of ice-shelf creep. 
Within the region covered by our study, 
they obtained values of A in the range 
(1.5 to 3.0) x lo-" sec-' (N rn- '~-~.  

This is in excellent agreement with our 
result and indicates that the scatter in 
our data may be partly due to tempera- 
ture variation across the ice shelf, 

Our data also serve to highlight the 
influence of u b  on the creep behavior of 
the Ross Ice Shelf. If u b  is assumed to be 
identically 0 everywhere, then the calcu- 
lated values of log T (Fig. 4) are displaced 

- 1  1 . 2  

, , j 
4 . 6  5 . 0  5.4 5.8 

log  T 

Fig. 3 .  Log B from surface strain-rate mea- 
surements plotted as a function of log r from 
bottom crevasse data. The stars correspond 
to our best estimates of back stress. The 
circles represent points in which we are less 
confident. The three llnes each have slope 
n = 3. The intercept of the solid line with the 
vertical axis corresponds to our best estimate 
of A .  The dashed lines show the variations in 
intercept corresponding to 1 standard devi- 
ation in A.  

Fig. 4. Log B plotted as a function of values of 
log T. A line with slope n = 3 fit to these data 
would result in an intercept corresponding to 
a temperature 30°C colder than the average 
ice-shelf temperature. 

far to the right. These results would 
correspond to ice almost 30°C colder 
than the average temperature of the ice 
shelf and are clearly not realistic. 

The solid line of slope n = 3 (Fig. 3) is 
in reasonable agreement with all the data 
presented in Figure 3. Increased scatter 
in the data limited us from using all the 
points to estimate A and n. The points of 
which we are less certain tend to fall to 
the right of the regression line drawn 
through the best data, indicating that we 
have underestimated the magnitude of ub 
for many of these less certain points. 
This is not surprising; bottom crevasses 
tend to form downstream of pinning 
points where the magnitude of ub is 
reduced so that stations far-removed 
from crevasse fields might be expected 
to exhibit larger magnitudes of u b  than 
we estimated. 

In summary, our analysis of data from 
the Ross Ice Shelf is in good agreement 
with a constitutive relation between the 
power law and creep for glacier ice with 
exponent equal to 3. The constant in the 
constitutive relation, A ,  averaged over 
depth for central regions of the Ross Ice 
Shelf, is 2.3 x lo-" sec-' (N m-2)-3. 
Back stresses ranging up to 0.3 MN m-' 
or higher, caused by the interaction of 
the ice shelf with pinning points and with 
its sides, are an important factor in ice- 
shelf dynamics (13). 

KENNETH C. JEZEK 
U.S. Army Cold Regions Research 
and Engineering Laboratory, 
Hanover, New Hampshire 03755 

RICHARD B. ALLEY 
Geophysical and Polar Research 
Center, University of Wisconsin, 
Madison 53706 

ROBERT H. THOMAS 
Oceanic Processes Branch, National 
Aeronautics and Space Administration, 
Washington, D.C. 20546 

References and Notes 

1. R. LeB. Hooke, Rev. Geophys. Space Phys. 19, 
664 (1981). 

2. J. Weertman, Annu. Rev. Earth Planet. Sci. 11, 
215 (1983). 

3. W. S. B. Paterson, The Physics of Glaciers 
(Pergamon, Oxford, ed. 2, 1981). 

4. P. J .  Marttn and T. J. 0. Sanderson, J .  Glaciol. 
25, 33 (1980). 

5. J. Weertman, ibid. 3, 38 (1957). 
6. R. H. Thomas, ibid. 12, 55 (1973). 
7. __, ibid. 24, 273 (1979). 
8.  __and D. R. MacAyeal, ibid. 28, 397 (1982). 
9. K. C. Jezek, J .  Geophys. Res. 89, 1925 (1984). 

10. J .  Weertman, J .  Glaciol. 25, 185 (1980). 
11. K. C. Jezek and C. R. Bentley, ibid. 29, 118 

11987) 
12, ~ : ~ : . ~ h o m a s ,  D. R. MacAyeal, D. H. Eilers, 

D. R. Gaylord, in The Ross Ice Shey: Glaciolo- 
gy and Geophysics, Antarctic Research Series 
(American Geovhvsical Union. Washington. . . - 
D.C., in press). 

13. T. J. Hughes, Ann. Glaciol. 3, 146 (1982). 
14. We thank C. R. Bentley for many helpful sug- 

gestions. K.C.J. parttcularly acknowledges the 
support of CRREL. Supported by NSF grant 
DPP-8306689. 

23 July 1984; accepted 3 December 198f 

15 MARCH 1985 




