geostrophic transport anomaly is only 0.6×10^6 m³/sec per 1-cm sea level difference. For the root-mean-square amplitude of 4.2 cm of the sea level difference along line E the latter assumption would result in a root-mean-square transport fluctuation of 2.5×10^6 m³/ sec, still larger by a factor of 2 than our Florida Current transport estimate, whereas for a barotropic velocity assumption this value would be about ten times as much.

One has to bear in mind here that this transport fluctuation can only show the net geostrophic flow between Tenerife and San Juan, not any recirculation of southward flow in midbasin within line E east of Puerto Rico.

Time series anomalies of Sverdrup transport between Africa and the western boundary, again low-passed with an 18-month cutoff period, are given in Fig. 2b for 30°N and 20°N. They are calculated from the monthly means of wind stresses of Bunker and Goldsmith (22) for a 10° by 10° grid. Despite this rather coarse resolution, the integrated wind stress curl fields agree reasonably well with the finer resolution curls from Hellerman and Rosenstein (15), at least at the annual period (Fig. 1d). Hence, the time series for transports across 20°N and 30°N as shown in Fig. 2b should give an idea of the magnitude of interannual variations. Root-mean-square amplitudes are 4.8×10^6 m³/sec at 30°N and 2.1×10^6 m³/sec at 20°N. This is the same order of magnitude as the geostrophic transport estimate across line E (Fig. 1a) that one would attain from sea level differences (Fig. 2a), assuming the baroclinic profile, but correlation between the Sverdrup transports (or their geostrophic component after elimination of the Ekman transport) and sea level differences is not significant. Even if wind forcing were the only factor causing this variability with periods of a few years, the lack of correlation would not be unexpected. Although at the annual period the response is mostly barotropic and therefore generates a western boundary current immediately, Anderson and Corry (17) have estimated that it would take about a decade to establish Sverdrup equilibrium in a basin of the scale of the subtropical North Atlantic because of the slow propagation speed of the baroclinic Rossby wave. This conclusion is also supported by a recent numerical model calculation with a sixlayer model, 2° resolution, driven by the winds of Bunker and Goldsmith (22) in which Willebrand and Olbers (23) obtained a small interannual variation of the western boundary current transport 18 JANUARY 1985

that was not correlated with the Sverdrup transport of Fig. 2b. In an earlier study with a barotropic model and winds of Bunker and Goldsmith (22), Willebrand et al. (24) showed for a time segment of several years that the resulting western boundary current transport closely resembled the Sverdrup transport across 40°N.

Another mechanism to be considered is thermohaline forcing, which drives a meridional circulation cell at 24°N of about 15×10^6 m³/sec of warm water going north above 1000 m and returning at depth (25). The variability of this vertical gyre on the interannual time scale is not known, except that transports and heat flux in 1957 (the International Geophysical Year) and 1981 as determined by inverse methods (25) were very similar; this similarity could have been a coincidence. Modeling with interannual thermohaline-forcing anomalies is needed, but the data base is much sparser and more doubtful than for the wind fields.

> FRIEDRICH SCHOTT **RAINER ZANTOPP**

Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida 33149

References and Notes

- 1. T. Lee, F. Schott, R. Zantopp, Science 227, 298
- L. L. Molinari, W. D. Wilson, K. Leaman, *ibid.*, p. 295.
 J. C. Larsen and T. B. Sanford, *ibid.*, p. 302.

- G. A. Maul, F. Chew, M. Bushnell, D. A. Mayer, *ibid.*, p. 304.
 P. Niiler and W. S. Richardson, J. Mar. Res. 31, 144 (1973).
- 6. T. Sanford, ibid. 40 (Suppl.), 621 (1982). Sea level differences in that study were between means from Cat Cay (Bahamas) and Miami, Incans from Cat Cay (Galarias) and Finalin, taken, for different time periods, from J. Patullo et al. [ibid. 14, 88 (1955)].
 J. P. Blaha, J. Geophys. Res. 89, 8033 (1984).
 J. G. Charney, Proc. Natl. Acad. Sci. U.S.A. 41, 731 (1955).
- 8.
- 9. F. Chew, E. Balazs, C. Thurlow, Oceanol. Acta
- 21 (1982). These sea levels are corrected by atmospheric 10. pressure for the inverse barometric effect. Florida Current stations were not corrected because
- of their proximity. In Sverdrup balance, the meridional transport per unit width is equal to the wind stress curl divided by beta, the meridional derivative of the Coriolis parameter.
- D. A. Anderson and R. A. Corry, in prepara-tion. In this case not the winds from (15) but 12. those from (22) at 1° resolution were used.
- 13. J. Sarmiento, personal communication; he used the winds of (15). 14. D. Olson, F. Schott, R. Zantopp, K. Leaman, J.
- *Phys. Oceanogr.*, in press. 15. S. Hellerman and M. Rosenstein, *ibid.* 13, 1093
- (1983)B. Elliott, Eos 64, 236 (1983)
- 17. D. Anderson and J. Corry, Prog. Oceanogr., in press.
- 18. In fact, cable voltages for 1969 to 1974 converted into transports by J. C. Larsen (personal communication) with the STACS results from (3) showed an amplitude of 18-month lowpassed interannual variation of less than 1×10^6
- m³/sec. 19. The Marine Deck is the compilation of historical marine observations between 1861 and 1960 in
- specified areas of the world oceans. 20. P. Lamb, *Tellus* **36**, 292 (1984). 21. A. Leetmaa, P. P. Niiler, H. Stommel, *J. Mar.*
- A. Leetman, P. P. Niler, H. Stommel, J. Mar. Res. 36, 311 (1978).
 A. Bunker and R. Goldsmith, Woods Hole Oceanogr. Inst. Tech. Rep. 79(3) (1979).
 J. Willebrand and D. Olbers, personal communi-
- 24. J. Willebrand, S. G. H. Philander, R. C. Pacan-
- J. which and S. C. H. Philader, R. C. racan-owski, J. Phys. Oceanogr. 10, 411 (1980). D. Roemmich and C. Wunsch, in preparation. This study was supported by the National Oce-anic and Atmospheric Administration and the Office of Naval Research under contract N-0014 so C 0042 00014-80-C-0042.

8 May 1984; accepted 19 November 1984

Partial Primary Structure of the Alpha and Beta Chains of Human Tumor T-Cell Receptors

Abstract. The T-cell receptor for antigen (Ti) was purified from the human tumor cell line HPB-ALL. Amino-terminal sequence analysis of an acid-cleaved peptide of the Tia chain showed that it is highly homologous to a putative murine α chain recently described. Amino-terminal sequence analysis of the Ti β chain revealed that it shares 50 percent homology with the Ti β chain amino acid sequences from two other human T-cell tumors. Nucleotide sequence analysis of a complementary DNA clone encoding the Ti β chain from the HPB-MLT cell line showed that this chain represents a second human constant region gene segment and suggested that it arises from direct joining of the variable and joining gene segments without any intervening D region sequences.

The T-cell receptor for antigen (Ti) has been serologically and biochemically identified as a 90-kilodalton (kD) heterodimer composed of disulfide-linked acidic (α) and basic (β) glycoprotein chains of approximately 40 to 50 kD (1-3). Using differential hybridization techniques, two groups of investigators have identified a T-cell specific complementary DNA (cDNA) clone with a deduced amino acid sequence that is homologous to the amino-terminal sequence of the β chain of Ti (4-6). This gene, which shows significant homology to immunoglobulin genes, is composed of variable (V), diversity (D), joining (J), and constant (C) region segments that undergo specific rearrangements during T-cell ontogeny (4-5, 7-11). Analysis of the murine genomic Tiß gene, has revealed the existence of two constant region gene segments ($C_{\beta 1}$ and $C_{\beta 2}$) which are more

В

HPB-ALL a:

A HPB-ALL β : X Val Thr <u>Gln Ser Pro</u> Thr <u>His</u> Leu Ile Lys Thr Arg <u>Gly Gln</u> His Val Thr REX β : X Val Ile Gln Ser Pro Arg His Glu Val Thr Glu X Gly X Glu Val Thr MOLT-3 β : Gly Val Ile Gln Ser Pro Arg His Glu Val Thr Glu Met Gly Gln Glu Val Thr

(Asp)Pro Ala X Tyr Gln Leu Arg Asp Ser Lys Ser

MURINE $C\alpha$: Glu Pro Ala Val Tyr Gln Leu Lys Asp Pro Arg Ser

Fig. 1 (left). (A) Separated subunits for Ti after SDS-PAGE and electroelution. Purified Ti, containing radioactive tracer Ti, was applied to a preparative 10 percent polyacrylamide gel under reducing conditions. Gel pieces were counted and those containing α or β subunits were electroeluted. One-half percent of the eluted material was analyzed on a 10 percent gel by a silver staining method (17). The separated subunits are Ti β chain (lane 1) and Ti α (lane 2). (B) Acid cleavage of ¹²⁵I-labeled Ti α chain. Ti α chain was treated with 70 percent formic acid for 32 hours at 37°C (18). The acid hydrolyzed protein was lyophilized and then resolved on a 13 percent polyacrylamide gel (lane 3). The arrows indicate the two cleavage products generated from Ti α . Standards for each gel are indicated by the numbers to the left of each gel. Fig. 2 (right). (A) Comparison of NH₂-terminal amino acid sequences of the Ti β chain from three human T-cell tumors. The first sequence was obtained from the β chain isolated from HPB-ALL cells; the second was obtained from protein isolated from MOLT-3 (4). An underlined amino acid in the HPB-ALL sequence indicates one that is identical to one at the

same position in the sequence of REX and MOLT-3. An "X" indicates an unassigned amino acid. (B) Comparison of the amino acid sequence from the acid fragment of HPB-ALL Tia chain (first sequence) with that deduced from the nucleotide sequence from the C region of a putative murine Tia chain gene (13). The "Asp" in parentheses is assumed since acid preferentially cleaves proteins at Asp-Pro bonds. The unassigned "X" at residue 4 in the HPB-ALL α chain sequence was Val in two sequencing runs but appeared to Glu in a third.

than 95 percent homologous (9-10). More recently, using similar subtractive hybridization techniques, several groups have identified two different candidates for the murine Ti α chain gene (12-13). Both of these murine genes are specifically expressed in T cells and rearrange during T-cell ontogeny.

We report here partial amino acid sequence data for both the α and β chains of Ti from the T3+, T4+, T8+ human Tcell tumor line HPB-ALL. Comparison of our Tig chain amino acid sequence with those deduced from putative α chain genes allows identification of the "bona fide" murine α chain gene. In addition, we have cloned the cDNA encoding the Ti β chain from the T3+, T4+, T8+ human T-cell tumor line HPB-MLT. Sequence analysis of this cDNA shows that it is encoded by a second $C\beta$ gene ($C_{\beta 2}$) which is highly homologous to the previously described $C_{\beta 1}$ gene expressed in the T-cell tumor MOLT-3 (4). In addition, this clone appears to result from direct joining of the V, J, and C region gene segments without the presence of D region sequences. However, because of a frameshift mutation occurring at the V-J junction, this clone appears to encode a nonfunctional Tiß chain protein.

The T-cell receptor for antigen was purified in large quantities from HPB-ALL solubilized membranes by immunoaffinity chromatography over a column of Sepharose-linked T40/25, a monoclonal antibody (14) which recognizes the Ti

of HPB-ALL and HPB-MLT (15). These cell lines express identical surface phenotypes when tested with both T cellspecific and HLA reagents. Approximately 1 µg of purified Ti was obtained from 1×10^9 cells. After reduction, the two chains of the receptor were separated by SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and eluted from the gel as described (16); the relative purity of the separated α and β subunits of Ti was determined by SDS-PAGE and a silver staining method (17) (Fig. 1A). The separated α and β chains were then subjected to NH2-terminal amino acid sequence analysis on a gas phase sequenator (Applied Biosystems model 470A). Comparison of the Tiß chain from HPB-ALL and the Tiß chains from REX and MOLT-3 (Fig. 2A), which were previously shown to be identical at their amino terminal (4, 6), indicates ~ 50 percent homology. This finding suggests that MOLT-3 and REX share a common V region gene segment, while HPB-ALL has a homologous yet distinct V region segment.

Amino-terminal sequence analysis of the purified Ti α chain from HPB-ALL revealed that it has a blocked NH₂-terminus. Therefore, the purified α chain was subjected to formic acid hydrolysis (18). The resulting fragments of approximately equal size, 28 and 22 kD (Fig. 1B), were subjected to NH₂-terminal sequence analysis. Because the native NH₂-terminus of the molecule remains blocked, such an analysis yields only a

single set of internal sequence data. As shown in Fig. 2B, 7 of 11 amino acids of the HPB-ALL α chain are identical to those deduced from a portion of the sequence at the beginning of the C region of a putative murine Tia chain cDNA clone obtained by Chien et al. (13). Moreover, of the four nonhomologous amino acids, three are very highly conservative substitutions (Asp for Glu, Arg for Lys, and Lys for Arg). This degree of homology is similar to that reported for the C regions of the murine and human Ti β constant region gene segments (4, 5). There is no apparent homology between the Tia amino acid sequence shown in Fig. 2B and that deduced from the nucleotide sequence of the putative murine Tia reported by Saito et al. (12).

For a more complete study of the structure of the Tiß chain gene, a cDNA library was constructed from the HPB-MLT cell line in λgt 10 and probed by hybridization with a human Tiß cDNA clone from JURKAT cells (19). Approximately 0.04 percent of the clones hybridized to this probe. A single positive clone, 4D1, was plaque-purified by sequential hybridization to the JURKAT cDNA probe and subsequently subcloned into the vectors pBR322, M13mp18, and M13mp19 for restriction enzyme and sequence analysis by the dideoxy method (20). The nucleotide and deduced amino acid sequences of this partial length clone (Fig. 3) were compared to those of the previously reported Tiß sequence from a human T-cell tu-

		-							_																					
MOLT-3	30 Glu GAG	His CAT	Arg CG C	Pro CCC	Ser TCA	able Gln CAG	Vari Ile ATC	Val GTT	Gly GGA	Ala GCT	Asp GAT	Thr ACA	His CAT	Lys AAG	Ala GCG	Val GT A	Leu CTG	Ile ATC	Cys TGC	Leu CTT	Ser TCC	Val GTG	Cys TGT	Cys TGC	Phe TTC	Thr ACC	Trp TGG	Ser TCC	Asp GAC	MET ATG
MOLT-3 HPB-MLT	60 Arg CGG Gln CAG	Met ATG Gly GGG	Met ATG Leu CTG	Thr ACC Ser AGC	Gln CAG Gln CAA	Arg AGA Arg CGA	Tyr TAC Tyr TAC	Trp TGG Trp TGG	Phe TTC Tyr TAC	L eu CTT Leu CTT	Ser TCC Ala GCC	Asn AAC Thr ACT	His CAC His CAT	Gly GGC Gly GGT	Ser TCA Ser TCA	Ile ATT Ile ATT	Pro CCA Pro CCA	Lys AAA Asp GAT	Cys TGT Cys TGT	Arg AGA Arg AGG	Leu CTG Leu CTC	Thr ACT Glu <u>GAG</u>	Val GTG Trp TGG	Glu GAA	Gln CAA	G1y GGA	Met ATG	Glu GAG	Thr ACA	Val GTG
MOLT-3 HPB-MLT	90 Asn AAT Glu GAG	Pro CCT Pro CCT	Met ATG Arg AGG	Lys AAG Val GTC	Ala GCT Ala GCA	Ser TCA Phe TTT	Phe TTC Ph e TTC	Arg CGA Arg CGG	Asp GAT Asp GAT	Glu GAG Asn AAC	Pro CCC Pro CCC	Met ATG Leu CTG	Gly GGG Gly GGG	Ser TCA Ser TCA	Asp GAT Asp GAC	Asp GAT Asp GAT	Ile ATA Ala GCA	Pro CCG Ala GCG	Val GTT Gly GGT	Asn AAC Thr ACG	Asn AAC Gly GGC	Asn AAC Gln CAA	Phe TTT Phe TTC	Tyr TAC Tyr TAC	Ile ATT Ile ATT	Leu CTC Leu CTA	Leu TTG Leu CTT	Glu GAG Glu GAG	Leu CTG Pro CC A	G1y GGA G1y GGC
MOLT-3 HPB-MLT	120 Ala GCT Gly GGG	Ser TCG Gln CAA	y - Cys TGT C	Thr ACC	Ser TCG 	Phe TTC	Ser AGT Ser AGC	Ser AGC Ser AGC	Ala GCC Ala GCC	Cys TGT Cys TGT	Phe TTC Leu CTC	Tyr TAC Tyr T A T	Val GTG Val GTG	Ala GCT Ala GCC	Ser TCA Ser TCA	Asp GAC Asp GAC	Arg AGG Gly GGG	Pro CCC Arg CGG	Glu GAA Glu GAG	Ser TCA Thr ACA	Pro CCC Arg CGC	Gln CAG Gln CAG	Ile ATC Ile ATC	Lys AAG Lys AAG	Leu CTG Leu CTG	Thr ACT Thr ACT	Ser TCC Ser TCT	Phe TTC Val GTC	Ser TCA Ser TCC	Ala GCA Gly GGA
MOLT-3 HPB-MLT	150 Glu GAG Glu GAG	Phe TTT Phe TTT	Val GTG Val GTG	Ala GCT Ala GCT	Val GTC Val GTC	Glu GAG Glu GAG	Pro CCC Pro CCC	Pro CCA Pro CCA	Phe TTC Phe TTC	Val GTG Val GTG	nt Lys AAG Asn AAC	Asn AAC Lys AAA	Co Leu CTG Leu CTG	Asp GAC Asp GAC	Glu GAG Glu GAG	Val GTA Leu CTC	Val GTT Val GTG	Thr ACC Leu CTG	Leu TTA Leu CTC	Arg AGG Arg CGG	Thr ACC Thr ACG	Gly GGG Gly GGC	Ser TCG Pro CCA	Gly GGT Gly GGG	Phe TTC Phe TTC	Thr ACC Tyr TAC	Jo Tyr TAC G1n CAG	Gly GGC Thr ACC	Tyr TAT Glu GAG	Asr AAC Arg AG
MOLT-3 HPB-MLT	180 Trp TGG T rp T GG	Ser AGC Ser AGC	Leu CTG Leu CTG	Glu GAG Glu GAG	Val GTG Val GTG	His CAC His CAC	Asp GAC Asp GAC	Pro CCC Pro CCC	Phe TTC Tyr TAC	Phe TTC Phe TTC	Gly GGC Arg CGG	Thr ACA Thr AC A	Ala GCC Ala GCC	Leu CTG Leu CTG	Cys TGC Cys TGC	Val GTG Val GTG	Leu CTG Leu CTG	Thr ACA Thr ACA	Ala GCC Ala GCC	Lys AAG Lys AAG	Gln CAA Gln CAA	Thr ACC Thr ACC	His CAC His CAC	Ser TCC Ser TCC	Ile ATC Ile ATC	Glu GAG Glu GAG	Ala GCA Ala GCA	G1u GAA G1u GAA	Ser TCA Ser TCA	Pro CCA Pro
MCLT-3 HPB-MLT	21C Cys TGC Cys TGC	Tyr TAC Tyr TAC	Arg AGA Arg AGA	Ser TCC Ser TCC	Asp GAC Asp GAC	Asn AAT Asn AAT	Leu CTC Leu CTC	Ala GCC Ala GCC	Pro CCC Pro CCC	Gln CAG Gln CAG	Glu GAG Glu GAG	Lys AAG Lys AAG	Leu CTC Leu CTC	Pro CCC Pro CCC	Gln CAG Gln CAG	Pro CCG Pro CCG	Asp GAC Asp GAC	Thr ACA Thr ACA	Ser AGC Ser AGC	Val GTC Val GTC	Gly GGG Gly GGG	Ser AGT Ser AGT	His CAC His CAC	Val GTG Val GTG	Glu GAG Glu GAG	Lys AAG Lys AAG	Gly GGG Gly GGG	Asn AAT Asn AAT	Val GTG Val GTG	Tra TGC Trp TGC
MOLT-3 HPB-MLT	240 Glu GAG Glu GAG	Ser TCG Ser TCG	Leu CTC Leu CTC	Gly GGG Gly GGG	Tyr TAC Tyr TAC	Phe TTC Phe TTC	Gln CAG Gln CAG	Val GTC Val GTC	Gln CAA Gln CAA	Cys TGT Cys TGT	Arg CGC Arg CGC	Phe TTC Phe TTC	His CAC His CAC	Asn AAC Asn AAC	Arg CGC Arg CGC	Pro CCC Pro CCC	Asn AAC Asn AAC	Gln CAG Gln CAG	Trp TGG Trp TGG	Phe TTC Phe TTC	Thr ACC Thr ACC	Ala GCC Ala GCC	Ser TCG Ser TCG	Val GTC Val GTC	Arg AGG Arg AGG	Leu CTG Leu CTG	Arg CGC Arg CGC	Ser AGC Ser AGC	Ser AGC Ser AGC	Leu CTC Leu CTC
MOLT-3 HPB-MLT	270 Ser TCG Ser TCC	Thr ACC Thr ACC	Phe TTT Phe TTC	Gly GGC Gly G G C	Cys TGT Cys TGT	Asp GAC Asp GAC	Ala GCA Ala GCA	Arg AGA Arg AGA	Gly GGT Gly GGT	Trp TGG Trp TGG	Ala GCC Ala GCC	Glu GAG Glu GAG	Ala GCC Ala GCC	Ser AGC Ser AGC	Val GTC Val GTC	Ile ATC Ile ATC	Gln CAG Gln CAG	Thr ACC Thr ACC	Val GTC Val GTC	Pro CCC Pro CCT	Lys AAA Lys AAA	Ala GCC Ala GCC	Arg AGG Arg AGG	Asp GAT Asp GAT	Gln CAG Gln CAG	Thr ACC Thr ACC	Trp TGG Trp TGG	Glu GAG Glu GAG	Asp GAC Asp GAC	Asr AAT Asr AAT
MOLT-3 HPB-MLT	300 Ala GCC Ala GCC	Ser AGC Ser AGT	Val GTC Val GTC	Leu CTG Leu CTG	Val GTG Val GTG	Ala GCT Ala GCC	Tyr TAT Tyr TAT	Leu CTG Leu TTG	Thr ACC Thr ACC	Ala GCC Ala GCC	Lys AAG Lys AAG	Gly GGG Gly GGG	Leu CTA Leu CTA	Leu CTG Leu TTG	Ile ATC Ile ATC	Glu GAG Glu GAG	Tyr TAT Tyr TAT	Leu CTC Leu CTC	Ile ATC Ile ATC	Thr ACC Thr ACC	Ala GCC Ala GCC	Ser TCT Ser TCT	Leu CTG Leu CTG	Val GTC Val GTC	Gly GGG Gly GGG	Gln CAA Gln CAA	Gln CAG Gln CAG	Tyr TAC Tyr TAC	Ser TCC Ser TCT	Val GTC Glu GAC
MOLT-3 HPB-MLT	ATA	TCA	GGT	CAT	сат	ACC	СТА	стт тт	GAG TCA	TAG AGG	AGT CCC	⊺GG CAT	AAG	TGG CAA	ССС	CAG *** TAG	AGG Gly GGC	*** TGA Arg AGA	Phe TTC Ser TCC	Asp GAT Asp GAT	Lys AAG Lys AAG	Arg AGA Arg AGA	Lys AAG Lys AAG	Val GTC Val GTC	Met ATG Met	Ala GCC Ala GCC	Met ATG Met	Leu TTG Leu	Val GTG Val GTG	Leu CT1 Leu CT0

Fig. 3. Nucleotide and deduced amino acid sequences of the Ti β chain genes from HPB-MLT and MOLT-3. Eco RI-Bam HI, Eco RI-Bgl II and Bgl II restriction enzyme fragments of 4D1 were subcloned into M13mp18 and M13mp19 and sequenced using the dideoxy method of Sanger *et al.* (20). The MOLT-3 sequence is from Yanagi *et al.* (4). The proper reading frame was inferred from comparison to that of the MOLT-3 Ti β cDNA. An underlined amino acid in the HPB-MLT sequence indicates one that differs from one at the same position in the MOLT-3 sequence.

313

5'	v	aria	abl	0	Diversity											Joining								Constant 3'							
TGT Cys	GC A 1	CA aS	GC er	AGC Ser				C	CAA Gln	GGG G1y	AGG Arg	GAG Glu	ACG Thr	CAG Gln	TAC Tyr	TTG Phe	GGG Gly	CCA Pro	GGC Gly	ACG Thr	CGG Arg	CTC Leu	CTG Leu	GTG Val	CTC Leu	GAG Glu	GAC Asp	CTG Leu		HPB-MLT	Tiβ
TGT Cys	GC A 1	CA aS	GC er	AGT Ser	TTC Phe	TCG Ser	ACC Thr	TGT Cys	TCG Ser	GCT Ala	AAC Asn	TAT Tyr	GGC Gly	TAC Tyr	ACC Thr	TTC Phe	GGT Gly	TCG Ser	GGG Gly	ACC Thr	AGG Arg	TTA Leu	ACC Thr	GTT Val	GTA Val	GAG Glu	GAC Asp	CTG Leu		MOLT-3 T	iβ
										AAC As n	CAA Gln	GAC Asp	ACC Thr	CAG Gln	TAC Tyr	TTT Phe	GGG Gly	CCA Pro	GGC Gly	ACT Thr	CGG Arg	CTC Leu	CTC Leu	GTG Val	TTA Leu					Murine J	β2.5, J _T 5

Fig. 4. V-J-C joining in the Tiß gene of HPB-MLT. The HPB-MLT Tiß nucleotide sequence was obtained as described in the legend to Fig. 3. The MOLT-3 Ti β sequence is that determined by Yanagi et al. (4). The $J_{B2.5}$ or $J_T 5$ sequences, which are identical, are those determined by Malissen et al. (10) and Chien et al. (11). The boundaries of V, D, and J regions were inferred by analogy to their murine counterparts (10, 11).

mor, MOLT-3 (4). This comparison showed that the 4D1 constant region sequence differs from that of MOLT-3 by approximately 3 percent (6 of 177 amino acids and 17 of 351 nucleotides). In addition the carboxyl terminus (the presumed cytoplasmic domain) of the Tiß chain of HPB-MLT is two amino acids longer than that of MOLT-3. This amount of divergence is more than expected of an allele, and suggests the existence of two highly homologous but distinct human C_{β} gene segments. These results are analogous to those of Gascoigne et al. (9) who identified two C region gene segments in the mouse differing by only 4 of 173 amino acids. While all of the murine amino acid substitutions occur at the 3' end of the molecule, in the human genes amino acid substitutions occur at both the 3' and 5' ends of the C regions. As suggested by Gascoigne et al., this difference could be due to a recent gene conversion event in the mouse which has not taken place in the human (9). Overall, the V region segments of the two different β chain genes show 60 percent nucleotide homology. However, there is a highly conserved 80-base-pair (bp) region of 84 percent nucleotide homology located at the 3' end of the V segments of these two genes.

In the V-J-C joining region of clone 4D1 (Fig. 4), the 3' ends of the V regions of HPB-MLT and MOLT-3 Tiß chains are highly homologous (see above). Interestingly, the J region of the human 4D1 clone is very highly homologous to the previously reported murine genomic J region, $J_{\beta 2.5}$ or $J_T 5$ (10–11). If we align the homologous V, J, and C regions of the Tiß chains of 4D1, MOLT-3, and $J_{\beta 2.5}$, it is apparent that 4D1 lacks the four amino acids that correspond to the D region of the Ti β gene of MOLT-3. This suggests that 4D1 arose by direct joining of germ line V, J, and C gene

segments with concomitant deletion of all D region sequences. Formal proof of this direct V-J joining requires sequencing of the germ line genomic V, J, and C region genes used in the 4D1 gene rearrangements. However, it should be noted that the possibility of such direct V-J-C joining has been suggested on theoretical grounds by Malissen et al. (10) and Chien et al. (11). Their analyses of murine genomic Tiß sequences showed that the nonconserved spacer sequences surrounding the V, D, J, and C gene segments are ordered in a V-23bp-12 bp-D-23bp-12bp-J arrangement. According to the rules that govern immunoglobulin gene rearrangements (21, 22), this arrangement should allow for direct V-J-C as well as D-D joining during the formation of the Tiß chain gene. In addition to the probable lack of D region sequences in 4D1, there is a single nucleotide insertion between the V and J regions of 4D1 (Fig. 4) which causes a frameshift in J and C region sequences downstream. This frameshift, in turn, causes the generation of two stop codons in the C region of 4D1. Because both strands of this region of 4D1 have been sequenced numerous times, a sequencing error is unlikely to be the source of this frame shift. Instead 4D1 may represent a nonfunctional cDNA caused by faulty V-J joining. Such nontranslatable β gene clones have been found in a murine thymocyte library and have been postulated to arise during the early stages of thymocyte differentiation (5). In this regard it is noteworthy that HPB-MLT expresses the early thymocyte T4+, T6+, T8+ phenotype. Additional Tiß cDNA clones from this cell line are being sequenced in an attempt to define a second Tiß chain allele which is expressed on the surface of HPB-MLT.

In summary, we have presented amino acid sequence analysis of the α chain of the human T-cell receptor for antigen which by sequence homology confirms the identity of the putative $Ti\alpha$ chain gene recently cloned by Davis and colleagues. In addition, we have determined the nucleotide sequence of a second human Tiß constant region gene segment and have demonstrated that direct V-J-C joining can occur in the formation of the Tiβ chain gene during T-cell ontogeny.

Note added in proof: While this report was in press, Saito et al. (23) reported the cloning of a murine gene which also appears to encode the Ti α chain and Hannum et al. (24) reported amino acid sequences of several peptides of the $Ti\alpha$ chain from HPB-ALL.

NANCY JONES, JEFFREY LEIDEN DENO DIALYNAS, JOHN FRASER MARTHA CLABBY, TAKASHI KISHIMOTO JACK L. STROMINGER

Division of Tumor Virology,

Dana-Farber Cancer Institute,

Boston, Massachusetts 02115

DAVID ANDREWS, WILLIAM LANE Harvard University,

Cambridge, Massachusetts 02138

JAMES WOODY

Naval Medical Research Institute, Bethesda, Maryland 20814

References and Notes

- J. P. Allison, B. W. McIntyre, D. Bloch, J. Immunol. 129, 2293 (1982).
 J. Kappler, R. Kubo, K. Haskins, J. White, P. Marrack, Cell 34, 727 (1983).
 S. Meuer et al., J. Exp. Med. 157, 705 (1983).
 Y. Yanagi et al., Nature (London) 308, 145 (1984). (1984).
- (1984). S. M. Hedrick, E. A. Nielsen, J. Kavaler, D. I. Cohen, M. M. Davis, *ibid.*, p. 153. O. Acuto *et al.*, *Proc. Natl. Acad. Sci. U.S.A.* **81**, 3851 (1984). 5.
- 6.
- 7.
- 8.
- 10.
- 81, 3851 (1984).
 S. M. Hedrick, D. I. Cohen, E. A. Nielsen, M. M. Davis, Nature (London) 308, 149 (1984).
 G. Siu et al., ibid. 311, 344 (1984).
 N. Gascoigne, Y. Chien, D. M. Becker, J. Kavaler, M. M. Davis, ibid. 310, 387 (1984).
 M. Malissen et al., Cell 37, 1101 (1984).
 Y. Chien, N. Gascoigne, J. Kavaler, N. E. Lee, M. M. Davis, Nature (London) 309, 322 (1984).
 H. Saito et al., ibid., n. 757. 11.
- H. Saito *et al.*, *ibid.*, p. 757.
 Y. Chien *et al.*, *ibid.* **312**, 31 (1984).
 The monoclonal antibody T40/25 was provided by Dr. Ian Trowbridge.
 J. Kappler et al., Cell 35, 295 (1983).
 M. W. Hunkapiller, E. Lujan, F. Ostrander, L. Hood, Methods Enzymol. 91, 227 (1983). 15.
- 17
- J. H. Morrisey, Anal. Biochem. 117, 307 (1983). J. C. Terhorst, R. Robb, C. Jones, J. Strominger, Proc. Natl. Acad. Sci. U.S.A. 74, 4002 (1977). The human Tiβ cDNA clone was obtained from 18.
- 19.
- 20.
- 21.
- 24.
- The human Tiß cDNA clone was obtained from Dr. Tak Mak. F. Sanger, S. Nicklen, A. R. Coulson, Proc. Natl. Acad. Sci. U.S.A. 74, 5463 (1977). P. Early, H. Huang, M. Davis, K. Calame, L. Hood, Cell 19, 992 (1980). S. Tonegawa, Nature (London) 302, 575 (1983). H. Saito et al., ibid. 312, 36 (1984). C. H. Hannum, J. W. Kappler, I. S. Trow-bridge, P. Marrack, J. H. Freed, *ibid.*, p. 65. This work was supported by grants from the National Institutes of Health (5 R01 AI15669 and Al10736). the Nayal Medicine Research & De 25. A110736), the Naval Medicine Research & De-velopment Command Work Unit (M0095 PN 001-0045), NCI contract Y001CP00502, and fel-1001-0043), NCI contract Y001CF00302, and fel-lowships from the Cancer Research Institute (N.J.), Pfizer Foundation (J.L.), Damon Run-yon-Walter Winchell Cancer Fund (D.D)., Fo-garty International (J.F.), and Albert J. Ryan Foundation Scholarship (T.K.). We thank Drs. Ian Trowbridge and Tak Mak for providing reagents, Dr. Mark Davis for sharing sequence data prior to its publication and Iowae Cultion data prior to its publication, and Joyce Culgin for secretarial assistance.

19 October 1984; accepted 20 November 1984