hydrolyzate was applied to a Shimadzu amino acid analyzing system with the use of o-phthalaldehyde postcolumn derivatization (12). The proportions of amino acids in the hydrolyzate of cPD1 were serine, 1.13; glycine, 1.57; valine, 1.00; methionine, 0.88; leucine, 1.92; and 1.62, phenylalanine, or roughly, 1:1:1:1:2:2, respectively. Although the molar ratio of glycine is high, we believe that the amino acid ratios are as indicated for the reasons described in (13). The amino acid sequence of cPD1 was determined by a manually operated direct Edman method. The phenylthiohydantoin amino acid derivative obtained at each degradation cycle was identified by high-performance liquid chromatography (HPLC) (14). The results reveal that the amino acid sequence of cPD1 was H-Phe-Leu-Val-Met-Phe-Leu-Ser-Gly-OH.

Fully protected cPD1 was synthesized in solution by a stepwise chain elongation from the carboxyl terminus. In each step, condensation was achieved by the HONB(N-hvdroxy-5-norbornene-2,3-dicarboximide) – DCC(N, N' - dicyclohexylcarbodiimide) method (15). After removal of all the protective groups with hydrogen fluoride (16), the major product of synthesis was purified by reprecipitation from trifluoroacetic acid. Correct synthesis of cPD1 was confirmed by amino acid analysis and FAB mass spectrometry. The retention time on HPLC and the clumping-inducing activity of the synthetic octapeptide were fully identical with those of native cPD1.

It has been reported that the frequency of plasmid transfer can be increased by several orders of magnitude, by exposing donor cells to a cell-free filtrate of recipient cells for 20 to 50 minutes prior to mating (6, 7). Enhancement of plasmid transfer was observed for both isolated and synthetic cPD1 adjusted to a concentration whose activity corresponded to that in a recipient cell-free filtrate (Table 2). The cPD1 did not affect mating between OG1S(pAD1::Tn917) and JH2-2, which involves a different conjugative plasmid (pAD1::Tn917) that responds to cAD1 (17). This was consistent with the observation that cPD1 failed to induce self-clumping of OG1S(pAD1::Tn917) at a concentration as high as 100 ng per 100 μ l (approximately $1 \times 10^{-6}M$) in a microtiter dilution well. These results confirm the chemical specificity of characterized pheromone activity.

We believe that our findings are relevant to studies on the plasmid-determined pheromone-inactivation mechanism in donor cells. It is possible that the single serine residue is involved in the

inactivation as a relationship between formation of a phosphodiester bond and pheromone-inactivaton has been reported (8).

> **AKINORI SUZUKI*** MASAAKI MORI YOUJI SAKAGAMI

AKIRA ISOGAI

Department of Agricultural Chemistry, University of Tokyo, Tokyo 113, Japan

MASAHIKO FUJINO CHIEKO KITADA

Central Research Division,

Takeda Chemical Industries, Ltd., Osaka 532, Japan

> RONALD A. CRAIG[†] DON B. CLEWELL*

Departments of Oral Biology and Microbiology and Immunology, Schools of Dentistry and Medicine,

and Dental Research Institute,

University of Michigan,

Ann Arbor 48109

References and Notes

- 1. D. Stotzler, H.-H. Kiltz, W. Duntze, Eur. J. Biochem. 69, 397 (1976); A. Sakurai, S. Tamura, N. Yanagishita, C. Shimoda, Agric. Biol. Chem. **41**, 395 (1977).
- 2. Kamiya et al., Agric. Biol. Chem. 43, 363 (1979)
- (19/9).
 Y. Sakagami, M. Yoshida, A. Isogai, A. Suzuki, Science 212, 1525 (1981); Y. Ishibashi, Y. Saka-gami, A. Isogai, A. Suzuki, Biochemistry 23, 1399 (1984). 3.
- D. B. Clewell, *Microbiol. Rev.* 45, 409 (1981).
 _____, Y. Yagi, Y. Ike, R. A. Craig, B. L. Brown, F. An, in *Microbiology-1982*, D. Schlessinger, Ed. (American Society for Microbiology, Washington, D.C., 1982), pp. 97–100.

- G. M. Dunny, B. L. Brown, D. B. Clewell, *Proc. Natl. Acad. Sci. U.S.A.* 75, 3479 (1978).
 G. M. Dunny, R. A. Craig, R. L. Carron, D. B. Clewell, *Plasmid* 2, 454 (1979).
 Y. Ike, R. A. Craig, B. A. White, Y. Yagi, D. B. Clewell, Proc. Natl. Acad. Sci. U.S.A. 80, 5369
- (1983)9. A. Jacob and S. J. Hobbs, J. Bacteriol. 117, 360 (1974)
- (1974).
 Y. Yagi, R. E. Kessler, J. H. Shaw, D. E. Lopatin, F. An, D. B. Clewell, J. Gen. Microbiol. 129, 1207 (1983).
 The isolated cPD1 (approximately 5 μg) was dissolved in 10 μl of 50 percent acetonitrile. A portion (2 μl) of sample solution was mixed with 2 μl of diethanolamine on a small stainless steel tip and then the FAB mass spectrum was measured with a UNS DN 200 proce sectormeter.
- yind high a JMS DX-300 mass spectrometer (JEOL) with xenon as the fast atom.
 Y. Ishida, T. Fujita, K. Asai, J. Chromatogr. 204, 143 (1981). 12
- 13. The molar ratio of glycine (1.57) obtained from amino acid analysis might appear to be too high to regard as 1. However, if it is taken into consideration that the molar ratio is the value which is normalized to that of valine, the residue involved in the hydrolysis-resistant leucine-valine bond, and that glycine is the amino acid which often affects the result of amino acid analysis by contamination, our estimation of the amino acid ratio of cPD1 is probably correct.
- amino acid ratio of CPD1 is probably correct.
 14. A. Suzuki et al., in preparation.
 15. M. Fujino, S. Kobayashi, M. Obayashi, T. Fukuda, S. Shinagawa, O. Nishimura, Chem. Pharm. Bull. (Tokyo) 22, 1857 (1974).
 16. S. Sakakibara, Y. Shimonishi, Y. Kishida, M. Okada, H. Sugiura, Bull. Chem. Soc. Jpn. 40, 2164 (1967).
 17. D. B. Clayfoll and B. L. Brayn, L. Basterial.
- 17. D. B. Clewell and B. L. Brown, J. Bacteriol.
- 143, 1063 (1980).
- P. K. Tomich, F. Y. An, D. B. Clewell, J. Bacteriol. 141, 1366 (1980).
 We thank Drs. Masahiko Yoneda and Hisayoshi Okazaki, Central Research Division, Takeda Chemical Industries, Ltd., for a large-scale fermentation; Professor Keiji Yano, Department of Arbitation (1996). Agricultural Chemistry, University of Tokyo for suggestions at the beginning of this work of Tokyo. Agricultural Chemistry, University of Tokyo, for suggestions at the beginning of this work; and F. An and B. White for assistance and discussion. Supported in part by NIH grants DE02731 and AI10318 (D.B.C.).
- To whom correspondence should be addressed. + Present address: VA Hospital, Ann Arbor, Mich. 48015.

7 June 1984; accepted 4 September 1984

Blockade of N-Methyl-D-Aspartate Receptors May Protect Against Ischemic Damage in the Brain

Abstract. In rats ischemia of the forebrain induced by a 30-minute occlusion of the carotid artery, followed by 120 minutes of arterial reperfusion, produced ischemic lesions of selectively vulnerable pyramidal cells in both hippocampi. Focal microinfusion into the dorsal hippocampus of 2-amino-7-phosphonoheptanoic acid, an antagonist of excitation at the N-methyl-D-aspartate-preferring receptor, before ischemia was induced protected against the development of ischemic damage. It is proposed that excitatory neurotransmission plays an important role in selective neuronal loss due to cerebral ischemia.

Cerebral ischemia and status epilepticus produce similar patterns of neuronal loss in the hippocampus (1), involving preferentially those pyramidal neurons (in regions CA1, CA3, and CA4) that most readily show burst firing (2). This led to the suggestion (3) that enhanced calcium entry during burst firing, in the course of either status epilepticus or the reperfusion phase after ischemia, accounts for selective neuronal vulnerability, with excessive intracellular calcium leading to cell death in a manner similar

to that proposed for muscle and liver cells (4). We have shown that mitochondria in selectively vulnerable hippocampal neurons show massive overloading with calcium during status epilepticus and after 2 hours of reperfusion following cerebral ischemia (5).

Burst firing can be triggered in hippocampal, cortical, or striatal neurons by iontophoresis of aspartate or of other compounds acting on the N-methyl-Daspartate (NMDA)-preferring receptor, including quinolinic acid (6). The excitatory effect of dicarboxylic amino acids at the postsynaptic receptor can be blocked by various analogs of glutamate and aspartate (7). Among these, 2-amino-7-phosphonoheptanoic acid (APH) is a highly potent antagonist that is selective for NMDA receptors (8). To investigate the possible role of excitatory amino acid neurotransmission in the development of ischemic brain damage, we assessed the effect of APH, focally injected into one hippocampus, on the local development of ischemic brain damage in a rodent model in which bilateral carotid occlusion is combined with systemic hypotension to reduce forebrain blood flow to less than 5 percent of control levels (9). Immediately before the induction of ischemia, 1 μ l of buffer containing 20 μ g of APH (10) was infused over 2 minutes through guide cannulas into one dorsal hippocampus; buffer alone was injected contralaterally. After 30 minutes of ischemia and 2 hours of reperfusion, the animals were killed by transaortic perfusion with fixative (11) and brain sections containing both hippocampi were serially sectioned and prepared for light microscopy. Figure 1 summarizes data on sections made through the dorsal hippocampus directly anterior and posterior to the injection site. On the buffer-injected side a variety of cellular changes indicated early ischemic damage (12). The interanimal variability was typical of that occurring in models of ischemia (5, 13).

In the hippocampus in which pharmacological blockade of excitatory neurotransmission had been induced, neuronal damage was markedly attenuated compared to the contralateral hippocampus. Often the protected side appeared normal (Fig. 2), while the contralateral side showed severe damage. The protection extended to all cell types—pyramidal, granule, and polymorphic (Fig. 1)—and included a sphere 1 to 2 mm in diameter surrounding the injection site, but also on occasion extending more anteriorly or posteriorly and ventrally in the hippocampal formation.

This protective action of APH implies that excitation at the NMDA receptor plays an important part in the development of ischemic cytopathology. It was previously shown that potent agonists at the NMDA receptor (such as ibotenate or quinolinate) produce neuronal degeneration when injected focally into the hippocampus and that such degenerative changes can be blocked by coadministration of APH. The endogenous agent acting at the NMDA receptor, during ischemia or in the postischemic phase when burst firing is occurring, is not definitively known. Aspartate and quinolinate both induce burst firing (by an action on the NMDA receptor) if applied by microiontophoresis (6, 14). They are present in millimolar and micromolar concentrations, respectively (15).

In animal models of epilepsy APH is a potent anticonvulsant (as potent as diazepam when administered intraventricularly and as potent as valproate when given intravenously) (16). Its protective action against ischemic neuronal changes may thus have two components, an immediate local effect blocking excitatory action on the NMDA receptor and an anticonvulsant action preventing the spread of burst discharges or epileptic activity. Both actions have the effect of diminishing intracellular calcium accumulation during the reperfusion phase (5). Thus our findings support the concept that excitatory synaptic activity and associated enhanced entry of calcium contribute to selective neuronal vulnerability to ischemia (5, 17).

Use of drugs in the prophylaxis and therapy of ischemic brain damage has been the object of extensive experimentation (8). The main finding to date has been a modest protective action of barbiturates in some animal models of focal cerebral ischemia (18). The mechanism of this protection remains hypothetical, but may involve changes in inhibitory and excitatory transmission (19). Our results indicate that pharmacological

Fig. 1. Protection by APH against ischemic cell change in rats (n = 7). Before ischemia one hippocampus was infused with APH and the contralateral hippocampus with buffer alone. The bars represent mean percentages (+ standard errors) of neurons showing ischemic damage (scored on a three-point percentage scale) for the indicated type of cell (DG, dentate granule cells; Sub, pyramidal neurons of subiculum) (20). The arrows indicate the injection site (4.5 mm anterior to the intraaural line, 2.0 mm lateral to the midline, and 3.5 mm below the cortical surface). Bars above arrows refer sequentially to histological sections 4.7 and 5.7 mm anterior and bars below arrows to sections 3.7 and 2.7 mm anterior. Statistically significant differences between APH- and buffer-infused hippocampi are indicated by asterisks: (*) P < 0.5, (**) P < 0.01, and (***) P < 0.001 (paired twotailed t-test).

Fig. 2. Representative cytological changes in dorsal hippocampus 5.7 mm anterior to the intra-aural line (cresvl violet, $\times 250$). The left hippocampus was injected with APH and the right with buffer 5 minutes before 30 minutes of ischemia and 2 hours of reperfusion. The injection was mm site 1.2 posterior to the section from which photomicrothese graphs were taken. Nearly all cells treated with APH were normal. Ischemic (condensed changes hyperchromatic cytoand karyoplasm) were seen in cells from buffer-injected hippocampi

blockade of a subclass of excitatory receptors may be a valuable approach to therapy in brain ischemia.

- J. H. SWAN
- T. GRIFFITHS*
- B. S. Meldrum[†]

Department of Neurology, Institute of Psychiatry, De Crespigny Park,

London, England SE5 8AF

References and Notes

- 1. J. B. Brierley, Greenfield's Neuropathology, W. Blackwood and J. A. N. Corsellis, Eds. (Arnold, London, 1976), pp. 43–85; J. A. N. Corsellis, Eds. (Arnold, London, 1976), pp. 43–85; J. A. N. Corsellis and B. S. Meldrum, *ibid.*, pp. 771–795.
 P. A. Schwartzkroin and A. R. Wyler, *Ann. Neurol.* 7, 95 (1980).
- 2.
- 3. B. S. Meldrum, Metabolic Disorders of the Nervous System, F. C. Rose, Ed. (Pitman, London, 1981), pp. 175–187; Adv. Neurol. 34, 262(1997) 261 (1983).
- 4.
- 261 (1983).
 J. L. Farber, Life Sci. 29, 1289 (1981); J. P. Leonard and M. M. Salpeter, Exp. Neurol. 76, 12 (1982); F. A. X. Schanne, A. B. Kane, E. E. Young, J. L. Farber, Science 206, 700 (1979).
 T. Griffiths, M. C. Evans, B. S. Meldrum, Neuroscience 10, 385 (1983); R. P. Simon, T. Griffiths, M. C. Evans, J. H. Swan, B. S. Meldrum, J. Cereb. Blood Flow Metab. 4, 350 (1984). 1984)
- (1984).
 6. P. L. Herrling, R. Morris, T. E. Salt, J. Physiol. (London) 339, 207 (1983); R. Dingledine, *ibid.* 343, 385 (1983); G. L. Collingridge, S. J. Kehl, H. McLennan, *ibid.* 334, 19 (1983). Excitatory amino acids acting on quisqualate- or kainate-proferring recentse do not produce a compare-
- 7. J.
- nic Definition 101, 394, 19 (1909). Excludity amino acids acting on quisqualate- or kainate-preferring receptors do not produce a comparable pattern of burst firing.
 J. C. Watkins and R. H. Evans, Annu. Rev. Pharmacol. Toxicol. 21, 165 (1981); H. McLennan, Prog. Neurobiol. 10, 251 (1983).
 M. N. Perkins, J. F. Collins, T. W. Stone, Neurosci. Lett. 32, 65 (1982); B. S. Meldrum et al., Neuroscience 9, 925 (1983); M. J. Peet, J. D. Leah, D. R. Curtis, Brain Res. 266, 83 (1983).
 E. Kägstrom, M. L. Smith, B. K. Siesjö, J. Cereb. Blood Flow Metab. 3, 183 (1983). Male Wistar rats (200 to 250 g) were anesthetized with 70 percent N₂O and 30 percent O₂, paralyzed with tubocurarine, and ventilated to maintain arterial pCO₂ between 35 and 45 torr. Normo-thermia and arterial pCO₂ above 100 torr were maintained throughout. Ischemia was induced by bilateral carotid occlusion and progressive by bilateral carotid occlusion and progressive withdrawal of blood until the electroencephalogram became isoelectric (mean arterial pressure, 55 ± 5 torr). After 30 minutes the carotid snares were released; distal reflow was confirmed by visual inspection. Blood was reinfused to maintain mean arterial pressure at 100 to 120 torr for 2 hours. No animal regained electroencephalogram activity during the 2 hours of reperfusion In the ischemic period arterial pH fell from 7.4 to 6.95 but returned to normal within 1 hour of reperfusion. Arterial pO_2 and pCO_2 were main-
- APH was dissolved in 0.1 ml of 1M NaOH and brough to pH 7.4 with 0.1M sodium phosphate buffer (total volume, 1 ml). Perfusion fixation was achieved with a modified 10.
- 11. Karnovsky solution containing 2 percent glutar-aldehyde and 2.8 percent paraformaldehyde, Perfusion was done at a pressure of 120 torr for 10 minutes. The brain was removed after 24 hours and processed for paraffin embedding. Serial sections (6 μM) were cut, with every fifth section being stained with hematoxylin and eo-sin or cresyl violet. The occurrence of ischemic damage in neurons in each zone of the hippo campus was rated on a percentage scale by a single observer (T.G.) under blind conditions. Anteroposterior variation in severity of neuro-pathology was minmal within a 3- to 4-mm block, so the sections studied (at 1-mm intervals) were representative of the dorsal hippo-
- W. Spielmeyer, Histopathologie des Nerven Systems (Springer, Berlin, 1922), pp. 74–79.
 Histological changes in the hippocampi injected with buffer alone varied from clumping of nucle-bustienties to alossical ischemic cell change 12. ar chromatin to classical ischemic cell change with a pyknotic nucleus and shrunken, con-densed cytoplasm. Cells in regions CA1 and CA4 were most commonly and severely affected: this selective pattern was most clearly seen in animals with less severe damage. In severely

affected hippocampi no neuronal group was spared. Microvacuolation (the prodromal stage of ischemic cell change, characterized by vacuoles derived from swollen mitochondria) was

- seen only rarely in this material. W. A. Pulsinelli, J. B. Brierley, F. Plum, Ann. Neurol. 11, 491 (1982). 13.
- IVenrol. 11, 491 (1962).
 C. Aldinio, E. D. French, R. Schwarcz, Exp. Brain Res. 51, 36 (1983); A. C. Foster, J. F. Collins, R. Schwarcz, Neuropharmacology 22, 1331 (1983); R. Schwarcz, J. F. Collins, D. A. Parks, Neurosci. Lett. 33, 85 (1982); R. Schwarcz, W. Magnang, S. Schwarcz, W. Waster, M. Magnang, S. Schwarcz, W. Waster, M. Magnang, S. Schwarcz, W. Schwarcz, W. Schwarcz, Schwarcz, M. Magnang, S. Schwarcz, S. Schwarcz, M. Magnang, S. Schwarcz, M. Magnang, S. Schwarcz, M. Schwarcz, M. Magnang, S. Schwarcz, M. Schwarcz, M. Schwarcz, Schwarcz, M. Schwarcz, M. Schwarcz, S. Schwarcz, S. Schwarcz, S. Schwarcz, S. Schwarcz, S. Schwarcz, Schwa Parks, Neurosci. Lett. **31**, 85 (1982); R. Schwarcz, W. O. Whetsell, R. M. Mangano, *Science* **219**, 316 (1983); R. Schwarcz, W. O. Whetsell, A. C. Foster, in *Excitotoxins*, K. Fuxe, P. Roberts, R. Schwarcz, Eds. (Macmil-
- Fuxe, P. Roberts, R. Schwarcz, Eds. (Macmillan, London, 1983), pp. 122-137.
 E. Westerberg, A. G. Chapman, B. S. Meldrum, J. Neurochem. 41, 1755 (1983); M. Wolfensberger et al., Neurosci. Lett. 41, 247 (1983).
 M. J. Croucher, J. F. Collins, B. S. Meldrum, Science 216, 899 (1982); S. J. Czuczwar and B. S. Meldrum, Eur. J. Pharmacol. 83, 335 (1982); A. G. Chapman, J. F. Collins, B. S. Meldrum, E. Westerberg, Neurosci. Lett. 37, 75 (1983); B. S. Meldrum, M. J. Croucher, G. Badman, J. F. Collins, *ibid.* 39, 104 (1983).
 T. In hippocampal cell cultures blockade of synap-
- 17. In hippocampal cell cultures blockade of synaptic activity (by raising extracellular Mg^{2+}) prevents cell death from hypoxia [S. M. Rothman, Science 220, 536 (1983); J. Neuro. Sci. 4, 1884

(1984)]. Responses evoked by NMDA are preferentially depressed by Mg²⁺ [B. Ault, R. H. Evans, A. A. Francis, D. J. Oakes, J. C. Watkins, J. Physiol. (London) 307, 413 (1980)].
18. K. A. Hossmann, J. Cereb. Blood Flow Metab. 2, 275 (1982).
19. R. L. MacDonald, in Recent Advances in Epilepsy, T. A. Pedley and B. S. Meldrum, Eds. (Churchill Livingstone, Edinburgh, 1983), pp. 1-23.

- G. Paxinos and C. Watson, The Rat Brain in 20. Stereotaxinos and C. Walson, Ine Rul Dath in Stereotaxic Coordinates (Academic Press, Lon-don, 1982); R. Lorente de No, J. Psychol. Neurol. (Leipzig) 46, 113 (1939). Supported by the Wellcome Trust and the Chest, Heart, and Stroke Association. We thank
- 21 L. J. Johnson and R. L. Alston for skilled histological assistance, J. F. Collins for supplynistological assistance, J. F. Collins for supply-ing APH, and B. Everitt for statistical advice (supported in part by NIH Teacher Investigator Award 5 K07 NS00437-04). When this work was performed R.P.S. was on sabbatical leave from the Department of Neurology, University of California, San Francisco General Hospital, San Francisco 94110.
- Present address: Department of Optometry and Visual Sciences, City University, Goswell Road, London EC1, England.
- To whom correspondence should be addressed.

18 May 1984; accepted 17 August 1984

Transglutaminase-Mediated Modifications of the

Rat Sperm Surface in Vitro

Abstract. Two transglutaminase-mediated modifications of the rat epididymal spermatozoon surface were demonstrated in vitro. Transglutaminase was effective in promoting the binding of spermidine to the sperm. Moreover, the enzyme, by reacting with one of the major proteins secreted by the rat seminal vesicle epithelium, produced a modified form of the protein with a higher molecular weight and the capability of binding to the sperm cells. A specific physiological role for the enzyme, bringing about modifications of the rat sperm surface in the seminal fluid environment, is suggested.

The mammalian male gamete acquires its basic differentiated phenotype in the testis; however, numerous subsequent adjustments in its molecular architecture are required for complete maturation. The various microenvironments encountered by spermatozoa during their journey to the uterine tube appear to play an important role in modifying many of their biochemical and functional characteristics (1). Chemicals (enzymes, proteins, salts, and small organic molecules) in the epididymal fluid (2), by interacting with the sperm surface, markedly change the cell's physiological and immunological properties (3). Epididymal sperm cells acquire both the potential ability to move (1) and definite antigenic surface characteristics (4). At this point a biological problem arises: the antigenic properties of the epididymal sperm are such that the female genital tract recognizes them as nonself, and the male gamete faces the risk of immunological rejection (3)

The chemical environment surrounding the epididymal sperm cells changes again after ejaculation (1). In a matter of seconds they become suspended in a new medium resulting from the mixing of secretions from the accessory glands of the male reproductive tract. Many of the chemicals present in this medium are believed to have trophic and protective effects on the sperm cells (1, 2). The exact function of many of these factors is not known. At this stage the sperm, although capable of successfully facing the immunocompetence of the female genital tract, are still incompetent to fertilize a mature oocyte (1). The factors responsible for capacitation probably act by binding to the sperm plasma membranes. Recent data (4) suggest that a rat seminal vesicle secretory protein (molecular weight, 50,000) acts as a spermcoating antigen. The immunosuppressive properties of rabbit seminal fluid have been referred (3) to transglutaminase (TG)-mediated binding of uteroglobin, a secretory protein of prostate origin. This points to Ca²⁺-dependent TG activity, present in great amounts in mammalian prostate secretions, as an important factor in the molecular mechanism of sperm surface maturation (5-7). It is already known that this enzyme plays a role in the formation of the copulatory plug in rodents (8).

In rats one of the major proteins se-

R. P. Simon