
plane-parallel; for the oscillation modes 
considered, this approximation is quite 
accurate. Let us denote the unperturbed 
density by 7j and the infinitesimal per- 
turbations in density, pressure, and hori- Reports 

Solar p-Mode Eigenfrequencies Are Decreased by 
Turbulent Convection 

Abstract. Average solar p-mode eigenfrequencies are decreased by largefiuctuat- 
ing velocityJields in the upper convection zone. This effect is greatest for modes with 
large horizontal wave numbers and frequencies. It is large enough to affect estimates 
of the depth of the convection zone and may carry useful information about the 
structure of solar convective turbulence. 

The measured eigenfrequencies of so- 
lar p-modes have become an important 
tool for probing the solar interior ( I ) .  
Since the cavity within which these 
acoustic waves are trapped extends from 
near the solar surface to a depth that 
depends strongly on the horizontal wave 
number kh (where kh is inversely propor- 
tional to the horizontal wavelength), the 
variation of the resonant frequencies 
with kh can in principle be inverted to 
yield information on the variation of 
physical parameters with depth inside 
the sun. One successful application of 
such methods seems to be the inference 
that the solar convection zone extends to 
a depth of at least 30 percent of the solar 
radius Ro, rather than 20 percent or less, 
as was previously supposed (2). 

Such inferences are not reliable, how- 
ever, unless the details of stellar struc- 
ture and wave propagation within the 
cavity are correctly treated. Thus uncer- 
tainties about the opacity and equation 
of state can cause uncertainties in the 
computed frequencies that are large 
compared to the observational errors (3),  
and variations in the treatment of the 
upper-boundary condition may have a 
similar effect (4). The variation in the 
average wave propagation properties in- 
side the sun caused by the turbulent 
velocity and temperature fluctuations in 
the upper convection zone constitute a 
third process for altering the eigenfre- 
quencies; this process has as yet re- 
ceived little attention, eveh though its 
effects are comparable to those of the 
other two (5). 

The inhomogeneous velocity, density, 
and temperature distribution in the con- 
vection zone modifies the propagation of 
sound waves in two different ways. The 
first (which I will not discuss further) is 
to distort wave fronts passing through 
the medium, scattering wave energy into 

different wave numbers than it originally 
occupied. The second is to change, and 
in general to slow, the propagation of the 
mean wave front. To see why this oc- 
curs, suppose that the convection pro- 
duces, in different regions of the fluid, 
slightly different local wave phase 
speeds Vfast and VsIow,  symmetrically 
distributed about some horizontal mean 
<V+>. A wave moves through this me- 
dium with a mean speed equal to the 
distance traveled divided by the total 
transit time; this mean speed is propor- 
tional to 

The resulting phase speed for the mean 
wave front is less than <V+> by 

Thus, in a fluctuating medium the mean 
wave phase speed is not the same as the 
phase speed in the mean medium. 

If we ignore details of reflection at the 
boundaries, the eigenfrequencies for p- 
modes are those frequencies for which a 
wave can make a round trip across the 
cavity in an integrai number of wave 
periods. Other things being equal, lower- 
ing the mean wave propagation speed 
increases this round-trip time and lowers 
the eigenfrequency . 

To quantify these notions and to begin 
applying them to the sun, consider prop- 
agation of infinitesimal disturbances in a 
medium in which there are small but 
finite fluctuations in the vertical veloci- 
ty. (Of course, the solar convection zone 
also contains flbctuations in the thermo- 
dynamic quantities. These are probably 
unimportant in the current context, but 
the principal reason for ignoring them is 
convenience.) To simplify the equations, 
the solar atmosphere will be taken to be 

zontal and vertical velocity by p', p', u' 
and w',  respectively, and allow the finite 
fluctuating vertical velocity to be Wo. 
Note that Wo is defined so that its hori- 
zontal average, <Wo>, is zero. If spatial 
and temporal derivatives of Wo may be 
ignored, the linearized conservation 
equations for mass, horizontal and verti- 
cal momentum, and energy then read 

Here g is the gravitational acceleration, c 
is the adiabatic sound speed, and N is the 
Brunt-Vaisala frequency. 

One may factor out the exponential 
height dependences [see, for example, 
(6)] and Fourier-transform these equa- 
tions in both spatial dimensions and in 
time, denoting the temporal frequency 
by w and the horizontal and vertical 
wave numbers by kh and k,. Then within 
a thin slab, in which c2, N2,  and the 
density scale height H are sensibly con- 
stant, Eqs. 1 may be combined to give a 
local dispersion relation for acoustic 
gravity waves. This relation depends on 
the fluctuating velocity Wo; to obtain the 
mean dispersion relation one must aver- 
age over the distribution of Wo values. 
Since <Wo> = 0 and I W o / c  is small, it 
suffices to retain terms of order 0 and 2 in 
Wo. Then the dispersion relation reads 

If <wo2> = 0, Eq. 2 reduces to the 
well-known dispersion relation for 
acoustic-gravity waves. Such waves may 
propagate vertically only if kz2 is posi- 
tive; otherwise the waves are evanes- 
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cent. Within the solar envelope and for 
reasonable values of kh and w ,  kZ2 > 0 
within a bounded region (or cavity) be- 
low the photosphere. The positions of 
the upper and lower edges of this cavity 
depend on kh,  w ,  and the solar structure, 
and are termed the upper and lower 
turning points for the waves in question. 

Including fluctuating vertical veloci- 
ties evidently changes the dispersion re- 
lation in three ways: it increases kZ2,  it 
lowers the effective acoustic cutoff fre- 
quency, and it modifies the effect of 
buoyancy forces on the wave propaga- 
tion. The first two of these effects are 
consistent with lowering the local wave 
propagation speed by a factor 
1 - (< wo2>/c2). 

When the differential equation corre- 
sponding to Eq. 2 is supplemented by 
appropriate boundary conditions (van- 
ishing pressure perturbation at the sur- 
face and vanishing velocity perturbation 
at depth), its solutions provide the eigen- 
functions and eigenfrequencies for solar 
p-modes within ah envelope with fluctu- 
ating vertical velocities. One may esti- 
mate the importance of the velocity fluc- 
tuations by comparing solutions with and 
without the vertical velocities, giving ei- 
genfrequencies denoted by w, and wo, 
respectively. 

The model envelope used to calculate 
eigenfrequencies is crude but adequate 
for the purpose of comparing solutions 
with and without velocity fluctuations. 
The mean stratification is assumed to be 
plane-parallel, with the gravitational ac- 
celeration, the adiabatic exponent TI ,  
and the molecular weight all constant 
with depth. The envelope is adiabatically 
stratified below a reference level z = 0 
and isothermal above that level, with the 
model parameters chosen to give a fair 
approximation to accurate models of the 
solar envelope. The p-mode frequencies 
computed by use of the model agree with 
those observed on the sun to within 
about 10 percent. Below z = 0, turbulent 
velocities for computing the perturbed 
eigenfrequencies come from a solar mod- 
el provided by R. Gilliland. This model 
uses a standard mixing-length formula- 
tion to compute root-mean-square 
(r.m.s.) velocities. The resulting r.m.s. 
velocity distribution reaches a rather 
sharp peak of about 2 km sec-I near 
z = -600 km. Above z = 0, the r.m.s. 
velocity is set to a constant 1 km sec-I, 
corresponding to photospheric granula- 
tion velocities. 

This model illustrates most of the im- 
portant physics, but I emphasize that 
accurate computations must treat the 
geometry, ionization, and radiative 
transfer correctly. Fortunately, neither a 

Fig. 1. Difference between eigenfrequencies 
w, and o, computed, respectively, without 
and with vertical turbulent velocities, plotted 
as a function of oo. The frequencies with 
turbulent motions are always smaller than 
those without, lead~ng to positive differences. 

precise model of the sun nor accurate 
agreement with observed oscillation fre- 
quencies is necessary for the current 
purpose. Preliminary results of calcula- 
tions done in collaboration with B. W. 
Mihalas show qualitatively similar ef- 
fects. 

The differences between frequencies 
computed without and with vertical ve- 
locities are shown in Fig. 1 for the f mode 
and for p modes 1 through 5 and 8. 
Including the effect of vertical velocities 
lowers the p-mode frequencies by 
amounts as large as 1.2 x sec- I, or 
about 0.5 percent of the unperturbed 
frequency. The greatest differences oc- 
cur for modes with large w or kh .  This 
happens because < wo2> is large only in 
a shallow layer near the top of the enve- 
lope, with the maximum amplitude fall- 
ing above the upper turning point for 
most of the modes plotted here. For a 
given wave number, increasing w raises 
this turning point, so that more of the 
large-amplitude portion of the eigenfunc- 
tion lies withln the region of large con- 
vective velocities. If w is large enough, 
the upper turning point can be raised so 
far that the elgenfunction's first node 
falls at the maximum of <wo2>. In this 
case (illustrated by the n = 8 curve 
above w = 0.03), the influence of the 
turbulent velocities IS sharply reduced. 
Increasing kh raises the lower turning 
point of the oscillations, causing the ei- 
genfunctions to become more concen- 
trated near the surface. This also accen- 
tuates the effect of the turbulent veloci- 
ties. 

Though not large by absolute stan- 
dards, 0.5 percent variations in p-mode 
frequencies are significant when com- 
pared with observational errors and have 
noticeable impl~cations concerning the 
structure of the solar mterior. As dis- 
cussed by Ulrich and Rhodes (2), the 
frequencies at large kh are a sensitive 

indicator of the entropy in the convec- 
tion zone. Within the mixing-length for- 
malism, increasing a (the ratio of the 
mixing length to the pressure scale 
height) leads to a deeper convection 
zone with larger convective velocities. 
Increasing the depth of the convection 
zone in turn lowers the computed p- 
mode eigenfrequencies. In order to get 
frequencies similar to those observed, 
Lubow et al. (3) found that their model 
indicates that a must be about 1.65, 
corresponding to a convection zone 
depth of about 0.27 Ro. 

However, including convective fluctu- 
ations in the calculation of p-mode eigen- 
frequencies lowers those frequencies 
still further. To bring the computed fre- 
quencies back into agreement with ob- 
servation, one must decrease a. Esti- 
mates based on the analysis by Ulrich 
and Rhodes suggest that raising the fre- 
quencies by 0.5 percent requires de- 
creasing a to 1.45. This corresponds to a 
convection zone depth of about 0.24 Ro. 
Though the absolute value of the convec- 
tion zone depth (and especially the abso- 
lute value of the mixing length) estimated 
in this way are open to doubt, the magni- 
tude and sense of the changes implied by 
considering vertical velocities in the 
analysis are probably correct. A more 
thorough treatment, including horizontal 
velocities and temperature variations, 
might easily double the size of this effect. 

Within the frequency range covered 
by observations, the frequency shifts 
catlsed by vertical flows have a form 
similar to those produced by variations 
in a. This will make disentangling the 
two effects less clear-cut and will thus 
increase the difficulty in arriving at an 
unambiguous picture of the sun's inter- 
nal structure. However, careful observa- 
tions (particularly at high o) may allow 
one to separate the turbulent contribu- 
tion. One might therefore learn some- 
thing about the variation of convective 
velocities just below the photosphere 
independent of estimates of the total 
depth of the convection zone, providing 
a means for testing theories of convec- 
tion. 
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Periodicity of Extinctions in the Geologic Past: adds a stochastic term. Although the 
capacity o f  explanation of  the model 

Deterministic Versus Stochastic Explanations increases, this is not due to the determin- 
istic component which is still not signifi- 

Abstract. The temporal spacing and the magnitude of major extinctions over the cant. W e  also checked the presence o f  
past 250 and 570 million years, based on the use of different metrics of extinction deterministic sinusoidal components fit- 
probability, are analyzed by comparing deterministic and stochastic e,xplanations. ting autoregressive-integrated-moving- 
The best-fitting time series model is a stochastic autoregressive model that displays a average (ARIMA) models (6)  that allow 
pseudoperiodic behavior with a cycle length of 31 million years for the past 250 for cancellation of  the roots in the auto- 
million years, regardless of the metric of extinction probability. The periodicity regressive polynomials (3, but we have 
lengthens and weakens when the analysis is extended to the entire Phanerozoic. The not detected any indication o f  this kind 
history of the probability of extinction for the entire Phanerozoic, based on time of  behavior. Model 2 is the best stochas- 
series analysis, does not support the reported bipartite distribution of Van Valen, tic representation o f  the series, based on 
Rather, the probability of extinction has decreased uniformly over Phanerozoic time the use of  ARIMA time-series models, 
whereas the inertia or stability of the biotic system after the Late Permian crisis has that we have obtained and displays peri- 
increased. odic (pseudoperiodic) behavior (8).  This 

model is a fifth-order autoregressive 
The probability o f  extinction is known tic impulse which affects the evolution of  model, that is, a model in which the 

to have been nonconstant over geologic the series only at specific times with current value o f  the series is explained as 
time ( I ) .  Fischer and Arthur (2) proposed fixed periodicity; (ii) a deterministic cy- a linear combination of  its values in the 
that major extinction events (3) have cle in which some external variable fol- five previous periods. In this case, the 
occurred periodically. Raup and Sep- lows a periodic wave which affects the parameter values obtained from maxi- 
koski (4) recently applied statistical tests evolution of  the series; or (iii) a stochas- mum likelihood estimation are such that 
for periodicity to a data set o f  567 extinct tic dynamic system (the stochastic be- they produce pseudocyclic behavior. To  
marine families whose origination and havior may be the result o f  multiple test robustness to the apparent outlying 
extinction times can be resolved to a unknown causal factors operating to pro- observation (the Late Cretaceous extinc- 
geologic stage (mean duration, 6.2 mil- duce the observed series). In the first tion event), we also fitted the models 
lion years). These analyses, restricted to two cases, the periodic behavior ob- using intervention analysis (9 ) .  These 
the window of  geologic time from 253 to served can only be explained as a result conclusions were also robust, and model 
11.3 million years ago, identified 12 ex- o f  the effect o f  some exogenous variable. 3 represents the best-fitted model. Al- 
tinction peaks whose temporal spacing In the third case, to restrict our search to though such an intervention model has a 
was significantly periodic at 26 million an external cause may be misleading, greatly increased capacity o f  explanation 
years. Raup and Sepkoski interpreted whereas attention to the internal struc- (R' = 0.71), taking into account this 
these results as a signal o f  an unknown ture of  the system might increase our effective outlier does not change the ba- 
event that appears uniformly and sug- understanding o f  the observed behavior. sic pseudoperiodic behavior referred to 
gested astrophysical causes. To  test these alternatives statistically, above. Figure 1 illustrates the observed 

The periodicity described by Raup and we have first applied a series o f  models series, including the variable magnitudes 
Sepkoski compels attention. Our objec- 
tives are threefold: ( i)  to broaden the 
statistical analysis and thereby the inter- 
pretation o f  these data by comparing 
deterministic versus stochastic explana- 
tions, including models with and without 
external forcing functions; (ii) to focus 
on a neglected aspect o f  the data-name- 
ly,  the striking feature that the magni- 
tude of  extinction peaks varies from 7.6 
to 66.3 percent; and (iii) to broaden the 
empirical support by applying these al- 
ternative models to Van Valen's metrics 
(9, which differ substantially in the 
method of  calculating the probability o f  
extinction. 

An observed periodicity in a given 
time series, evidenced as a peak in the 

Table 1 .  Models for the Late Permian-Middle Miocene time series of extinction probability, 
using the Raup-Sepkoski metric (4).  Abbreviations: B is the backshift operator BkY, = Y, - k, 
and V = 1 - B is the difference operator; Y, is the observed series; X, is some deterministic 
series of zeros and ones with the ones separated by five stages; a,  is a white-noise process of 
uncorrelated variables with zero mean and constant variance. The parenthetical numbers under 
the estimated parameters are the t-statistics for these parameters. Q is the Ljung-Box statistic 
( 1  1 degrees of freedom); 6 is the residual estimated variance of the model; R2 is the percentage 
of explained sum of squares; and I is an intervention variable that takes the value 1.0 in period 
30 (Late Cretaceous) and 0 elsewhere. 

Estimated model Q( l l )  6; R* 

spectrum or autocorrelation function of  3.  Y,  = 42.6813, + ut 

V ( l  + 0.32B + 0.56~' + 0.45B3 + 0.22B4) 4.1 63.65 0.71 
the series, could be the result o f  three (6.71) 
very different causes ( 6 ) :  (i) a determinis- 

(1.94) (3.75) (2.71) (1.55) 
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