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On Stars, Their Evolution 
and Their Stability 

Introduction 

When we think of atoms, we have a 
clear picture in our minds: a central 
nucleus and a swarm of electrons sur- 
rounding it. We conceive them as small 
objects of sizes measured in angstroms 
(-lo-' cm): and we know that some 
hundred different species of them exist. 
This picture is, of course, quantified and 
made precise in modern quantum theory. 
And the success of the entire theory may 
be traced to two basic facts: first, the 
Bohr radius of the ground state of the 
hydrogen atom, namely 

-- h2 0.5 x lo-' cm (I) 
4.rr2rne2 

where h is Planck's constant, rn is the 
mass of the electron, and e is its 
charge, provides a correct measure of 
atomic dimensions; and second, the re- 
ciprocal of Sornrnerfeld's fine-structure 
constant, 

gives the maximum positive charge of 
the central nucleus that will allow a 
stable electron orbit around it. This max- 
imum charge for the central nucleus 
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arises from the effects of special relativ- 
ity on the motions of the orbiting elec- 
trons. 

We now ask: Can we understand the 
basic facts concerning stars as simply as 
we understand atoms in terms of the two 
combinations of natural constants 1 and 
2? In this lecture, I shall attempt to show 
that in a limited sense we can. 

The most important fact concerning a 
star is its mass. It is measured in units of 
the mass of the sun, 0, which is 2 x 
g: stars with masses very much less than, 
or very much more than, the mass of the 
sun are relatively infrequent. The cur- 
rent theories of stellar structure and stel- 
lar evolution derive their successes 
largely from the fact that the following 
combination of the dimensions of a mass 
provides a correct measure of stellar 
masses: 

where G is the constant of gravitation 
and H is the mass of the hydrogen atom. 
In the first half of the lecture, I shall 
essentially be concerned with the ques- 
tion: How does this come about? 

The Role of Radiation Pressure 

A central fact concerning normal stars 
is the role which radiation pressure plays 
as a factor in their hydrostatic equilibri- 
um. Precisely the equation governing the 
hydrostatic equilibrium of a star is 

where P denotes the total pressure, p the 
density, and M(r) is the mass interior to a 
sphere of radius r. There are two contri- 
butions to the total pressure P :  that due 
to the material and that due to the radia- 
tion. On the assumption that the matter 
is in the state of a perfect gas in the 
classical Maxwellian sense, the material 
or the gas pressure is given by 

where T is the absolute temperature, k is 
the Boltzmann constant, and p is the 
mean molecular weight (which under 
normal stellar conditions is -1.0). The 
pressure due to radiation is given by 

where a denotes Stefan's radiation-con- 
stant. Consequently, if radiation contrib- 
utes a fraction (1 - p) to the total pres- 
sure, we may write 

To bring out explicitly the role of the 
radiation pressure in the equilibrium of a 
star, we may eliminate the temperature, 
T, from the foregoing equations and ex- 
press P in terms of p and p instead of p 
and T.  We find: 

and 

The importance of this ratio, (1 - p), 
for the theory of stellar structure was 
first emphasized by Eddington. Indeed, 
he related it, in a famous passage in his 
book on The Internal Constitution of the 
Stars, to the "happening of the stars" 
(1). A more rational version of Edding- 
ton's argument which, at the same time, 
isolates the combination 3 of the natural 
constants is the following. 

There is a general theorem (2) which 
states that the pressure, PC, at the center 
of a star of a mass M in hydrostatic 
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equilibrium in which the density, p(r), at Table 1. The maximum radiation pressure, 
a point at a radial distance, r ,  from the (1 - P.1, at the center of a star of a given 

center does not exceed the mean densi- mass, M. 

ty, &r), interior to the same point r ,  must 1 - p, Mp210 1 - p, M p 2 / 0  
satisfy the inequality, 

0.01 0.56 0.50 15.49 
0.03 1.01 0.60 26.52 
0.10 2.14 0.70 50.92 
0.20 3.83 0.80 122.5 
0.30 6.12 0.85 224.4 

(10) 0.40 9.62 0.90 519.6 

state, will have radiated so much energy 
that it has less energy than the same 
matter in normal atoms expanded at the 
absolute zero of temperature. If part of it 
were removed from the star and the 
pressure taken off, what could it do?" 

Quantitatively, Fowler's question 
arises in this way. 

An estimate of the electrostatic ener- 
gy, E,, per unit volume of an assembly of 
atoms. of atomic number Z, ionized 

where 6 denotes the mean density of down to bare nuclei, is given by 
the star and p,  its density at the center, This provides an upper limit to 

The content of the theorem is no more - P C )  for a star of a given mass. Thus, Ev = 1.32 x 10" zZp4I3 (18) 

than the assertion that the actual pres- 1 - p C < 1 - P *  (16) while the kinetic energy of thermal mo- 
sure at the center of a star must be tions, Ekln, per unit volume of free parti- 
intermediate between those at the cen- where - p*) is determined cles in the form of a perfect gas of 
ters of the two configurations of uniform by the mass of the star and the mean density, p ,  and temperature, T ,  is given 
density, one at a density equal to the molecular weight, P, the quartic 

by 
mean density of the star, and the other at 

112 3 k  
Ekln = - -pT = 

1.24 x lo8 
a density equal to the density p ,  at the 1"2A4 = 5.48(---g-) 1 - P .  0 (17) 2 PH P 

P T 
center (see Fig. 1 ) .  If the inequality 10 
should be violated then there must, in (19) 

general, be some regions in which ad- In ', we list the of ' - ?* Now if such matter were released of the 
verse density gradients must prevail; and for P'M. From this pressure to which it is subject, it can 
this implies instability. In other words, it in particular for a resume a state of ordinary normal atoms 
we may consider conformity with the star of solar mass with a mean molecular only if 
inequality 10 as equivalent to the condie weight equal to 1 ,  the radiation Pressure 

tion for the stable existence of stars. at the center cannot exceed 3 percent of Ekln > EV (20) 

The right-hand side of the inequality the pressure. or, according to Eqs. 18 and 19, only if 
10 together with P given by Eq. 9 ,  yields, What do we the forego- 
for the stable existence of stars, the ing calculation? We conclude that to the p < 0.94 x 
condition, extent Eq. 17 is at the base of the equilib- i 

I 13 rium of actual stars, to that extent the This inequality will be clearly violated if 
4 3 1 - p c  [ j ; )  a ) ' 1 3 G M  combination Of natural constants 3 j  pro- the density high,  hi^ is 

viding a mass proper magnitude for the essence of Eddington's paradox as 
( 1 1 )  the measurement of stellar masses, is at formulated by Fowler, And Fowler re- 

or, equivalently, the base a physlcal solved this paradox in 1926 in a paper (4 )  
structure. entitled "Dense Matterv-one of the 

great landmark papers in the realm of 
PH a P: stellar structure: in it the notions of 

(12) Do Stars Have Enough to Fermi statistics and of electron degen- 
where, in the foregoing inequalities, F, is eracy are introduced for the first time. 
a value of at the center of the star, The same combination of natural con- 

constant, a ,  by virtue of Stants 3 emerged soon afterward in a 

Planck's law, has the value much more fundamental context of re- The Degeneracy of the 
solving a paradox Eddington had formu- 

8n5k4 a = -  (13) lated in the form of an aphorism: "a star Electrons in White-Dwarf Stars 
15h3c3 need energy The paradox In a completely degenerate electron 

Inserting this value a in the equality 12 arose the 'ltimate fate gas all the available parts of the phase 
we obtain of a gaseous star in the light of the then space, with momenta less than a certain 

new knowledge that white-dwarf stars, c6threshold,, valuep,the Fermi thresh- 
such as the companion of Sirius, exist, old-are occupied consistently with the 

H2 = which have mean densities in the range Pauli exclusion-principle, that is, with 
lo5 to lo7 g c m W 3  As Eddington stated two electrons per ..cell.. of volume h~ of 

0 .  1873($)312$ (14) (3) the six-dimensional phase space. There- 

I do not see how a star which has once got fore, if n(P)dp denotes the number of 
We observe that the inequality 14 has into this compressed state is ever going to get electrons, per unit volume, between p 

isolated the combination 3 of natural Out of it. + . . It would Seem that the star will andp + dp, then the assumption of com- 
constants of the dimensions of a mass; ~ k i ~ ~ ~ u ~ ~ ~ ~ d e ~ : ~ ~ ~ ~ n t  when its lup- plete degeneracy is equivalent to the 
by inserting its numerical value given in assertion, 
Eq. 3 ,  we obtain the inequality,- The paradox posed by Eddington was 

reformulated in clearer physical terms by 8 7~ 
n(p) = - h3P ( P ~ P O )  

p2M(.-@-)112 5 , 4 8 0  (15) R. H. Fowler (4 ) .  His formulation was 
1 - P  "The stellar material, in the white-dwarf = 0 (P > PO) (22) 
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The value of the threshold momentum, 
p,, is determined by the normalization 
condition 

where n denotes the total number of 
electrons per unit volume. 

For the distribution given by Eq. 22, 
the pressure p and the kinetic energy Ekin 
of the electrons (per unit volume), are 
given by 

and 

where v, and T, are the velocity and the 
kinetic energy of an electron having a 
momentum p .  If we set 

v, = plm and T, = p212m (26) 

appropriate for nonrelativistic mechan- 
ics, in Eqs. 24 and 25, we find 

and 

(28) 
Fowler's resolution of Eddington's para- 
dox consists in this: at the temperatures 
and densities that may be expected to 
prevail in the interiors of the white-dwarf 
stars, the electrons will be highly degen- 
erate and Ekln must be evaluated in ac- 
cordance with Eq. 28 and not in accord- 
ance with Eq. 19; and Eq. 28 gives, 

Comparing now the two estimates 18 and 
29, we see that, for matter of the density 
occurring in the white dwarfs, namely 
p- 10' g ~ m - ~ ,  the total kinetic energy is 
about two to four times the negative 
potential energy; and Eddington's para- 
dox does not arise. Fowler concluded his 
paper with the following highly percep- 
tive statement: 

The black-dwarf material is best likened to 
a single gigantic molecule in its lowest quan- 
tum state. On the Fermi-Dirac statistics, its 
high density can be achieved in one and only 
one way, in virtue of a correspondingly great 
energy content. But this energy can no more 
be expended in radiation than the energy of a 
normal atom or molecule. The only difference 
between black-dwarf matter and a normal 
molecule is that the molecule can exist in a 
free state while the black-dwarf matter can 
only so exist under very high external pres- 
sure. 

The Theory of the White-Dwarf Stars: 

The Limiting Mass 

The internal energy (= 3Pl2) of a de- 
generate electron gas that is associated 
with a pressure P is zero-point energy; 
and the essential content of Fowler's 
paper is that this zero-point energy is so 
great that we may expect a star to even- 
tually settle down to a state in which all 
of its energy is of this kind. Fowler's 
argument can be mort: explicitly formu- 
lated in the following manner (5) .  

According to the expression for the 
pressure given by Eq. 27, we have the 
relation, 

where 

where ye is the mean molecular weight 
per electron. An equilibrium configura- 
tion in which the pressure, P, and the 
density, p, are related in the manner, 

is an Emden polytrope of index n. The 
degenerate configurations built on the 
equation of state 30 are therefore poly- 
tropes of index 312; and the theory of 
polytropes immediately provides the re- 
lation, 

or, numerically, for K ,  given by Eq. 30, 

For a mass equal to the solar mass and 
ye = 2, the relation 33 predicts R = 
1.26 x loT2 Ro and a mean density of 
7.0 x lo5 g cm3. These: values are pre- 
cisely oi? the order of the radii and mean 
densities encountered in white-dwarf 
stars. Moreover, according to Eq. 32 and 
33, the radius of the white-dwarf config- 
uration is inversely proportional to the 
cube root of the mass. On this account, 
finite equilibrium configurations are pre- 
dicted for all masses. And it came to be 
accepted that the white dwarfs represent 
the last stages in the evolution of all 
stars. 

But it soon became clear that the fore- 
going simple theory based on Fowler's 
premises required modifications. For, 
the electrons at their threshold energies, 
at the centers of the degenerate stars, 
begin to have velocities comparable to 
that of light as the mass increases. Thus, 

already for a degenerate star of solar 
mass (with p., = 2) the central density 
(which is about six times the mean densi- 
ty) is 4.19 x lo6 g cmW3; and this density 
corresponds to a threshold momentum 
po = 1.29 mc and a velocity which is 
0.63 c. Consequently, the equation of 
state must be modified to take into ac- 
count the effects of special relativity. 
And this is easily done by inserting in 
Eqs. 24 and 25 the relations, 

and 

T, = mc2 [(I + p2/rn2~2)1'2 - 11 

(34) 
in place of the nonrelativistic relations 
26. We find that the resulting equation of 
state can be expressed, parametrically, 
in the form 

P = AAx) and p = Bx3 (35) 

where 

and 

Ax) = x(x2 + 1)'" (2x2 - 3) + 3 sinh-lx 
(37) 

And similarly 

where 

According to Eqs. 35 and 36, the pres- 
sure approximates the relation 30 for low 
enough electron concentrations (x < 1); 
but for increasing electron concentra- 
tions (x + I ) ,  the pressure tends to (6) 

This limiting form of relation can be 
obtained very simply by setting v, = c in 
Eq. 24; then 

and the elimination of p, with the aid of 
Eq. 23 directly leads to Eq. 40. 

While the modification of the equation 
of state required by the special theory of 
relativity appears harmless enough, it 
has, as we shall presently show, a dra- 
matic effect on the predicted mass-radius 
relation for degenerate configurations. 

The relation between P and p corre- 
sponding to the limiting form 41 is 
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where 

In this limit, the configuration is an Em- 
den polytrope of index 3. And it is well 
known that when the polytropic index is 
3, the mass of the resulting equilibrium 
configuration is uniquely determined by 
the constant of proportionality, K2, in 
the pressure-density relation. We have 
accordingly, 

(In Eq. 43, 2.018 is a numerical constant 
derived from the explicit solution of the 
Lane-Emden equation for n = 3.) 

It is clear from general considerations 
(7) that the exact mass-radius relation 
for the degenerate conjigurations must 

the radius tends to zero, and M -+ Miimit. 
These conclusions, straightforward as 
they are, can be established directly by 
considering the equilibrium of configura- 
tions built on the exact equation of state 
given by Eqs. 35 to 37. It is found that 
the equation governing the equilibrium 
of such configurations can be reduced to 
the form (8, 9) 

where 

Y: = x; + 1 (45) 

and mcxo denotes the threshold momen- 
tum of the electrons at the center of the 
configuration and q measures the radial 
distance in the unit 

By integrating Eq. 44, with suitable 

of the degenerate configurations. The 
principal results of such calculations are 
illustrated in Figs. 2 and 3. 

The important conclusions which fol- 
low from the foregoing considerations 
are: first, there is an upper limit, Miimit, 
to the mass of stars which can become 
degenerate configurations, as the last 
stage in their evolution; and second, that 
stars with M > Mlimit must have end 
states which cannot be predicted from 
the considerations we have presented so 
far. And finally, we observe that the 
combination of the natural constant 3 
now emerges in the fundamental context 
of Mlimit given by Eq. 43: its significance 
for the theory of stellar structure and 
stellar evolution can no longer be doubt- 
ed. 

Under What Conditions Can Normal 

Stars Develop Degenerate Cores? 

provide an upper limit to the mass of boundary conditions and for various ini- Once the upper limit to the mass of 
such conjigurations given by Eq. 43; and tially prescribed values of yo, we can completely degenerate configurations 
further, that the mean density of the derive the exact mass-radius relation, as had been established, the question that 
conjiguration must tend to injinity, while well as the other equilibrium properties, required to be resolved was how to relate 

its existence to the evolution of stars 
from their gaseous state. If a star has a 

h 
mass less than Mlimi,, the assumption 
that it will eventually evolve toward the 
completely degenerate state appears rea- 
sonable. But what if its mass is greater 

t than Mlimit? Clues as to what might ensue 
P 

i were sought in terms of the equations 
and inequalities of the second and third 

R R P sections (10, 11). 
The first question that had to be re- 

a b C solved concerns the circumstances un- 
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Fig. 1 (top left). A comparison of an inhomogeneous distribution of 
density in a star (b) with the two homogeneous configurations with the 
constant density equal to the mean density (a) and equal to the density 
at the center (c). Fig. 2 (bottom left). The full-line curve repre- 

- sents the exact (mass-radius) relation (el is defined in Eq. 46 and M ,  
denotes the limiting mass). This curve tends asymptotically to the 
dashed curve appropriate to the low-mass degenerate configurations, 
approximated by polytropes of index 312. The regions of the configu- 
rations which may be considered as relativistic [p > (KIIK2)3] are 

- A shown shaded. Fig. 3 (right). The full-line curve represents the 
0 0.2 0.4 0.6 0.8 1.0 exact (mass-density) relation for the highly collapsed configurations. 

 MIA^^ - This curve tends asymptotically to the dashed curve as M -+ 0. 

S(H) SCIENCE, VOL. 226 



der which a star, initially gaseous, will 
develop degenerate cores. From the 
physical side, the question, when depar- 
tures from the perfect-gas equation of 
state 5 will set in and the effects of 
electron degeneracy will be manifested, 
can be readily answered. 

Suppose, for example, that we contin- 
ually and steadily increase the density, at 
constant temperature, of an assembly of 
free electrons and atomic nuclei, in a 
highly ionized state and initially in the 
form of a perfect gas governed by the 
equation of state 5. At first the electron 
pressure will increase linearly with p; but 
soon departures will set in and eventual- 
ly the density will increase in accordance 
with the equation of state that describes 
the fully degenerate electron gas (see 
Fig. 4). The remarkable fact is that this 
limiting form of the equation of state is 
independent of temperature. 

However, to examine the circum- 
stances when, during the course of evo- 
lution, a star will develop degenerate 
cores, it is more convenient to express 
the electron pressure (as given by the 
classical perfect-gas equation of state) in 
terms of p and pe defined in the manner 
(see Eq. 7), 

where p, now denotes the electron pres- 
sure. Then, analogous to Eq. 9, we can 
write 

Comparing this with Eq. 42, we conclude 
that if 

the pressure p, given by the classical 
perfect-gas equation of state will be 
greater than that given by the equation if 
degeneracy were to prevail, not only for 
the prescribed p and T, but for all p and T 
having the same P,. 

Inserting for a its value given in Eq. 
13,  we find that the inequality 49 reduces 
to 

or, equivalently (see Fig. 5) 

1 - fie > 0.0921 = 1 - P, (say) 
(51) 

For our present purposes, the princi- 
pal content of the inequality 51 is the 
criterion that for a star to develop degen- 
eracy, it is necessary that the radiation 

pressure be less than 9.2 percent of (pe 
+ prad). This last inference is so central 
to all current schemes of stellar evolu- 
tion that the directness and the simplicity 
of the early arguments are worth repeat- 
ing. 

The two principal elements of the ear- 
ly arguments were these: first, that radia- 
tion pressure becomes increasingly dom- 
inant as the mass of the star increases; 
and second, that the degeneracy of elec- 
trons is possible only so long as the 
radiation pressure is not a significant 
fraction of the total pressure--indeed, as 
we have seen, it must not exceed 9.2 
percent of (pe + prad). The second of 
these elements in the arguments is a 
direct and an elementary consequence of 
the physics of degeneracy; but the first 
requires some amplification. 

That radiation pressure must play an 
increasingly dominant role as the mass of 
the star increases is one of the earliest 
results in the study of stellar structure 
that was established by Eddington. A 
quantitative expression for this fact is 
given by Eddington's standard model 
which lay at the base of his early studies 
summarized in his The Internal Constitu- 
tion of the Stars. 

On the standard model, the fraction P 
(= gas pressurettotal pressure) is a con- 
stant through a star. On this assumption, 
the star is a polytrope of index 3 as is 

Fig. 4 (left). Illustrating how by increasing the density at constant temperature degeneracy always sets in. Fig. 5 (right). Illustrating the onset 
of degeneracy for increasing density at constant P. Notice that there are no intersections for 1 - P > 0.09212. In the figure, 1 - P is converted 
into the mass of a star built on the standard model. 

2 NOVEMBER 1984 SO1 



apparent from Eq. 9; and, in conse- 
quence, we have the relation (see Eq. 43) 

where C(p) is defined in Eq. 9. Equation 
52 provides a quartic equation for p 
analogous to Eq. 17 for p*. Equation 52 
for p = pu gives 

6.65 p - 2 0  = (say) (53) 

On the standard model, then, stars with 
masses exceeding YJ? will have radiation 
pressures exceeding 9.2 percent of the 
total pressure. Consequently, stars with 
M > Dl cannot, at any stage during the 
course of their evolution, develop degen- 
eracy in their interiors. Therefore, for 
such stars an eventual white-dwarf state 
is not possible unless they are able to 
eject a substantial fraction of their mass. 

The standard model is, of course, only 
a model. Nevertheless, except under 
special circumstances, briefly noted be- 
low, experience has confirmed the es- 
sential qualitative correctness of the con- 
clusions drawn from the standard model, 
namely that the evolution of stars of 
masses exceeding 7 to 8 O must proceed 
along lines very different from those of 
less massive stars. These conclusions, 
which were arrived at some 50 years ago, 
appeared then so convincing that asser- 
tions such as these were made with con- 
fidence: 

Given an enclosure containing electrons 
and atomic nuclei (total charge zero) what 
happens if we go on compressing the material 
indefinitely? (1932) (10) 

The life history of a star of small mass must 
be essentially different from the life history of 
a star of large mass. For a star of small mass 
the natural white-dwarf stage is an initial step 
towards complete extinction. A star of large 
mass cannot pass into the white-dwarf stage 
and one is left speculating on other possibili- 
ties. (1934) (8) 

And these statements have retained their 
validity. 

While the evolution of the massive 
stars was thus left uncertain, there was 
no such uncertainty regarding the final 
states of stars of sufficiently low mass 
(11). The reason is that by virtue, again, 
of the inequality 10, the maximum cen- 
tral pressure attainable in a star must be 
less than that provided by the degenerate 
equation of state, so long as 

or equivalently 

We conclude that there can be no sur- 
prises in the evolution of stars of mass 
less than 0.43 O (if pe = 2). The end 
stage in the evolution of such stars can 
only be that of the white dwarfs. (Paren- 
thetically, we may note here that the 
inequality 55 implies that the so-called 
"mini" black holes of mass -10" g 
cannot naturally be formed in the present 
astronomical universe .) 

The Evolution of Massive Stars and the 

Onset of Gravitational Collapse 

It became clear, already from the early 
considerations, that the inability of the 
massive stars to become white dwarfs 
must result in the development of much 
more extreme conditions in their interi- 
ors and, eventually, in the onset of gravi- 
tational collapse attended by the super- 
nova phenomenon. But the precise man- 
ner in which all this will happen has been 
difficult to ascertain in spite of great 
effort by several competent groups of 
investigators. The facts which must be 
taken into account appear to be the fol- 
lowing." 

In the first instance, the density and 
the temperature will steadily increase 
without the inhibiting effect of degenera- 
cy since for the massive stars considered 
1 - p, > 1 -p,. On this account, "nu- 
clear ignition" of carbon, say, will take 
place which will be attended by the emis- 
sion of neutrinos. This emission of neu- 
trinos will effect a cooling and a lowering 
of (1 - p,); but it will still be in excess of 
1 - p,. The important point here is that 
the emission of neutrinos acts selectively 
in the central regions and is the cause of 
the lowering of (1 - p,) in these regions. 
The density and the temperature will 
continue to increase until the next igni- 
tion of neon takes place followed by 
further emission of neutrinos and a fur- 
ther lowering of (1 - P,). This succes- 
sion of nuclear ignitions and lowering of 
(1 - p,) will continue until 1 - p, 
< 1 - p, and a relativistically degener- 
ate core with a mass approximately that 
of the limiting mass (= 1.4 O for pe = 2) 
forms at the center. By this stage, or 
soon afterward, instability of some sort 
is expected to set in (see the following 
section) followed by gravitational col- 
lapse and the phenomenon of the super- 

*I am grateful to Professor D. Arnett for guiding 
me through the recent literature and giving me 
advice in the writing of this section. 

nova (of type 11). In some instances, 
what was originally the highly relativistic 
degenerate core of approximately 1.4 0 ,  
will be left behind as a neutron star. That 
this happens sometimes is confirmed by 
the fact that in those cases for which 
reliable estimates of the masses of pul- 
sars exist, they are consistently close to 
1.4 0. However, in other instances- 
perhaps, in the majority of the in- 
stances-what is left behind, after all 
"the dust has settled," will have masses 
in excess of that allowed for stable neu- 
tron stars; and in these instances black 
holes will form. 

In the case of less massive stars (M - 
6 to 8 0 )  the degenerate cores, which are 
initially formed, are not highly relativis- 
tic. But the mass of the core increases 
with the further burning of the nuclear 
fuel at the interface of the core and the 
mantle; and when the core reaches the 
limiting mass, an explosion occurs fol- 
lowing instability; and it is believed that 
this is the cause underlying supernova 
phenomenon of type I. 

From the foregoing brief description of 
what may happen during the late stages 
in the evolution of massive stars, it is 
clear that the problems one encounters 
are of exceptional complexity, in which a 
great variety of physical factors com- 
pete. This is clearly not the occasion for 
me to enter into a detailed discussion of 
these various questions. 

Instabilities of Relativistic Origin: 

Vibrational Instability of Spherical Stars 

I now turn to the consideration of 
certain types of stellar instabilities which 
are derived from the effects of general 
relativity and which have no counter- 
parts in the Newtonian framework. It 
will appear that these new types of insta- 
bilities of relativistic origin may have 
essential roles to play in discussions per- 
taining to gravitational collapse and late 
stages in the evolution of massive stars. 

We shall consider first the stability of 
spherical stars for purely radial perturba- 
tions. The criterion for such stability 
follows directly from the linearized equa- 
tions governing the spherically symmet- 
ric radial oscillations of stars. In the 
framework of the Newtonian theory of 
gravitation, the stability for radial pertur- 
bations depends only on an average val- 
ue of the adiabatic exponent, TI ,  which 
is the ratio of the fractional Lagrangian 
changes in the pressure and in the densi- 
ty experienced by a fluid element follow- 
ing the motion; thus, 
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Table 2. Values of the constant K in the 
inequality 59 for various polytropic indices, n. 

And the Newtonian criterion for stability 
is 

If TI < 413, dynamical instability of a 
global character will ensue with an e- 
folding time measured by the time taken 
by a sound wave to travel from the 
center to the surface. 

When one examines the same problem 
in the framework of the general theory of 
relativity, one finds (12) that, again, the 
stability depends on an average value of 
rl; but, contrary to the Newtonian re- 
sult, the stability now depends on the 
radius of the star as well. Thus, one finds 
that no matter how high may be, 
instability will set in provided the radius 
is less than a certain determinate multi- 
ple of the Schwarzschild radius, 

Thus, if for the sake of simplicity, we 
assume that TI is a constant through the 
star and equal to 513, then the star will 
become dynamically unstable for radial 
perturbations, if R1 < 2.4 Rs. And fur- 
ther, if rl -+ a,  instability will set in for 
all R < (918) Rs. The radius (918) Rs 
defines, in fact, the minimum radius 
which any gravitating mass, in hydro- 
static equilibrium, can have in the 
framework of general relativity. This im- 
portant result is implicit in a fundamental 
paper by Karl Schwarzschild published 
in 1916. [Schwarzschild actually proved 
that for a star in which the energy densi- 
ty is a uniform R > (918) Rs.1 

In one sense, the most important con- 
sequence of this instability of relativistic 
origin is that if rl (again assumed to be a 
constant for the sake of simplicity) dif- 
fers from and is greater than 413 only by a 
small positive constant, then the instabil- 
ity will set in for a radius R which is a 
large multiple of Rs; and, therefore, un- 
der circumstances when the effects of 
general relativity, on the structure of the 
equilibrium configuration itself, are 
hardly relevant. Indeed, it follows (13) 
from the equations governing radial os- 
cillations of a star, in a first post-Newto- 
nian approximation to the general theory 
of relativity, that instability for radial 
perturbations will set in for all 

where K is a constant which depends on 
the entire? march of density and pres- 

?It is for this reason that we describe the instabil- 
ity as global. 

sure in the equilibrium configuration in 
the Newtonian framework. Thus, for a 
polytrope of index n ,  the value of the 
constant is given by 

where 0 is the Lane-Emden function in 
its standard normalization (0 = 1 at 
5 = 0), 5 is the dimensionless radial co- 
ordinate, defines the boundary of the 
polytrope (where 0 = O), and 0; is the 
derivative of 0 at t l .  

In Table 2, we list the values of K for 
different polytropic indices. It should be 
particularly noted that K increases with- 
out limit for n -+ 5 and the configuration 
becomes increasingly centrally con- 
densed.$ Thus, already for n = 4.95 (for 
which polytropic index p, = 8.09 x lo6 - 
p), K - 46, In other words, for the high- 
ly centrally condensed massive stars (for 
which TI may differ from 413 by as little 
as 0.01),§ the instability of relativistic 
origin will set in, already, when its radius 
falls below 5 x lo3 Rs. Clearly this rela- 
tivistic instability must be considered in 
the contexts of these problems. 

A further application of the result de- 
scribed in the preceding paragraph is to 
degenerate configurations near the limit- 
ing mass (14). Since the electrons in 
these highly relativistic configurations 
have velocities close to the velocity of 
light, the effective value of T1 will be 
very close to 413 and the post-Newtonian 
relativistic instability will set in for a 
mass slightly less than that of the limiting 
mass. On account of the instability for 
radial oscillations setting in for a mass 
less than Mlimi,, the period of oscillation, 

$Since this was written it has been possible to 
show [Chandrasekhar and Lebovitz, Mon. Not.  R. 
Astron. Soc. 207, 13P (1984)l that for n -, 5,  the 
asymptotic behavior of K is given by 

K -+ 2.30561(5 - n)  
and, further, that along the polytropic sequence, the 
criterion for instability 59 can be expressed alterna- 
tively in the form 

#By reason of the dominance of the radiation 
pressure In these masslve stars and of p be~ng  very 
close to zero. 

along the sequence of the degenerate 
configurations, must have a minimum. 
This minimum can be estimated to be 
about two seconds (see Fig. 6). Since 
pulsars, when they were discovered, 
were known to have periods much less 
than this minimum value, the possibility 
of their being degenerate configurations 
near the limiting mass was ruled out; and 
this was one of the deciding factors in 
favor of the pulsars being neutron stars. 
(But by a strange irony, for reasons we 
have briefly explained in the preceding 
section, pulsars which have resulted 
from supernova explosions have masses 
close to 1.4 O!) 

Finally, we may note that the radial 
instability of relativistic origin is the un- 
derlying cause for the existence of a 
maximum mass for stability: it is a direct 
consequence of the equations governing 
hydrostatic equilibrium in general rela- 
tivity. [For a complete investigation on 
the periods of radial oscillation of neu- 
tron stars for various admissible equa- 
tions of state, see a recent paper by 
Detweiler and Lindblom (15).] 

Instabilities of Relativistic Origin: 

Secular Instability of Rotating Stars 

I now turn to a different type of insta- 
bility which the general theory of relativ- 
ity predicts for rotating configurations. 
This new type of instability (16) has its 
origin in the fact that the general theory 
of relativity builds into rotating masses a 
dissipative mechanism derived from the 
possibility of the emission of gravitation- 
al radiation by nonaxisymmetric modes 
of oscillation. It appears that this insta- 
bility limits the periods of rotation of 
pulsars. But first, I shall explain the 
nature and the origin of this type of 
instability. 

It is well known that a possible se- 
quence of equilibrium figures of rotating 
homogeneous masses is the Maclaurin 
sequence of oblate spheroids (17). When 
one examines the second harmonic oscil- 
lations of the Maclaurin spheroid, in a 
frame of reference rotating with its angu- 
lar velocity, one finds that for two of 
these modes, whose dependence on the 
azimuthal angle is given by eZiq, the 
characteristic frequencies of oscillation, 
a, depend on the eccentricity e in the 
manner illustrated in Fig. 7 .  It will be 
observed that one of these modes be- 
comes neutral (that is, o = 0) when 
e = 0.813 and that the two modesmco- 
alesce when e = 0.953 and become com- 
plex conjugates of one another beyond 
this point. Accordingly, the Maclaurin 
spheroid becomes dynamically unstable 
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at the latter point (first isolated by Rie- 
mann). On the other hand, the origin of 
the neutral mode at e = 0.813 is that at 
this point a new equilibrium sequence of 
triaxial ellipsoids-the ellipsoids of Ja- 
cobi-bifurcate. On this latter account, 
Lord Kelvin conjectured in 1883 that 
"if there be any viscosity, however 
slight . . . the equilibrium beyond 
e = 0.81 cannot be secularly stable." 
Kelvin's reasoning was this: viscosity 
dissipates energy but not angular mo- 
mentum. And since for equal angular 
momenta the Jacobi ellipsoid has a lower 
energy content than the Maclaurin 
spheroid, one may expect that the action 
of viscosity will be to dissipate the ex- 
cess energy of the Maclaurin spheroid 
and transform it into the Jacobi ellipsoid 
with the lower energy. A detailed calcu- 
lation (18) of the effect of viscous dissi- 
pation on the two modes of oscillation, 
illustrated in Fig. 7, does confirm Lord 
Kelvin's conjecture. It is found that vis- 
cous dissipation makes the mode, which 
becomes neutral at e = 0.813, unstable 
beyond this point with an e-folding time 
which depends inversely on the magni- 
tude of the kinematic viscosity and 
which further decreases monotonically 
to zero at the point, e = 0.953, where the 
dynamical instability sets in. 

Since the emission of gravitational ra- 
diation dissipates both energy and angu- 
lar momentum, it does not induce insta- 
bility in the Jacobi mode; instead it in- 

duces instability in the alternative mode 
at the same eccentricity. In the first 
instance this may appear surprising; but 
the situation we encounter here clarifies 
some important issues. 

If instead of analyzing the normal 
modes in the rotating frame we had ana- 
lyzed them in the inertial frame, we 
should have found that the mode which 
becomes unstable by radiation reaction, 
at e = 0.813, is in fact neutral at this 
point. And the neutrality of this mode in 
the inertial frame corresponds to the fact 
that the neutral deformation at this point 
is associated with the bifurcation (at this 
point) of a new triaxial sequence-the 
sequence of the Dedekind ellipsoids. 
These Dedekind ellipsoids, while they 
are congruent to the Jacobi ellipsoids, 
differ from them in that they are at rest in 
the inertial frame and owe their triaxial 
figures to internal vortical motions. An 
important conclusion that would appear 
to follow from these facts is that in the 
framework of general relativity we can 
expect secular instability, derived from 
radiation-reaction to arise from a Dede- 
kind mode of deformation (which is qua- 
si-stationary in the inertial frame) rather 
than the Jacobi mode (which is quasi- 
stationary in the rotating frame). 

A further fact concerning the secular 
instability induced by radiation-reaction, 
discovered subsequently by Friedman 
(19) and by Comins (20), is that the 
modes belonging to higher values of m 

p c  (kg m-3) 

Fig. 6 (left). The variation of the period of 
radial oscillation along the completely degen- 
erate configurations. Notice that the period 

[ ,  , ,V I l  
J 

tends to infinity for a mass close to the o 0.4 0.8 
limiting mass. There is consequently a mini- 
mum period of oscillation along these configu- e 

rations; and the minimum period is approximately 2 seconds. [From J .  Skilling (23)] Fig. 7 
(right). The characteristic frequencies [in the unit (T,G~)' '~] of the two even modes of second- 
harmonic oscillation of the Maclaurin spheroid. The Jacobi sequence bifurcates from the 
Maclaurin sequence by the mode that is neutral (u = 0) at e = 0.813; and the Dedekind 
sequence bifurcates by the alternative mode at D. At O2 (e = 0.9529) the Maclaurin spheroid 
becomes dynamically unstable. The real and the imaginary parts of the frequency, beyond 02, 
are shown by the full line and the dashed curves, respectively. Viscous dissipation induces 
instability in the branch of the Jacobi mode; and radiation-reaction induces instability in the 
branch DO2 of the Dedekind mode. 

(=3,  4, , ,) become unstable at smaller 
eccentricities though the e-folding times 
for the instability become rapidly longer. 
Nevertheless, it appears from some pre- 
liminary calculations of Friedman (21) 
that it is the secular instability derived 
from modes belonging to m = 3 (or 4) 
that limit the periods of rotation of the 
pulsars. 

It is clear from the foregoing discus- 
sions that the two types of instabilities of 
relativistic origin we have considered are 
destined to play significant roles in the 
contexts we have considered. 

The Mathematical Theory of Black Holes 

So far, I have considered only the 
restrictions on the last stages of stellar 
evolution that follow from the existence 
of an upper limit to the mass of com- 
pletely degenerate configurations and 
from the instabilities of relativistic ori- 
gin. From these and related consider- 
ations, the conclusion is inescapable that 
black holes will form as one of the natu- 
ral end products of stellar evolution of 
massive stars; and further that they must 
exist in large numbers in the present 
astronomical universe. In this last sec- 
tion I want to consider very briefly what 
the general theory of relativity has to say 
about them. But first, 1 must define 
precisely what a black hole is. 

A black hole partitions the three-di- 
mensional space into two regions: an 
inner region which is bounded by a 
smooth two-dimensional surface called 
the event horizon; and an outer region, 
external to the event horizon, which is 
asymptotically flat; and it is required (as 
a part of the definition) that no point in 
the inner region can communicate with 
any point of the outer region. This in- 
communicability is guaranteed by the 
impossibility of any light signal, originat- 
ing in the inner region, crossing the event 
horizon. The requirement of asymptotic 
flatness of the outer region is equivalent 
to the requirement that the black hole is 
isolated in space and that far from the 
event horizon the space-time approaches 
the customary space-time of terrestrial 
physics. 

In the general theory of relativity, we 
must seek solutions of Einstein's vacu- 
um equations compatible with the two 
requirements I have stated. It is a star- 
tling fact that compatible with these very 
simple and necessary requirements, the 
general theory of relativity allows for 
stationary (that is, time-independent) 
black holes exactly a single, unique, two- 
parameter family of solutions. This is the 
Kerr family, in which the two parame- 
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ters are the mass of the black hole and 
the angular momentum of the black hole. 
What is even more remarkable, the met- 
ric describing these solutions is simple 
and can be explicitly written down. 

I do not know if the full import of what 
I have said is clear. Let me explain. 

Black holes are macroscopic objects 
with masses varying from a few solar 
masses to millions of solar masses. To 
the extent they may be considered as 
stationary and isolated, to that extent, 
they are all, every single one of them, 
described exactly by the Kerr solution. 
This is the only instance we have of an 
exact description of a macroscopic ob- 
ject. Macroscopic objects, as we see 
them all around us, are governed by a 
variety of forces, derived from a variety 
of approximations to a variety of physi- 
cal theories. In contrast, the only ele- 
ments in the construction of black holes 
are our basic concepts of space and time. 
They are, thus, almost by definition, the 
most perfect macroscopic objects there 
are in the universe. And since the gener- 
al theory of relativity provides a single 
unique two-parameter family of solu- 
tions for their descriptions, they are the 
simplest objects as well. 

Turning to the physical properties of 
the black holes, we can study them best 
by examining their reaction to external 
perturbations such as the incidence of 
waves of different sorts. Such studies 
reveal an analytic richness of the Kerr 
space-time which one could hardly have 
expected. This is not the occasion to 
elaborate on these technical matters (22). 
Let it suffice to say that contrary to 
every prior expectation, all the standard 
equations of mathematical physics can 
be solved exactly in the Kerr space-time. 
And the solutions predict a variety and 
range of physical phenomena which 
black holes must exhibit in their interac- 
tion with the world outside. 

The mathematical theorv of black 
holes is a subject of immense complex- 
ity. But its study has convinced me of 
the basic truth of the ancient mottoes, 
"The simple is the seal of the true" and 
"Beauty is the splendour of truth." 
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Enzyme Active Sites 
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Groups at or on'  the periphery of the 
active site are chemically modified to 
produce a "semisynthetic" enzyme hav- 
ing catalytic activity different from that 
of the original enzyme. An attractive 
feature of the chemical mutation process 
is that the wealth of x-ray structural 
information available for relatively sim- 
ple enzymes makes possible a consider- 
able degree of flexibility in the choice of 
the natural system in which the new 
catalytic group is introduced. Until now, 
much of the effort has been on the con- 
version of readily available enzymes of 
moderate molecular weight that are hy- 
drolytic catalysts into modified enzymes 
capable of catalyzing other important 
reactions such as oxidation-reduction, 
decarboxylation, and transamination. 
We have shown that we can achieve the 
"chemical mutation" of enzyme active 
sites by the reaction of appropriate coen- 
zyme analogs containing reactive func- 
tional groups with amino acid residues in 
or near active sites of hydrolytic en- 
zymes. With suitably chosen enzyme 
templates, appropriate coenzyme ana- 
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