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Pyrolysis Mass Spectrometry of 
Complex Organic Materials 

Henk L. C. Meuzelaar, Willem Windig, Alice M. Harper 

Stanley M. Huff, William H.  McClennen, Joseph M. Richards 

High sensitivity, specificity, and speed 
are widely recognized characteristics of 
mass spectrometry (MS) which have 
earned the technique its reputation as  
one of the most powerful analytical tools 
for organic materials available today. 
With the total number of library spectra 
approaching 100,000 and with novel de- 
sorption ionization methods such as  fast 
atom bombardment advancing into the 
5,000- to 15,000-dalton range (I), it is 
tempting to credit MS with nearly uni- 
versal applicability as  well. Unfortunate- 
ly, in reality most organic materials on 
this planet, whether natural or man- 
made, consist of molecular assemblies of 
a complexity and size far beyond the 
capabilities of direct MS techniques. 

As we  intend to demonstrate in this 
article, however, the combined use of 
advanced pyrolysis techniques, mass 

spectrometry, and computerized multi- 
variate analysis methods (Py-MS) offers 
a viable approach to the analysis of ex- 
tremely complex organic materials. 
Moreover, Py-MS techniques require 
minimal sample preparation and can be 
readily automated (2, 3). On the negative 
side, however, these techniques have 
not yet attained a satisfactory level of 
interlaboratory reproducibility and re- 
quire dedicated equipment and expert 
personnel. 

During the past two years, several 
comprehensive overviews of the devel- 
opment of Py-MS techniques since Ze- 
many's pioneering work in 1952 (4) were 
published by Irwin (2), by Meuzelaar et 
al.  (3) ,  and by Schulten and Lattimer (5). 
These monographs provide in-depth dis- 
cussions of the different Py-MS tech- 
niques and their applications in the areas 
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of synthetic polymer chemistry, natural 
product chemistry, biochemistry, phar- 
macology, microbiology, medicine, fuels 
technology, organic geochemistry, soil 
science, and forensic science. 

As schematically depicted in Fig. 1, 
the three basic pyrolysis techniques (fila- 
ment pyrolysis, direct probe pyrolysis, 
and laser pyrolysis) may be combined 
with any of a number of different mass 
separation techniques and chemometric 
procedures, which explains the multi- 
tude of experimental approaches en- 
countered in the literature. Neverthe- 
less, filament pyrolysis techniques ap- 
pear to be the method of choice in most 
current reports and Curie-point Py-MS 
(perhaps the most widely used form of 
filament Py-MS today) has achieved a 
limited degree of standardization and 
interlaboratory reproducibility (3) due to 
the availability of dedicated Curie-point 
Py-MS systems from at least two manu- 
facturers (6). 

The present article will not attempt to 
provide a comprehensive overview of 
the many different Py-MS techniques 
and procedures, such as can be found in 
the above referenced monographs. In- 
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stead, the experiments discussed in the 
next paragraphs were selected to high- 
light some of the most recent capabilities 
of Py-MS in general and of Curie-point 
Py-MS in particular. 

L t I 
Filament Integrated Univariate 
Direct probe Time-resolved Multivariate 
("microfurnace") Tandem M S  Nonsupervised 

Laser  Supervised 

Complex Pyrolysis , 
s a m ~ l e  I 

Fig. 1. Basic approach options to computerized pyrolysis mass spectrometry. 

M S  analysis 
Pyrolyzate I 

Methods and Procedures 

Sample  preparation. Most filament 
pyrolysis MS techniques require the 
sample to be coated on a metal wire or 
ribbon from a relatively dilute solution or 
suspension. Occasionally the sample can 
be applied directly to the filament in the 
form of a paste [for instance, bacterial 
colonies sampled directly from agar 
plates (3)], a wet powder, or a thin fiber 
(which can be wound around the fila- 
ment). 

Typical sample preparation proce- 
dures for insoluble materials in Curie- 
point Py-MS involve the production of a 
fine, homogeneous suspension in metha- 
nol, phosphate buffer, or other suitable 
solvent, using 1 to 2 mg of sample per 
milliliter of solvent. One or two 5-p1 
drops of this suspension are then applied 
to the ferromagnetic wires used in Curie- 
point pyrolysis and air-dried under slow, 
continuous rotation, thus producing a 5- 
to 20-yg sample coating on the wire. 

As discussed by several authors (3, 7), 
the choice of the solvent can have a 
marked effect on the pyrolysis patterns, 
especially in the case of highly polar 
materials andlor in the presence of alkali 
cations. Moreover, the filament cleaning 
procedure (such as solvent cleaning, re- 
ductive hydrogenation, vacuum heating, 
or "firing" in a flame) has a significant 
effect on the pyrolysis patterns as well 
(3, 7, 8).  

Pyrolysis m a s s  spectrometry. The Cu- 
rie-point Py-MS technique illustrated in 
Fig. 2 was used in all experiments de- 
scribed in the Results and Discussion 
section. The sample is pyrolyzed directly 
in front of the ion source by means of a 
high-frequency field (=I MHz), which 
causes inductive heating of the ferromag- 
netic wire on which the sample has been 
coated. Depending on the strength of the 
field, the wire may heat up to the Curie- 
point temperature of the ferromagnetic 
alloy in a time as short as 100 msec or as 
long as 5 seconds. Under appropriately 
selected frequency and field strength 
conditions. as well as dimensions and 
alloys of the wires, the temperature of 
the latter will automatically stabilize 
within a few degrees Celsius of the Cu- 
rie-point temperature (358°C for Ni, 
770°C for Fe, 1128°C for Co; intermedi- 
ate values for various ferromagnetic al- 
loys). 
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Fig. 2. Schematic diagram of a basic Curie- 
point Py-MS system. Typical operating condi- 
tions: temperature rise time, 5 seconds; total 
heating time, 10 seconds; electron energy, 12 
to 15 eV; scanning speed, 1000 amulsec; total 
scanning time, 20 seconds. Note optional 
availability of time-resolved (and thus tem- 
perature-resolved) signals. 

The Curie-point pyrolysis method was 
developed for gas chromatography in 
1964 by Simon and co-workers at the 
ETH in Zurich (9) and adapted for Py- 
MS of polymeric materials by Meuzelaar 
and Kistemaker in 1972 (10). Initially, a 
gold-coated, preheated expansion cham- 
ber was positioned between the reaction 
chamber and the ion source (3, 10). In 
later experiments the expansion cham- 
ber was omitted in order to enable time- 

Temperature 
pyrolys~s 

coll Ion 
source 

and prevent buildup of deposits else- 
where in the system (3). The ion source 
is usually operated at low electron ener- 
gies (11 to 15 eV) in order to reduce ion 
fragmentation tendencies and to sup- 
press background contributions from 
permanent gases (13). During the 10 to 20 
seconds or so that a measurable pressure 
rise occurs in the ion source due to the 
pyrolysis event, the quadrupole mass 
spectrometer is repetitively scanned 

Summary. Pyrolysis mass spectrometry in combination with computerized multivar- 
iate statistical analysis enables qualitative and quantitative analysis of nonvolatile 
organic materials containing molecular assemblies of a complexity and size far 
beyond the capabilities of direct mass spectrometry. The state of the art in pyrolysis 
mass spectrometry techniques is illustrated through specific applications, including 
structural determination and quality control of synthetic polymers, quantitative analy- 
sis of polymer mixtures, classification and structural characterization of fossil organic 
matter, and nonsupervised numerical extraction of component patterns from complex 
biological samples. 

resolved recording of pyrolysis events 
(11), as shown in Fig. 2. However, most 
of the six or seven different laboratories 
which currently have more or less com- 
patible Curie-point Py-MS instruments 
(12) still use the expansion chamber for 
all routine work. 

As shown in Fig. 2, the pyrolysis prod- 
ucts are allowed to diffuse into an open, 
cross-beam type electron impact ionizer 
surrounded by a large, liquid nitrogen- 
cooled trap. This cold trap serves as an 
efficient cryopump for all organic pyroly- 
sis products not ionized during their first 
pass through the ionization chamber. 
This helps reduce background signals 

over the desired mass range at high 
speed (for instance, 1000 atomic mass 
units per second) and the resulting spec- 
tra either summed (integrated mode) or 
sequentially recorded (time-resolved 
mode). Because of the low signal intensi- 
ties and high scan speed requirements, 
fast (for instance, 100 MHz) ion counting 
methods are preferred over analog signal 
recording techniques. 

Besides the basic Curie-point Py-MS 
technique shown in Fig. 2, several more 
specialized Py-MS methods have been 
developed which can provide highly 
valuable additional information on the 
chemical identity and origin of the pyrol- 
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a Proposed Biomer s t ruc tu re  ysis products. Examples of such special- 

b Batch 1 

\ 114 C Batch 2 

Fig. 3. The proposed structure of the poly(ether urethane urea) Biomer in (a) corresponds to the 
low-voltage Curie-point pyrolysis mass spectrum of batch 1 in (b). The spectrum of batch 2 in 
(c) reveals an additional peak series (see arrows) believed to represent a quaternary (alkyl)am- 
monium compound. Experimental conditions: 5-kg samples coated from a solution in dimethyl- 
acetamide; 610°C (Curie-point temperature) wires; temperature rise time. 5 seconds; electron 
energy, 12 eV (set value). 

a Grass leaves 

TG8 b canonical  var iate 
pattern 

136 

93 

107 121 

LT 
80  

0 

6 7 r  9i 

C Natural rubber 

Fig. 4. (a) Low-volt- 
age Curie-point pyrol- 
ysis mass spectrum of 
grass leaves, repre- 
senting the average 
intensity values of a 
set of eight senescent 
leaf samples analyzed 
in triplicate. (b) Com- 
ponent pattern ex- 
tracted by canonical 
variate analysis and 
showing a strong pos- 
itive correlation (co- 
efficient = 0.97) with 
susceptibility to in- 
sect attack. (c) Spec- 
trum of natural rubber 
obtained from (3). Ex- 
perimental condi- 
tions: 20-pg leaf sam- 
ples were coated from 
a methanol suspen- 
sion; for further de- 
tails see legend to Fig. 
3. 

ized methods are: C 0 2  laser pyrolysis 
MS (14), pyrolysis high-resolution MS 
(Py-HRMS) (15), pyrolysis tandem MS 
(Py-MS-MS) ( l l ) ,  pyrolysis time-re- 
solved MS (Py-TRMS) (II) ,  and Py-MS 
in combination with various other "soft 
ionization" methods, such as  field ion- 
ization (16), field desorption (1 7), or 
chemical ionization (18). In our labora- 
tory, Py-TRMS and Py-MS-MS are fre- 
quently called upon to provide additional 
information (see also Fig. 1). 

Computerized data analysis.  As 
shown in Fig. 1 ,  computerized data anal- 
ysis is an integral part of the analytical 
pyrolysis procedure. In fact, due to  the 
rapid developments in this area, which 
have resulted in a multiplicity of avail- 
able techniques and options, computer- 
ized data analysis is fast becoming the 
most rewarding (and most time-consum- 
ing) step in the procedure. A typical data 
analysis sequence proceeds from routine 
mass calibration and peak calculation 
procedures through more specialized 
normalization programs to the multivari- 
ate analysis stage. 

As discussed elsewhere (2, 3, 19), 
proper normalization of the total spec- 
trum intensity is of crucial importance. 
The basic principle behind the normal- 
ization approach used in most of our 
studies (19) is to  exempt all mass peaks 
with major variance contributions from 
the normalization procedure. In other 
words, the stable, "common" part of the 
pyrolysis patterns in the data set is used 
as  an internal standard in order to avoid 
propagation of measurement errors (due 
to peaks with high "within-category" 
variance) or creation of pseudocorrela- 
tions (due to peaks with high "between- 
category" variance). This normalization 
procedure is carried out in an iterative 
manner, using the operator-interactive 
program NORMA (20). The normalized 
data can then be analyzed by multivari- 
ate statistical analysis routines such as  
are available in the ARTHUR (21) or 
SPSS (22) program package. 

A routine, nonsupervised multivariate 
analysis run consists of factor analysis 
followed by discriminant analysis, using 
the first 10 or  12 most significant factors 
and regarding each set of replicate analy- 
ses of a sample as a separate category 
(23). The most striking result of these 
multivariate analysis procedures is the 
sharp reduction in apparent dimensional- 
ity of the data. From an initial collection 
of several hundred mass peaks the data 
are  reduced to only a few factors or 
discriminant functions, each of which is 
by definition a linear combination of the 
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original mass peak intensities. More- 
over, by plotting these linear combina- 
tions in the form of "spectra" (23) the 
operator obtains a wealth of information 
about the chemical tendencies or compo- 
nents underlying the factors. Often this 
requires "graphical rotation" of the fac- 
tors (24) in order to optimize the chemi- 
cal component patterns. 

Recently, a nonsupervised factor rota- 
tion method was developed by Windig 
and Meuzelaar (25). This technique, the 
so-called variance diagram method, 
holds considerable promise for fully 
automated interpretation of complex py- 
rolysis mass spectra in the near future. 
Other multivariate analysis methods 
which are  frequently used in Py-MS ap- 
plications include canonical variate anal- 
ysis (26), nonlinear mapping (27), 
SIMCA (28), hierarchical clustering den- 
drograms (29), K-nearest neighbor tables 
(30), and distance matrices (27). In par- 
ticular, the use of canonical variate anal- 
ysis and related methods for correlating 
data matrices obtained by different spec- 
trometric, chromatographic, or other 
techniques promises to revolutionize the 
integration of measurement results in 
tomorrow's analytical laboratory. 

Results and Discussion 

In order to demonstrate the capabili- 
ties of modern Py-MS techniques a num- 
ber of different applications will be dis- 
cussed, starting with relatively simple 
materials such as  synthetic polymers and 
moving toward extremely complex bio- 
chemical systems such as whole micro- 
organisms. 

Structural analysis of synthetic poly- 
mers. The spectrum of Biomer, a com- 
mercial poly(ether urethane urea) (PEU) 
used in the construction of artificial 
hearts and other cardiovascular im- 
plants, demonstrates (Fig. 3b) that Py- 
MS analysis can provide detailed struc- 
tural information on relatively pure poly- 
meric materials. All three major building 
blocks, namely (i) the polyol (polytetra- 
methyleneglycol-characteristic fragment 
ion peaks at mass-to-charge ratio miz 71, 
73, 143, and 145); (ii) the isocyanate 
(diisocyanato diphenylmethane-molecu- 
lar ion at miz 250, fragment ions at mlz 
221 and 208); and (iii) the chain extender 
(ethylenediamine-carbonylated molecu- 
lar ion at miz 86, fragment ion at  miz 30, 
and isocyanate-derived amine at mlz 
224), are clearly represented. The pres- 
ence of characteristic chain extender sig- 
nals is particularly exciting since detec- 
tion of these moieties by other spectro- 
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metric techniques, infrared or  nuclear 
magnetic resonance (NMR) spectrosco- 
py, is notoriously difficult (29). 

The structural assignments in Fig. 3a 
were further supported by Py-HRMS, 
Py-TRMS, and Py-MS-MS experiments. 
Final confirmation of the proposed struc- 
ture was obtained by synthesizing a 
model polymer with a Py-MS pattern 
closely resembling that of the cornmer- 
cia1 polyurethane pattern in Fig. 3b 
(30). 

Quality control of polymer batches. In 
contrast, the spectrum shown in Fig. 3c, 
which represents a different batch of the 
same commercially available PEU,  re- 
veals the presence of an additional peak 
series at  mlz 114, 126, 140, 148, 163, 198, 
and 213 (see arrows), apparently repre- 
senting one or more components not 
found in the other batch. Attempts to  
help identify the unknown components 
bv NMR and infrared failed because 
neither technique showed obvious differ- 

ences between the two batches. Micro- 
scopic analysis, however, revealed that 
the batch with the unknown components 
contained a suspension or emulsion of 
small, basophilic particles. 

Additional Py-HRMS, Py-TRMS, and 
Py-MS-MS studies have identified the 
unknown component as  a quaternary (al- 
ky1)ammonium compound, which was 
probably added to the polymer for the 
purpose of modifying its processing be- 
havior. 

This example demonstrates the value 
of Py-MS techniques for quality control 
of complex polymeric materials. 

Quantitative analysis of polymer mix- 
tures. A series of experiments on cross- 
linked, carbon-filled rubber triblends 
(provided by Dr. R. Lattimer, B. F .  
Goodrich) was carried out in order to 
investigate the feasibility of quantitative 
determination of polymer components 
by Py-MS (31). Multivariate statistical 
analysis of the data showed that the 

Dihydroxybenzenes 

2.5 
oxyindenes (7) 

b High volat i le  bituminous-A 

C Medium volatile bituminous 

4 o a o 120 160 200 

m l z  

Fig. 5. Low-voltage Curie-point pyrolysis mass spectra of three coals of different rank 
representing the Uinta region of the Rocky Mountain coal province. Chemical labels are 
tentative and only represent the proposed dominant constituents of each peak series. For 
experimental conditions see legend to Fig. 3. 



relative concentration of each of the 
three components could be directly de- 
termined from the Py-MS data with an 
average error in the 3 to 5 percent range. 
Although similar levels of precision are 
known to be obtainable by NMR and 
infrared, these techniques require much 
more elaborate and time-consuming 
sample preparation procedures for this 
type of relatively intractable polymeric 
material. 

Further examples of quantitative anal- 
yses of polymer mixtures by Py-MS have 
been given by Windig et al. (24), who 
used a combination of factor analysis 
techniques and graphical rotation meth- 
ods to analyze a ternary biopolymer mix- 
ture consisting of a protein (albumin), a 
polyhexose (glycogen), and an amino- 
sugar-containing polysaccharide (chon- 
droitin sulfate). Again, it proved possible 
to  determine the concentrations of the 

individual components to  within a few 
percent. 

The most important conclusion which 
can be drawn from these quantitative 
studies is that, under the appropriate 
experimental conditions, pyrolysis pro- 
cesses in polymeric materials appear to  
be dominated by unimolecular decompo- 
sition reactions with little o r  no evidence 
of intermolecular (for example, recombi- 
nation) reactions leading to the forma- 
tion of new or  different pyrolyzates. 
Consequently, a t  first approximation the 
pyrolysis mass spectrum of a complex 
mixture of organic materials may be re- 
garded as a linear combination of the 
spectra of the individual components. 
Nevertheless, matrix effects certainly 
play a role, especially with polar materi- 
als o r  in the presence of alkali cations 
(3), as  can be inferred from careful factor 
analysis studies (7). 
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Fig. 6. (a) Score plot 
of the first two factors 
obtained from Curie- 
point pyrolysis mass 
spectra of over 100 
coals from various re- 
gions (represented by 
different symbols) of 
the Rocky Mountain 
coal province. Note 
marked clustering of 
coals from different 
regions, fields, and 
seams (arrows point 
to outliers) as well as 
clear rank-related ten- 
dencies (indicated by 
dashed lines). (b) 
Highly schematized 
interpretation of the 
main underlying 
chemical tendencies 

Numerical extraction of spec$c com- 
ponents from complex biological materi- 
als. Whereas the examples above in- 
volve relatively pure polymers and poly- 
mer mixtures, Py-MS techniques can be 
successfully applied to much more com- 
plex systems such as plant materials, 
coals, or microorganisms. A typical ex- 
ample of their application to complex 
biological samples (grass leaves) for the 
purpose of extracting specific compo- 
nent subpatterns correlated with a set of 
external measurements (susceptibility to 
insect attack) is given in Fig. 4. By using 
canonical variate analysis, a special fac- 
tor analysis technique designed to find 
that linear combination of mass peak 
intensities (canonical variate function) 
best correlated with the relative intensity 
values of an external measurement for 
each sample, it proved possible to  ex- 
tract a relatively simple subpattern (Fig. 
4b) from the complex Py-MS patterns of 
the grass leaves. As shown by compari- 
son with the library spectrum (3) of natu- 
ral rubber in Fig. 4c (obtained on a 
Curie-point Py-MS instrument in a dif- 
ferent laboratory), the canonical variate 
pattern in Fig. 4b represents a typical 
poly-isoprenoid component in the grass 
leaves. The abundance of this poly-iso- 
prenoid component shows a positive cor- 
relation (coefficient = 0.97) with the sus- 
ceptibility of different grass species to  
attack by the grass bug Labops hesper- 
ius. Whether this points to a possible 
direct attraction of the insects to  this 
particular substance or represents a 
more indirect relationship, needs further 
investigation (26). 

Determination of key structural fea- 
tures in fossil organic matter. In spite of 
the complexity of grass leaves, the bio- 
chemical composition of such biological 
samples is relatively well defined. Coals 
and other fossil organic materials usually 
consist of heterogeneous mixtures of 
biological compounds which have under- 
gone extensive degradation and chemical 
transformation over enormous time peri- 
ods. What information can be obtained 
from Py-MS analysis of such extremely 
complex and ill-defined materials? 

Results from a recent Py-MS study 
(32) on a set of over 100 coals from the 
Rocky Mountain Province are presented 
in Figs. 5 and 6. The spectra of three 
coals of different rank (degree of coalifi- 
cation) in Fig. 5 are found to be dominat- 
ed by obvious series of homologous 

in (a), obtained from 
the factor loading 
spectra in Fig. 7. 
Note the effects of a 
45" rotation in the 
plane described by 
the two factors. 

compounds such as alkenes, (alky1)phen- 
ols, and (alky1)naphthalenes. With in- 
creasing rank (from subbituminous to 
medium volatile bituminous) some com- 
ponent series (for instance, hydroxyben- 
zenes) show a strong decrease whereas Factor  I  ( loadings) 
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the relative abundance of other series 
(naphthalenes) increases markedly. The 
tendencies observed in Fig. 5 could be 
highlighted further by means of bivariate 
plots of selected mass peak intensities, 
for instance, mlz 110 versus mlz 156 (not 
shown). It should be pointed out, howev- 
er,  that tens of thousands of different 
bivariate plots could be composed with 
the several hundred peaks in a typical 
pyrolysis mass spectrum. Therefore, 
computerized multivariate analysis 
methods have become indispensable for 
evaluating and interpreting Py-MS data. 
In data sets with strongly correlated sig- 
nals (the homologous ion series in Fig. 5) 
factor analysis methods provide an espe- 
cially effective data reduction technique 
which often succeeds in explaining more 
than 90 percent of the total variance in 
the Py-MS data set with as few as five or 
six independent ("orthogonal") factors. 

A plot of the first two factors for the 
Rocky Mountain coal data set, account- 
ing for 36 percent of the total variance, is 
shown in Fig. 6a and reveals a distinct 
clustering of the various regions, fields, 
and seams in addition to a clear rank 
dependence. Each point in the plot rep- 
resents a different coal sample obtained 
from the Pennsylvania State University 
Coal Sample Bank, where the samples 
were independently collected and stored 
for several years before being shipped to 
our laboratory for final sample prepara- 
tion and Py-MS analysis. Therefore, the 
clustering tendencies in Fig. 6a indicate 
that the pyrolysis mass spectra obtained 
are truly representative of the different 
seams, fields, and regions and that the 
observed differences cannot be ex- 
plained by sampling errors or instrumen- 
tal bias. In conclusion, Py-MS proves to 
be  a rapid and powerful classification 
method for coal samples of this type. 

Perhaps even more important, howev- 
er, is the information which can be ob- 
tained about the underlying chemical na- 
ture of the  observed differences and ten- 
dencies in the data. Since both factors 
plotted in Fig. 6a are linear combinations 
of individual mass peak intensities, so- 
called factor loading spectra (23) can be 
constructed in which the relative contri- 
bution of each mass peak is visualized, 
as shown in Fig. 7. Careful inspection of 
Fig. 7 reveals that the interpretation of 
the factor loadings in broad chemical 
terms is relatively straightforward in this 
case. Apparently, the rank tendency in 
Fig. 6a corresponds to a chemical shift 
from aromatic heteroatom-containing 
compounds to aromatic hydrocarbons, 
whereas some of the more pronounced 
regional coal characteristics are due to 
different aromaticitylaliphaticity ratios. 

19 OCTOBER 1984 

a Factor  I 

Dihydroxybenzenes (45' ro ta ted)  

1 Carboxv 

Alkenes 

b Factor  II 
(45' rotated) 
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Benzenes 

Fig. 7. Numerically extracted factor loadings (presented in the form of factor loading spectra) 
revealing major homologous ion series showing positive or negative correlations with both 
factors. Chemical labels are tentative. Note 45" rotation (visualized in Fig. 6b). The heteroatom- 
ic-hydrocarbon separation in (a) may be thought to represent a typical rank (coalification) 
effect, whereas the aliphatic-aromatic separation in (b) appears to be due to differences in 
depositional environment (compare with Fig. 6a). 

A highly schematic representation of the 
major chemical tendencies in the space 
spanned by the first two factors (and 
thus directly superimposable on the fac- 
tor plot in Fig. 5b) is given in Fig. 6b. 
From these Py-MS results on coals it can 
be  concluded that broad but highly use- 
ful chemical classes and key structural 
features can be established in spite of the 
extremely complex, heterogeneous na- 
ture of these materials. 

Nonsupervised detection of chemical 
component axes. Although an encourag- 
ing degree of interlaboratory reproduc- 

ibility has been demonstrated between 
groups using Curie-point Py-MS instru- 
ments of more or  less standardized de- 
sign (3, 12) [and notwithstanding the fact 
that hundreds of pyrolysis mass spectra 
obtained with these instruments are 
available from the literature, including 
an atlas with over 150 spectra of recent 
and fossil biomaterials (3)], chemical in- 
terpretation of pyrolysis mass spectra 
remains a difficult, often highly subjec- 
tive enterprise. This is even more true 
when trying to interpret numerically ex- 
tracted spectral patterns which may well 

E. coli 
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Fig. 8. (a) Score plot of the first two discrimi- '- 

nant functions obtained from a set of 18 Curie- 'E -I 
point pyrolysis mass spectra representing 12 5 
bacterial strains isolated directly from human 

-2 urine. Note successful separation of all five 
categories at the genus level. (b) Variance -2 

diagram displaying the total variance contri- 
bution of all mass variables found within 
consecutive 10" windows in the space de- 
scribed by the first two discriminant func- b 

tions. Chemical interpretation of the two main 
component axes found at 0" and 230°C was 
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represent components that cannot be 
separated by known physicochemical 
techniques (for instance, cross-linked 
polymer systems). Thus, exact reference 
spectra may be difficult or impossible to 
obtain. T o  further compound matters, 
mathematically extracted factors can be 
rotated in different directions (see Fig. 
6b) with consequent changes in the cor- 
responding chemical patterns. Therefore, 
it is important to  develop nonsupervised 
techniques which can be used to find the 
optimal rotations ("axes") for the differ- 
ent chemical components in the data set 
by means of objective, mathematical cri- 
teria. 

Recently, a first attempt at developing 
an automated approach to numerical ex- 
traction of unknown components from 
Py-MS data on complex organic materi- 
als was described by Windig and Meuze- 
laar (25). This approach, the so-called 
variance diagram technique, is demon- 
strated in Fig. 8, using Py-MS data on 
bacteria isolated directly from human 
urine and analyzed without prior cultur- 
ing on nutrient media. By means of dis- 
criminant analysis, a special factor anal- 
ysis method aimed at finding linear com- 
binations of mass intensities with maxi- 
mum discriminatory power for the 
various sample categories (discriminant 
functions), a promising degree of separa- 
tion was obtained between bacterial iso- 
lates representing different genera be- 
longing to the family of Enterobac- 
teriaceae. 

Obviously, the number of bacterial 
isolates in Fig. 8a is far too small for us 
to expect the calculated discrimination 
functions to  remain stable when further 
bacterial isolates are added to the data 
set. However, as  shown in Fig. 8b, the 
use of the variance diagram technique 
reveals two well-defined component 
axes in the space described by the first 
and second discriminant functions. 
Chemical interpretation of the "discrimi- 
nant spectra" corresponding to the two 
component axes (at 0" and 230°C) in Fig. 
8b revealed relatively simple patterns 
(not shown) with the axis at O°C dominat- 
ed by fatty acid signals and the axis at 
230°C representing proteins and, to some 
extent, nucleic acids (33). Since possible 
chance associations between these 

chemical components and the individual 
bacterial samples cannot be totally ruled 
out, this is by no means proof of the 
stability of the discriminant solution 
shown in Fig. 8a. Nevertheless, the ob- 
servation of well-defined chemical ten- 
dencies practically eliminates the possi- 
bility of a chance separation due to ran- 
dom fluctuations in the data set. 

The latter danger is especially immi- 
nent in small data sets where the number 
of samples is lower than the number of 
independent variables. At first sight, this 
problem may appear to  be difficult to 
avoid when using pyrolysis mass spectra 
containing hundreds of mass peaks. As 
mentioned before, however, the high de- 
gree of redundancy in the spectra caused 
by the presence of strongly correlating 
peak series usually reduces the "intrin- 
sic dimensionality" to only five or six 
orthogonal factors. Therefore, we rou- 
tinely perform discriminant analysis on 
the dozen or so most significant factors 
only (23). 

As demonstrated in Fig. 8, the vari- 
ance diagram technique can be very 
helpful in locating the major chemical 
component axes. Moreover, preliminary 
tests have indicated the feasibility of 
using library search techniques to  obtain 
"best matches" between component 
spectra extracted by the variance dia- 
gram method and reference spectra rep- - 
resenting different classes of biochemical 
compounds. Further development of 
automated methods along these lines 
should greatly facilitate the task of evalu- 
ating and interpreting pyrolysis mass 
spectra of complex organic materials, 
thus making the technique more accessi- 
ble to  the nonspecialist. 
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