
cause there was no sign that this proce- 
dure indeed leads to pain. The horses 
appeared to be sedated and heart rate 
was reduced by the twitch, whereas 
painful stimuli activated horses and in- 
creased heart rate. It is more likely that 
mechanisms involved in pain relief, such 
as endorphin systems, are activated by 
the twitch procedure. Because both anal- 
gesia and sedation are observed after 
applying the twitch, this procedure may 
be comparable to neuroleptic-analgesia 
and may be regarded as a Western exam- 
ple of acupuncture. 
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Control of Extracellular Potassium Levels by Retinal 
Glial Cell K+ Siphoning 

Abstract. EfJEux of K+ from dissociated salamander Miiller cells was measured 
with ion-selective microelectrodes. When the distal end of an isolated cell was 
exposed to high concentrations of extracellular K+, e@ux occurred primarily from 
the endfoot, a cell process previously shown to contain most of the K+ conductance 
of the cell membrane. Computer simulations of K+ dynamics in the retina indicate 
that shunting ions through the Miiller cell endfoot process is more effective in 
clearing local increases in extracellular K+ from the retina than is diffusion through 
extracellular space. 

Local changes in extracellular potassi- 
um ion concentration, [K'],, are pro- 
duced within the central nervous system 
as part of normal neuronal activity (I). 
These changes can affect neuronal activi- 
ty by altering cellular resting potentials. 
Astrocytic glia are thought to attenuate 
changes in local [K'I, by a process 
known as "K+ spatial buffering" (2, 3). 
In this process, local increases in [Kt], 
are accompanied by K+ influx into astro- 
cytes. An equal amount of K+ exits from 
these cells or from cells electrically cou- 
pled to them in regions where [K'], is 
lower, thus transferring K+ away from 
the sites of initial increase. 

We have suggested that the retinal 
Muller cell, a specialized astrocyte that 
spans nearly the entire width of the reti- 
na, buffers changes in retinal [K'], (4, 
5). We have shown that amphibian Mull- 
er cells are almost exclusively permeable 
to K+ (6) and that 94 percent of the total 
K+ conductance in these cells occurs in 
the Muller cell endfoot, a process lying 
adjacent to the vitreous humor (4). This 
highly asymmetric K+ conductance dis- 
tribution may make the process of K+ 
spatial buffering more powerful than has 
been recognized. For example, nearly all 
of the K +  current entering Muller cells 
from regions of increased [K*], within 
the retina may leave the Muller cell 

endfoot process at the vitreo-retinal bor- 
der. Thus, the vitreous would function as 
a large potassium sink. 

We now present experimental evi- 
dence of extracellular K+ buffering by 
Muller cells which utilizes this asymmet- 
ric conductance distribution. Dissociat- 
ed Muller cells from the salamander Am- 
bystoma tigrinum were prepared and 
maintained as described (4). The distal 
end of the Muller cell surface was ex- 
posed to increased [K'], by pressure- 
ejecting an 85 mM KC1-Ringer solution 
from an extracellular pipette (approxi- 
mately 3 pm in tip diameter). Perfusate 
near this ejection pipette was drawn into 
a suction pipette (30 pm in diameter) to 
limit the spread of K+ from the ejection 
site to other areas of the Muller cell 
membrane. Single-barreled (7) K+-selec- 
tive microelectrodes [8 pm in diameter, 
filled with Corning resin 477317 (a)] were 
used to measure [K'l, near different 
regions of the dissociated Muller cell 
surface (Fig. lA, sites a through d). 

The results of one experiment are 
shown in Fig. 1B. At the distal end of the 
dissociated Muller cell (Fig. lA ,  site a), 
the site of K+ ejection, we measured an 
increase in [K'], to 40 mM (Fig. lB,  
trace a). When the Kt-selective micro- 
electrode was moved from the ejection 
site to sites b and c (Fig. lA), much 

Fig. 1. Measurement of K' 
efflux from a dissociated Am- 
bystoma tigrinum Miiller cell. 

A (A) Schematic of a dissociated 
20 cell showing location of K+ 
l o  ejection and suction pipettes 6 

Eject ion  2.5 and the four positions of the 
pipet te  ,. ion-selective microelectrode 

(a through d). (B) Voltage rec- 
5 ords from the ion-selective mi- 

,O croelectrode made at the loca- 
tions indicated in (A). The on- .- I 

set and duration of a 50-msec 
2.60 pressure pulse applied to the 
2.66 ejection pipette is indicated at 
2,60 the bottom. Traces b,  c, and d - are expanded vertically rela- - tive to trace a. The concentra- 

100 msec tion scales (mM) were deter- 
mined by calibrating ion-selec- 
tive pipettes in a series of K+ 
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smaller increases in [K'], were mea- was reduced to one-half of its initial instead of in retinal tissue. The term 
sured (Fig. lB,  traces b and c). These value in 1.4 seconds (one-half clearance "K' siphoning" concisely describes this 
increases were generated by diffusion time). A similar one-half clearance time process. We suggest that K +  siphoning 
and bulk flow of K +  from the ejection (1.8 to 2.0 seconds) has been measured by Muller cells plays an important role in 
site, as indicated by their slower time in the frog retina (10). The Muller cell K +  homeostasis in the retina. 
courses and the decrease in their ampli- K +  buffering mechanism acting alone This K +  buffering mechanism may be 
tudes with distance. Similar slow re- gave a one-half clearance time of 2.1 a general phenomenon. The endfeet of 
sponses were recorded when the ion- seconds in our simulation, and diffusion astrocytes in the brain lie adjacent to 
selective electrode was moved away acting alone gave a one-half clearance capillaries and the ventricular spaces. If 
from the Muller cell surface. At site d time of 7.7 seconds. Muller cell K +  astrocyte endfeet have K +  conductance 
(Fig. lA), adjacent to that portion of the spatial buffering is thus large enough to properties similar to those of Muller 
endfoot surface that normally faces the play a major role in clearing increases in cells, excess extracellular K +  would be 
vitreous, the slow increase in [K'], was [K'], from the retina. Active uptake of shunted into capillaries and the cerebro- 
almost absent. However, a rapid, tran- K +  by neurons or glia may also be an spinal fluid instead of into neural tissue 
sient increase in [K'], of 75 FM was important clearance mechanism. The ki- sensitive to changes in [K'],. Thus K +  
seen (Fig. lB,  trace d). This increase was netics of active uptake is difficult to siphoning may play an important role in 
due to efflux of K +  from the endfoot assess, however ( l l ) ,  and was not in- K +  homeostasis in the brain as well. 
membrane. cluded in our simulation. ERIC A. NEWMAN* 
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