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tending from this primary band of precip- 
itate toward the inner pouch surface'in 
contact with the self-diluting AgN03 so- 
lution were other, much thinner, very 
sharply defined layers. Often what ap- 
peared to be one layer of precipitate was 
at higher magnification segregated into 
even thinner multiple layers. I some- 
times observed the regular spacing char- 
acteristic of Liesegang rings (Fig. la) 
and, especially after long reaction times, 
zones of grainy precipitate, possibly the 
result of secondary crystal growth (6). 
The layered but not the grainy precipi- 
tate often produced strong birefringence 
in polarized light (Fig 1, b and c). If the 

placement of reactants was reversed- 
that is, if AgN03 was used in excess 
volume outside the pouch and NaI in- 
side-the location of the primary precipi- 
tate remained unchanged, but the sec- 
ondary, finer layers were now squeezed 
into the more narrow zone in contact 
with the self-diluting NaI solution. The 
number of layers and the total space 
occupied by them was largest for the 
smallest pouches, which, as confirmed 
by silver analysis, were self-diluting at 
the highest rate and therefore produced 
the greatest change in D and R. 

With the diffusion cell, D and R could 
be kept nearly constant throughout the 

a '"'P-X' 
Fig. I .  Photomicro- 
graphs of silver halide 
precipitated in water- 
swollen PVA film. 
Ten-milliliter pouches 
with AgN03 solution - 
were immersed in 100 
ml of sodium halide 
solution. (a) AgI from 
0.1M AgN03 + O.IM 
NaI after 20 minutes; 
NaI-contacting side is 
up. Scale bar, 0.05 
mm. (b and c) AgBr 
from 0.05M Ag- 
NO3 + 0.05M NaBr 
after 16 hours; in po- 
larized light with 
crossed (b) and un- / .. 
crossed (c) polarizers. ! 
Scale bar, 0.05 mm. ! 
(d) Same sample at 
higher magnification; 
NaBr-contacting side ' 

is at left. Scale bar, 
0.025 mm. 

I, d 

Fig. 2. Photomicrographs of silver halide in water-swollen PVA films, diffusion cell arrange- 
ment. (a) AgI from 0.1M AgN03 + 0.1M Nal after 25 seconds. Scale bar, 0.05 mm. (b) AgI 
from O.IM AgNO, + 0.025 NaI after 5 minutes. Scale bar, 0.05 mm. (c) Mixed AglIAgCI 
precipitate from 0.05M AgNO, and 0.025M NaI + 0.025M NaCl after 20 minutes. Borders of 
film are not visible; AgN03-contacting sides are at left. Scale bar, 0.02 mm. (d to f) AgI, after 45 
seconds, from (d) O.IM AgN03 + 0.125M NaI (D = 0.025, R = 1.25); (e) O.05M AgNO, 
+ 0.075M NaI (D = 0.025; R = 1.5); and (0 0.025M AgN03 + O.05M NaI (D = 0.025, 
R = 2.0). The AgN03-contacting side is at left. Scale bar, 0.05 mm. 

reaction. Only at very short reaction 
times (< 1 minute) were several thin lay- 
ers visible in a zone that was wider at 
lower concentrations and larger R (Fig. 
2, d to f). I assume that this zone is 
located in that part of the film's cross 
section where anion and cation fluxes 
are equivalent and that its width is deter- 
mined by the slope of concentration gra- 
dients; in thick films or at low concentra- 
tions greater ion overlap occurs before 
the solubility product is reached, result- 
ing in a wide reaction zone in which a 
fine structure can easily be seen (Fig. 20, 
whereas the opposite conditions give 
narrow reaction zones and poor resolu- 
tion (Fig. 2d). In addition, any imbalance 
in ion concentration (R > 1) leads to a 
corresponding slow movement of the re- 
action front toward the side of lower 
concentration and a further spreading of 
the bands. A fine structure of extremely 
close lines could be seen, but only after 
short reaction times, even when D was 
zero (R = I), which makes it likely that 
only a concentration gradient, not a shift 
of the reaction zone, is necessary for 
periodically banded precipitation (7). 

After longer reaction times (>2 min- 
utes), all fine structure became sub- 
merged in the increasingly dense precipi- 
tate. Then only one, rarely two, narrow 
layers, whose locations were dependent 
on D and R, were visible closer to the 
side of the lower ion concentrations (Fig. 
2, a and b). Sometimes dendrites grew 
toward the side contacting the halide 
solution (Fig. 2c). If D was too large, 
precipitation occurred outside the film in 
the more dilute solution. Silver analysis 
showed that ion diffusion was the rate- 
determihing step for precipitation (8). 

The effect of changes in D on the 
spacing of precipitate zones and on the 
fine structure within them is shown in 
Fig. 3, a and b. Simulating the pouch 
system by continuous dilution of the 
AgN03 solution gave a discontinuous 
system of thin and parallel layers, as 
obtained with the pouches (Fig. 3c). 

In the model of a matrix-supported 
interfacial precipitation, in which the in- 
flux of reactants equals their removal, 
the width of the reaction zone, or of ion 
overlap, should depend on the relative 
rates of diffusion on the one hand and the 
rates of reaction or solubility of the pre- 
cipitate on the other. Indeed, the precipi- 
tates with the lower solubility, AgI, 
AgBr, and Mg3(P04)2, formed sharper 
layers than AgCI. The even more soluble 
salt Ag2Cr207 showed the biggest grain 
size and the most diffuse precipitate 
boundaries, that is, the greatest region of 
ion concentration overlap (Fig. 4, a and 
b) (9). 
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tervals after the colloid has reached a 
critical size by autocatalytic growth or 
reached a critical charge density, immo- 
bilization occurs and the process repeats 
itself. The reaction front can move either 
slowly because of an ion concentration 
imbalance (Dldt = 0; R > 1) (Fig. 2, d to 
f) or quickly in response to an imposed 
dilution scheme (Dldt > 0) (Figs. 1 and 
3c), providing in both cases a more or 
less expanded view of periodic precipita- 
tied. 

Fig. 4. Photomicrographs of precipitates in 
PVA film (pouch system). (a) (Mg)3(P04)2 
from 0.3M MgC12 (inside) + 0.2M Na3P04 
after 16 hours; (b) Ag2Cr207 from 0.1M 
AgN03 (inside) + O.05M K2Cr207 after 5 
minutes; Mg2+- and Ag+-contacting sides are 
at right. Scale bars, 0.05 mm; (c) AgCl from 
0.1M AgN03 + 0.1M NaCl after 20 minutes, 
showing nascent secondary lines with revert 
spacing. Careful examination reveals a wave- 
like distortion of the primary band on points 
of secondary line origins. The Ag+-contacting 
side is down. Scale bar, 0.1 mm. 

A variety of regular precipitation pat- 
terns can arise as the combined effects of 
the moving reaction zone and periodic 
precipitation, including evenly spaced 
layers when the dilution of one ion solu- 
tion results in a constant rate of change 
of D and "revertly" spaced (progres- 
sively closer) layers (3, 11) if D changes 
at decreasing rates (Fig. 3) and precipita- 
tion occurs at regular time intervals. If 
precipitation occurs at progressively 
longer intervals, Liesegang rings with 
progressively wider spacing are formed 
because the concentration of charged 
colloid is so low that it travels farther 
and farther before reaching the critical 
size and concentration at which it be- 
comes immobilized (Fig. la). Figure 4c 

rock a precipitation front can also propa- 
gate through conductive cooling, reduc- 
ing the solubility of dissolved minerals; 
with the cold front acting in place of a 
diffusing reactant, banded structures can 
presumably arise by the same combina- 
tion of a moving reaction zone and peri- 
odic immobilization. 

KARL F. MUELLER 
Central Research, 
CIBA-GEIG Y Corporation, 
Ardsley, New York 10502 

shows a series of revertly spaced AgCl 
layers splitting off from primary layers in 
a manner suggesting the sweeping and 
focusing action of an electrophoretic 

0 
0 3 6 9  

Minutes 

process. 
Polyvinyl alcohol film, a much denser 

matrix than is commonly used for Liese- 
gang experiments, probably allows much 
finer spacing of periodic precipitation 
because of reduced diffusion rates and 
mobility of ions, colloid, and molecular 
silver halide. A denser matrix may also 
allow the colloid to grow to a larger size 
before it becomes unstable and forms a 
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