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Dynamics of Globular Clusters 

Globular clusters are nearly spherical 
stellar systems associated with many gal- 
axies and generally containing from lo5 
to 3 x lo6 stars. Figure 1 is a photograph 
of Messier 19 (No. 19 in a catalog of 
some hundred diffuse objects compiled 
by Charles Messier late in the 18th cen- 
tury), a conspicuous such cluster in our 
own Galaxy, a t  a distance of some 3000 
parsecs (1 parsec = 3.26 light years). 
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stars move as  mass points under their 
mutual gravitational attraction, with ran- 
dom velocities of some tens of kilome- 
ters per second. The large value of N, 
the total number of stars, can be expect- 
ed to average out any large statistical 
fluctuations, and the way a spherical 
cluster evolves with time, as  a result 
solely of Newton's laws of motion, ap- 
pears deceptively simple. 

Summary. In their attempt to reach kinetic equilibrium, through gravitational 
encounters between separate stars, globular clusters are driven to destruction, with 
their cores collapsing and their outer regions expanding. The effects of core collapse, 
which apparently produces x-ray sources, are not yet fully understood, but white 
dwarfs and neutron stars, probably in binary systems, are thought to be involved, and 
possibly black holes as well. 

Typically the relatively dense central 
core of a globular cluster, with a radius 
of about 1 parsec, contains some lo4 
stars, while the outer regions of the 
cluster extend with much diminished 
density out to distances of roughly 25 to 
100 parsecs. Studies of the stellar spectra 
indicate that these systems within our 
own Galaxy were formed early in the life 
of the Universe, about 10" years ago, 
not very long after the initial Big Bang. 

The dynamical evolution of these 
beautifully symmetrical, very ancient 
systems has provided astrophysicists 
with an intriguing and challenging prob- 
lem, which so far is only partly solved. 
Even in the cores, the average distance 
between neighboring stars is generally 
more than lo4 times the radii of even the 
giant stars and direct collisions between 
stars are extremely rare. Thuq the cluster 
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Although the general principles under- 
lying this evolution have been known for 
some time, it is only within the last 
decade that theoretical analyses, sup- 
ported by high-speed computers, have 
provided a detailed understanding of the 
later evolutionary phases. As we shall 
see below, these involve actual collapse 
of the central core and lead to the occur- 
rence of new physical processes not im- 
portant a t  the earlier stages. During all 
this activity the outer regions of the 
cluster gradually expand. The evolution 
of the cluster in the post-collapse phase 
is an active research field. The x-ray 
sources observed in the cores of some of 
the more centrally condensed clusters 
may well result from processes occurring 
during and after the core collapse. 

In this article, as  in several general 
surveys (1, 2), first the physical princi- 
ples affecting the early evolution of the 
cluster and the detailed evolutionary 
models based on these principles are 

outlined. Then additional physical pro- 
cesses that become important during the 
collapse phase, such as  formation of 
binary systems, both by tidal capture in a 
close two-body encounter and by direct 
three-body encounters, are discussed. 

Physical Principles 

In discussing stellar motions in a glob- 
ular cluster, we first separate the gravita- 
tional potential energy, +(r,  t) into the 
sum of two terms. The first is a 
smoothed, spherically symmetric poten- 
tial obtained by averaging +(r, t) over a 
time interval including several orbital 
periods of the stars. A star moving at  10 
kilometers per second goes 1 parsec in 
lo5 years, and the time required to travel 
back and forth across a cluster is gener- 
ally less than lo6 years, which in turn, is 
a small fraction of the evolution time. 
The average of b(r ,  t), over roughly lo6 
years we denote by bA(r), assumed to be 
spherically symmetric. This smoothed 
potential will change slowly as  the clus- 
ter evolves. In a zero-order approxima- 
tion each star moves in this spherical 
potential, with constant energy E and 
angular momentum J, both measured per 
unit mass. 

On this approximation no evolution 
occurs. A basic constraint on a cluster in 
this approximation is that the average 
smoothed stellar density, pA(r), must be 
consistent with Poisson's equation 

0' ~ A ( Y )  = ~ T P A ( ~ )  (1) 

where pA(r) is averaged over the same 
time interval used in determining bA(r). 
Many equilibrium solutions are possible. 

The difference in potential +(r, t )  - 
+A(r) results from the granularity of the 
gravitational field. It  is generally as- 
sumed that this granularity can be repre- 
sented in a first approximation by two- 
body encounters between stars, and that 
the effects of such encounters in altering 
E and J of each star can be computed as  
though the two stars involved were mov- 
ing in a hyperbolic path relative to each 
other, unaffected by other stars. The 
effects of such encounters have been 
computed in detail (3, 4). The results can 
be used to follow the way in which the 
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distribution of stars among different or- 
bits is changed and thus how the cluster 
evolves. It should be emphasized that, 
for the cluster as a whole, the effects 
produced by stellar encounters occur 
very slowly in comparison with the time 
for a star to move across the cluster. 
Essentially the mean free path is many 
orders of magnitude greater than the 
dimensions of the cluster, and thousands 
of cluster crossihgs are required for ap- 
preciable evolution. 

One important feature of two-body 
gravitational encounters is that the cu- 
mulative effect of many distant encoun- 
ters, each of which produces only a small 
change in stellar velocities, tends to out- 
weigh the less frequent close encounters, 
in which the stars are deflected by some 
90" or more. Thus the velocity of a star is 
subject to a diffusion process, and simi- 
lar diffusion occurs in E and J. Changes 
in the velocity distribution of stars are 
governed by the integrodifferential Fok- 
ker-Planck equation (5). 

While the details of these dynamical 
interactions are somewhat complex, the 
general physical tendency is clear. En- 
counters between stars will tend to in- 
crease entropy, evolving the stellar sys- 
tem toward a state of higher probability. 
The distribution of stars can be de- 
scribed by the density flr, v) in phase 
space; flr, v), multiplied by the phase 
space volume element dxdydzdv,dv,dv, 
is the number of stars within this volume 
element centered at r ,  v. In the local 
state of highest probability, toward 
which the cluster evolves, the phase 
space densityflr, v), which we designate 
simply by f, is given by 

where E is the energy of each star per 
unit mass, p is inversely proportional to 
the average energy, and K is a normal- 
ization constant. For stars within a small 
region of space the potential energy is 
constant, and only the kinetic energy, 
mv2/2, need be considered; Eq. 2 then 
gives f ~ ,  the usual Maxwellian distribu- 
tion function 

where v, is the root-mean-square (rms) 
velocity, and n is the number of stars per 
unit volume of physical space. Multipli- 
cation of fM by 4.rrv2dv gives the number 
of stars per unit volume whose total 
velocity lies between v and v + dv. 

It is this tendency toward a more prob- 
able state, as in thermodynamic equilib- 
rium, which leads the cluster straight to 
catastrophe. The volume of accessible 
phase space per energy increment is 

Fig. 1 .  Photograph of globular cluster M19 
(NGC 6273) with the 3.9-m Anglo-Australian 
telescope. 

greatest for stars which are at the great- 
est distances from the cluster center, 
especially those which escape the cluster 
entirely and have an entire galaxy to 
roam around in. On the other hand, f in 
Eq. 2 is maximized if some of the cluster 
stars are very close together, giving a 
large negative potential energy E. Thus 
velocity perturbations lead to an expan- 
sion of some regions of the cluster and 
contraction of others. Analysis of the 
various ways in which these processes 
occur in a spherical star cluster provides 
a challenging task, whose status is sum- 
marized in this article. 

Catastrophes with Simple Models 

The simultaneous processes of expan- 
sion and contraction to which star clus- 
ters are subject can be understood physi- 
cally from very simple models. While 
precise numerical results can be ob- 
tained only from the realistic, detailed 
calculations discussed later in this arti- 
cle, these simple models are helpful in 
understanding and interpreting the more 
complex calculations. Three of these 
simple models, each of which leads the 
cluster to catastrophe in a different way, 
are presented below. 

In the first model, discussed some 40 
years ago (6, 7), the cluster is regarded as 
a uniform sphere, whose density p and 
rms velocity v, are constant. The total 
mass is M, and all stars are taken to have 
the same mass, m. We make use of the 
virial theorem, which states that for an 
isolated system of self-gravitating mass 
points in equilibrium 

where T is the total kinetic energy and W 
is the total gravitational energy. Thus the 
average kinetic energy per star is half the 
corresponding average gravitational 
binding energy. However, the average 
change 6f potential energy involved in 
removing one star initially from the clus- 
ter is twice the average potential binding 
energy of all the stars; this may be seen if 
one computes the energy required to 
disassemble the entire cluster-the ener- 
gy required per star declines steadily as 
the remaining mass decreases, with the 
initial value twice the average value. It 
follows that the average energy for es- 
cape of the first few stars is not twice but 
four times the average kinetic energy; if 
we denote the escape velocity by v,,,, 
we obtain the general result for any 
isolated stellar system 

where the brackets denote average val- 
ues over all the stars. 

The Maxwellian distribution in Eq. 3 
can be used to compute the fraction, 5,, 
of stars for which v2 > 4vm2, giving 
& = 7.4 x Encounters between 
stars will tend to establish a Maxwellian 
velocity distribution during some time 
interval, which is called the time of re- 
laxation and is denoted by f,. If we 
assume that for velocities exceeding 
4vm2, f approaches its Maxwellian value 
in the time tr and that all particles escape 
if their kinetic energy exceeds four times 
the average, we obtain 

For the relaxation time we adopt the 
value (8) 

where v, is again the rms stellar veloci- 
ty, m the stellar mass, n the density of 
stars per unit volume, and N = Mlm, the 
total number of stars in the system. The 
general form of Eq. 7 follows from the 
fact that the cross section for a 90" 
deflection in the relative orbit is of order 
.rr(Gm/v2)'; the numerical constant and 
the logarithmic term are obtained from 
the detailed theory of stellar encounters. 
For the uniform s~he re  considered here 
tr is independent of position in the clus- 
ter. 

The assumption that the fraction of 
stars escaping during the time t ,  is given 
so directly by fM is, of course, a simplifi- 
cation. A solution of the Fokker-Planck 
equation for a system of stars in a hypo- 
thetical square-well spherical potential 
(constant inside the cluster and zero out- 
side) gives (9) Eq. 6 with the constant 

SCIENCE, VOL. 225 



6 ,  now equal to 8.5 x The stars 
which diffuse to  values exceeding v,,, 
leave the cluster with very little excess 
energy. As a result, the total energy of 
the cluster, proportional to M'IR, where 
R is the cluster radius, remains constant 
as M decreases. Hence vm2 varies as  
l / M ,  n varies as  M - ~ ,  and Eqs. 6 and 7 
may be integrated approximately to yield 
(10) 

where M(0) and t,(O) are the initial values 
of M and t,. Evidently, evaporation of 
stars produces a collapse of the cluster, 
with cluster mass M and radius R ap- 
proaching zero together after a time in- 
terval equal to 2tr(0)/7e,. 

Equation 8 is applicable not only to 
this idealized homogeneous cluster but 
also to any cluster of constant total ener- 
gy, ET, which undergoes homologous 
contraction; that is, a cluster in which 
the smoothed density is a function of rl 
rc(t),  where rc(t) is some characteristic 
time-dependent cluster dimension, either 
the outer radius of a uniform cluster o r  
the radius of a compact central core. 

For  homologous contraction the struc- 
ture of the system, including the spatial 
variation of p and vn, remains constant 
except for time-dependent scale factors. 
If the evaporating stars carry away ap- 
preciable energy, diminishing ET, and if 5 
is the ratio of the fractional loss of ener- 
gy to the fractional loss of mass, then 

and Eq.  8 is replaced (10) by 

In addition, r, becomes proportional to  
M' - c, and vm to Mi - ' " 2 .  

We turn now to a second model, in 
which the cluster is replaced by an iso- 
thermal sphere, whose equilibrium struc- 
ture has been extensively studied. Since 
in such a sphere p(r) varies asymptotical- 
ly as  l /r2,  the mass is infinite if the radius 
is infinite. To  give a model with finite 
mass, the sphere is truncated at some 
radius R with a hypothetical rigid, con- 
fining shell. For large R ,  the phenomena 
of interest occur well inside this confin- 
ing surface, which does not much affect 
the results. Since the central regions of a 
cluster are in fact nearly isothermal, this 
model is much more realistic than the 
first. 

This model is subject to the remark- 
able "gravothermal" instability ( I f ) ,  as- 
sociated with the negative specific heat 

of self-gravitating stellar systems. Ac- 
cording to the virial theorem in Eq.  4 ,  the 
total energy T + W is, of course, nega- 
tive and equal to -T.  Thus if the total 
energy is increased (becomes less 
strongly negative), T will decrease. For  
example, if a small satellite loses energy 
as it orbits around the Earth (from fric- 
tional retardation by the Earth's atmo- 
sphere), it spirals inward, accelerating its 
motion, so  that the centrifugal force re- 
mains nearly in balance with the gravita- 
tional force. 

Since Eq.  4 applies to isolated systems 
confined by their self-gravitational at- 
traction, it is not strictly valid for a 
system confined by a rigid wall. Never- 
theless, results based on this equation 
provide a good first approximation for 
the compact core of a bounded isother- 
mal sphere, in view of the dominant self- 
attraction of this core. 

Consequently, the core of an isother- 
mal sphere can contract, heat up, and 
release energy, which flows to the outer 
regions. The outer regions, being less 
bound gravitationally, will tend to have a 
positive specific heat; but if the sphere is 
sufficiently condensed at the center, the 
core temperature will increase faster 
than the temperature of the outer re- 
gions, and the temperature gradient will 
increase, accelerating the core collapse. 
The rate of the collapse will be limited 
only by the rate at which heat can flow 
outward. Analysis shows that if the ve- 
locity distribution is nearly isotropic, the 
gravothermal instability can occur (11, 
12) if the density at  the center exceeds 
the density a t  the assumed bounding 
shell by a factor of 709. 

A detailed time-dependent solution for 
such a collapsing sphere has been found 
(13) on the assumption that the contrac- 
tion is homologous, as  defined above. 
The result does not apply exactly to 
actual clusters, since the mean free path 
is assumed to be short, and the velocity 
distribution is consequently nearly iso- 
tropic. In fact, stars on radial orbits, 
which pass frequently through the heat- 
ed collapsing core, will have a higher 
kinetic energy than stars in outer circular 
orbits, which are less immediately affect- 
ed by the process of collapse. In the 
short-mean-free-path approximation, 
Eq.  10 is valid, with M replaced by M,, 
the mass in the core, which remains 
essentially isothermal. The value of 5 is 
found to be 0.74, giving vm varying very 
slowly with the core density p ,  (as 
p,O 04'). The density distribution outside 
the core differs slightly from that of an 
isothermal sphere in equilibrium, with p 
varying asymptotically as  r P 2  instead 
of r-'. While the inner regions have an 

inward velocity, the outer regions move 
outward, with the velocity vanishing at  
the radius where p(r)/p(0) = 0.0071. As 
we shall see below, the properties of this 
theoretical model are in general agree- 
ment with those obtained from more 
detailed, more realistic models. 

A third simplified model considers ef- 
fects associated with stars of two differ- 
ent masses, which tend toward equiparti- 
tion of energy as  a result of mutual 
encounters. In this model, the system of 
heavier stars must inevitably collapse if 
their relative number exceeds a small 
limiting value. We omit the detailed anal- 
ysis but derive this result from simplified 
physical arguments. First we assume 
that p2(0), the smoothed density of heavy 
stars a t  the cluster center, is small com- 
pared to pl(0),  the corresponding density 
for the lighter stars. We can then assume 
that the gravitational potential is entirely 
produced by the lighter stars. We take 
this potential, +(r), to  be zero at  r = 0 .  
Then in equilibrium, the radial distance 
attained by stars of each type is deter- 
mined by the condition that the mean 
potential energy is proportional to the 
mean kinetic energy. If pl(r) is constant 
with r ,  the gravitational potential varies 
as  r2 according to Eq.  1, and we may 
write 

where vZm2 and v I m 2  are the mean square 
velocities for stars of the two types, and 
rZm2 and r l m 2  are the mean square dis- 
tances from the center. The numerical 
constant k is needed because in deter- 
mining r I m 2  one cannot neglect the de- 
crease of p ,  with increasing r ,  and the 
effect of this change on +(r). This effect 
is negligible for the heavier stars, provid- 
ed the mass m 2  of such a star appreciably 
exceeds m l .  

In equipartition, v2m2/v1m2 equals m l /  
m:. Evidently as  m 2 / m l  becomes larger, 
the equilibrium condition (Eq. 1 1 )  re- 
quires that rZm2/rlm2 decrease; as  the 
velocities of the heavier stars become 
smaller, because of equipartition, the 
radial distance out to which they can 
rise, against the gravitational attraction 
of the lighter stars, decreases in propor- 
tion. 

However, equilibrium becomes im- 
possible if the ratio p2(0)/pl(0) becomes 
too great, since in this circumstance the 
self-attraction of the heavier stars be- 
comes appreciable, and the value of vZm2 
required for equilibrium consequently in- 
creases as rzm decreases. Thus if the 
total mass M2 of the heavier stars is 
sufficiently large compared to M I ,  the 
total mass of the lighter stars, there is no 

3 AUGUST 1984 



equilibrium distribution of heavy stars in 
which v2, is much less than vim. From 
Eq.  11, plus the assumed equipartition of 
kinetic energies, we find that 

where K is another numerical constant 
relating p(0) to ~ i r , j .  Determination of 
the critical value of p2(0)lpl(0), below 
which equilibrium is possible, and of 
the constants K and k shows (14) that 
(M2/M1) (m21m1)3'2 must be less than 0.16 
for equilibrium. For higher values, the 
loss of kinetic energy to the lighter stars 
will lead to  continuing contraction of a 
dense system of the heavier stars, which, 
as we have seen above, will heat up as  
they lose energy, another example of the 
negative specific heat of a self-gravitat- 
ing system. 

In the realistic models described be- 
low, the three effects shown here sepa- 
rately all occur together, each contribut- 
ing to the cluster collapse. 

Detailed Models of Globular Clusters 

To follow the dynamical evolution of a 
spherical cluster a number of detailed 
numerical calculations have been made. 
While the procedures have varied, all 
have considered the motion of point- 
mass stars in the smoothed potential, 
(bA, given by Eq.  1, with perturbations of 
these motions by two-body encounters. 
We discuss first the analyses of systems 
that are (i) isolated from other gravitating 
masses and (ii) composed of stars all of 
the same mass. While these two assump- 
tions are unrealistic, they simplify the 
problem and provide a clear indication of 
the physical processes involved. 

Two different approaches have been 
followed. In the first, the orbits of stars 
in the smoothed potential field are con- 
sidered, and the changes in energy, E ,  
and angular momentum, J ,  resulting 
from stellar encounters are considered. 
This approach has been adopted in Mon- 
te Carlo computations (15, 16), with a 
number of representative stars followed 
through time, with frequent small 
changes in E and J computed in accord- 
ance with the appropriate probability 
distributions. The Fokker-Planck equa- 
tion, transformed to give the diffusion of 
stars in E, J space, has also been solved 
numerically (17). In the second approach 
(8, 18), the motions of 1000 represent- 
ative stars in the potential field +A(r) are 
followed by numerical integration; fre- 
quent small changes in velocity, pro- 
duced by two-body stellar encounters, 
are obtained with the usual Monte Carlo 

techniques. In both approaches, changes 
of the smoothed potential with changing 
density are, of course, taken into ac- 
count. 

The results obtained by these different 
methods are in close agreement. The 
various models show that whatever its 
initial origin, the spherically symmetrical 
system develops a core-halo structure, 
with a nearly isothermal central region 
surrounded by a halo in which the orbits 
are mostly radial. The resultant structure 
is shown in Fig. 2, where the computed 
values of the smoothed density, p, are 
plotted against radius, r (both in dimen- 
sionless units). This particular system 
began as a homogeneous sphere, shown 
by the dotted line, with all stars in circu- 
lar orbits about the cluster center but 
with random orientation. Evidently for r 
less than about 50, the density profile in 
the evolved system is close to that of an 
isothermal sphere. At larger r ,  the orbits 
are more nearly radial, and the density 
approaches the theoretically anticipated 
(19) relation p 3~ r-j  for an isolated 
cluster, shown by the dashed line. 

Before discussing further the results 
obtained with these numerical models, 
we introduce the reference relaxation 
time trh, which is a convenient measure 
of a cluster's evolutionary age; the quan- 
tity trh is defined as the value of Eq.  7 
when p = mn is set equal to the mean 
density inside the radius rh, containing 
half the cluster mass, and vm is set equal 
to the rms velocity for the entire cluster. 
During the evolution of the cluster, t,h 

Fig. 2. Structure of an evolving globular clus- 
ter. The dotted line shows the initial density, 
p, as a function of radius, r, at t = 0, when the 
sphere is in equilibrium, with all orbits circu- 
lar. The plotted points (18) show p(r) at 
t  = 9.2 trh, where trh is the reference relax- 
ation time (see text). The solid curve repre- 
sents the theoretical relationship for an iso- 
thermal sphere, and the dashed straight line 
represents p varying as r -3 .5 ,  the behavior 
predicted theoretically in the halo, where the 
orbits are predominantly radial. 

usually remains relatively constant. If 
the virial theorem is used to equate vm2 
and 0.4 GMirh (a reasonably accurate 
approximation for - WIM), we obtain 

If we express rh in parsecs and m in 
terms of the solar mass, M,, we obtain 
for trh in years 

For  most clusters t,h is from 10' to 10'' 
years. For  comparison, the ratio of the 
period of a circular orbit at the half 
radius, rh, to t,h equals 148 log(0.4N)iN 
and is less than 11147 for N > lo5. This 
small ratio is an example of the general 
result, referred to earlier, that the mean 
free path for a star, before encounters 
strongly modify its velocity, much ex- 
ceeds the dimensions of a typical clus- 
ter. 

The system shown in Fig. 2 is rather 
advanced in its evolution, which has 
proceeded for a time interval 9.2 trh 
since the origin of the uniform system at 
t = 0. As we see below, the collapse of 
the core to a central singularity occurs at 
12.1 trh for this particular model, only 
2.9 trh after the state shown in Fig. 2. 

Another important characteristic of a 
cluster, in addition to its density profile, 
is the variation of the phase space densi- 
ty function f(r, v) and, in particular, how 
this differs from Eq.  2, valid for an 
isothermal sphere. In the central regions, 
the velocity distribution is isotropic and f 
is a function of E only. Values of f(E) 
near the center of a model cluster (17), 
relatively late in its evolution, are plotted 
in Fig. 3; both f and E are in dimension- 
less units. Since the relaxation time 
much exceeds the orbital period of a 
cluster star, the phase space density is 
relatively constant along each orbit in 
the cluster. Hence these values of f(E) 
refer to all radial orbits, at any distance 
from the cluster center. The figure shows 
that, as expected, for appreciable -E, 
encounters between stars establish the 
exponential form ofAE) in Eq. 2. How- 
ever, J E )  must clearly vanish for posi- 
tive energy, since unbound stars escape 
rapidly. As shown by the light upper 
curve in Fig. 3, the computed values of 
f can be fitted reasonably well with the 
"lowered Maxwellian" distribution, giv- 
en by 

f ( E )  = K(e-PE - e-PEo) for E < 
(15) 

and vanishes otherwise. For  an isolated 
cluster the energy Eo at  which f(E) is 
taken to vanish is zero. 
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Last,  we discuss the evolutionary 
changes shown by these numerically de- 
rived globular clusters. Not surprisingly, 
the numerical models demonstrate the 
three effects found earlier with simpler 
models-escape of stars, gravothermal 
instability, and mass segregation; the rel- 
ative importance of each in the final 
collapse is demonstrated by these more 
realistic models. The observed rate of 
escape from the cluster may be used in 
Eq.  6, with the reference relaxation time 
trh replacing t,, to determine an effective 
value of 5,. The escape of stars from an 
isolated cluster results from the energy 
change of a halo star, with an energy 
only slightly negative, in its passage 
through the high-density central region 
where encounters are important. Thus 
the period of these halo stars plays an 
important part in the escape rate. As a 
result, models for computing the diffu- 
sion of orbits in E, J space which ignore 
the values of the orbital periods give no 
escape at all from an isolated cluster. 
The models integrating the detailed 
equations of motion yield "observed" 
values of 5, of about 3 x Although 
this evaporation process, together with 
the gradual accumulation of stars in the 
far halo, is responsible for the initial 
contraction of the cluster core, as  in the 
simple model, it can apparently not ex- 
plain the later evolutionary stages of 
isolated clusters. 

The nature of this final evolution is 
shown in Fig. 4, where the radii contain- 
ing indicated percentages of the total 
initial mass are shown plotted against the 
time (I). The initial state of the system 
was the same uniform sphere in equilibri- 
um whose structure is plotted in Fig. 2. 
The radii are expressed in units of rh, the 
radius initially containing half the mass, 
while one unit of the dimensionless time 
indicated equals about 9.1 trh. For  com- 
parison, extrapolation of the results indi- 
cates that the core approaches a singu- 
larity at  a "collapse time," tc,n equal to 
12.1 trh. The agreement between the sol- 
id line (obtained from the diffusion of 
orbits in E and J) and the plotted points 
(obtained from integration of dynamical 
trajectories) is excellent. The figure 
shows that the outer half of the cluster 
mass expands almost from the very be- 
ginning, while the radii containing less 
than half the mass first contract, then 
expand; the late expansion for the radii 
containing 2 and 10 percent of the mass 
is shown in calculations (16) that extend 
closer to the final collapse. 

The general evolutionary behavior of 
these models is remarkably close to the 
behavior predicted for the gravothermal 
instability in a gaseous sphere. In the 

Fig. 3. Phase space density for I - - 

radial orbits in an evolved 
cluster. The points represent f, 

- 

the density in phase space for - I O - Z  - - 
stars at zero distance R from 
the center of a highly evolved a. 

- 

cluster (17). These values also 0-4 - 
apply to all radial orbits pass- 
ing through the central core. - 
The light upper curve repre- 
sents a lowered Maxwellian, lo-', - 

given by Eq. 15 with E, = 0. 
1 

contraction of the central core, rc2 is 
observed to decrease nearly linearly with 
t,,ll - t ,  permitting an accurate determi- 
nation of the time tc,ll at  which the 
density becomes infinite; in the theoreti- 
cal model rc'.9 varies linearly with 
tColl - t. Similarly, v, increases as  p2 .0S ,  
in agreement with a theoretical variation 
as pc0.047. Finally the density at  the radi- 
us  where contraction stops and expan- 
sion begins is about two orders of magni- 
tude less than the central density, as 
compared with the theoretical ratio 
0.0071 noted above. Exact agreement is 
not to be expected, in view of the ap- 
proximations in the instability theory, 
especially the assumption of a short 
mean free path and a consequently iso- 
tropic velocity distribution. However, 
there seems little question that the col- 
lapse found in the model clusters must be 
due to the gravothermal instability of an 
isothermal sphere. 

The numerical models also show the 
expected mass segregation when stars of 
differing masses are assumed to be pres- 
ent. This segregation occurs relatively 
rapidly, within a time of 1 to  2 trh. For 
example, a two-component model was 
computed with a stellar mass ratio of 5 to 
1, and with 10 percent of the cluster mass 
in the heavier stars, uniformly distribut- 
ed initially. After a time interval of only 
0.81 trh, at  the cluster center the more 
massive stars provide 62 percent of the 
smoothed stellar density, a dramatic in- 
crease in the relative densities in the two 
stellar components. While the initial col- 
lapse rate for these models results from 
the tendency towards equipartition, at a 
later time this process slows down, since 
the relative number of lighter stars near 
the center becomes progressively small- 
er. Hence it seems likely, though not yet 
proven, that the final collapse of multi- 
component models is due to  the gravo- 
thermal instability. 

Several other effects must be taken 
into account before a detailed compari- 

son can be made between any of these 
models and the observations. The most 
important of these is the gravitational 
force of the Galaxy. The tidal force pro- 
duced by the mass in the inner regions of 
our Galaxy can draw some stars out of 
globular clusters if their distance from 
the cluster center exceeds the "tidal 
cutoff," r,. While the dynamics of the 
cluster stars in the presence of such a 
tidal force form a complex problem, a 
simple first approximation is that the 
cluster remains spherical, with vanishing 
density for r > r,. A theoretical model 
for such a system can be computed (20) if 
a lowered Maxwellian distribution func- 
tion, given in Eq. 15, is assumed, with 
Eo (per unit stellar mass) set equal to 
-GMlr,, where M is again the cluster 
mass. Such "King models" have been 
widely used for comparison with ob- 
served cluster data; with two parame- 
ters, r, and r,, they usually provide a 
good fit to the observed surface density 
profiles. The evaporation probability 5, 
per time interval trh for these tidally 
truncated models can exceed by more 
than an order or magnitude the corre- 
sponding value for an isolated cluster, 
with a major effect on the evolution. 

Other important physical effects are 
the gravitational perturbations produced 
when a cluster crosses the galactic plane; 
such perturbations heat the cluster, lead- 
ing to the escape of halo stars and usual- 
ly (if somewhat paradoxically) a more 
rapid collapse of the central core (I). It  
has even been suggested that most of the 
high-velocity subdwarf stars in the Gal- 
axy may have been formed in globular 
clusters that were subsequently dissipat- 
ed by the increased exporation rate re- 
sulting from this process. This scenario 
requires (21) that most of these early 
clusters had mean densities one or  two 
orders of magnitude smaller than those 
observed in present clusters. 

Mass loss from individual cluster stars 
also affects the dynamics of the system, 
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although at  the present epoch, when 
giant stars lose mass only shortly before 
their death, this effect may be somewhat 
minor. The presence of a massive black 
hole at the center would certainly affect 
the cluster dynamics (2, 16), although the 
x-ray evidence discussed below does not 
support this possibility. Finally, binary 
star effects may be important. 

Formation and Evolution of Binaries 

Binaries are potentially very important 
in cluster evolution because they can 
give up energy to passing stars and be- 
come more and more tightly bound. The 
energy available is more than enough to 
slow down or even reverse the core 
collapse discussed above. If we  regard 
the two stars in a binary system as mass 
points, with masses m ~  and m ~ ,  the total 
energy, denoted by -x, can be written as  

where a is the semimajor axis of the 
binary orbit. The factor 112 in Eq.  16 
results from Eq.  4, according to which 
the average kinetic energy is half the 
average negative gravitational energy. 

When a single star encounters a bina- 
ry, the net binding energy, x, may be 
changed. The result depends critically on 
whether the mean stellar kinetic energy 
of translation is large or small compared 
to x .  If the former, the binary is called 
soft; the velocities of the stars in the 
binary orbit are less than those of pass- 
ing stars, and one would expect from 
equipartition arguments that encounters 
will impart energy to the binary, decreas- 
ing x on the average (22). If x exceeds the 
mean stellar kinetic energy, the binary is 
called hard; the equipartition argument is 
now less directly applicable, since a 
passing star is itself accelerated as  it 
approaches the binary, but x will, in fact, 
increase on the average (23, 24). Thus 
there is a "watershed" value of x ,  com- 
parable with the mean kinetic energy of 
single stars; binaries with greater x will 
become more tightly bound, on the aver- 
age, giving up energy to the system. 

While the energy absorbed by soft 
binaries is negligibly small, that given up 
by hard binaries may strongly influence 
cluster evolution. In any one encounter, 
a hard binary may change its binding 
energy by any amount, from zero to  
infinity, but on the average the rate of 
change of x is given by 

where m, is the stellar mass, here as- 
sumed the same for all stars, while n,  and 
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Fig. 4. Time development of an evolving 
globular cluster. The ordinate shows the val- 
ues of the radius r ,  containing the fractions of 
the total mass on the right. The model is the 
same as the one portrayed in Fig. 2. The solid 
line represents the results of Monte Carlo 
computations based on the diffusion of orbits 
in E, J space, while the dots and crosses 
represent results obtained from direct integra- 
tion of stellar orbits, with diffusion in velocity 
(1). 

vsm are the particle density and the ran- 
dom rms velocity of the single stars. The 
constant A,  found by averaging some lo6 
numerical orbits, is between 30 and 35 
for x someone to two orders of magni- 
tude greater than mvSm212 (25). While 
<dxldt> is nearly independent of x, the 
increase of x per close encounter aver- 
ages 0 . 4 ~ .  As a result, when a binary 
gradually hardens, it loses energy less 
and less frequently but in progressively 
larger increments. When x becomes sub- 
stantially greater than the energy re- 
quired to escape from a globular cluster, 
interaction with a passing star can result 
in the ejection of both the star and the 
binary. 

Hard binaries, with their important 
dynamical effects, may appear in globu- 
lar clusters through three different 
routes. (i) They may be primordial-that 
is, present in the initial stellar population 
from which the cluster formed. (ii) They 
may be formed by three-body encoun- 
ters between cluster stars. (iii) They may 
be produced by dissipative two-body 
collisions between these stars. Detailed 
computations of formation rates have 
been carried out for the second (24) and 
third (26) of these processes. For  globu- 
lar clusters these formation rates are 
negligible under normal conditions but 
can become important during core col- 
lapse. 

The effect of primordial binaries on the 
evolution of a cluster has been analyzed 

in several models. Computations for a 
cluster in a square-well potential, the 
simple model used originally in computa- 
tion of the evaporation rate, show (27) 
that the energy released from hard bina- 
ries will about cancel the contraction 
produced by evaporation if N, the total 
number of stars, is in the range lo4 to 
lo5, and if about 35 percent of the mass 
of the system is in binaries, with all stars 
of the same mass. However, this result is 
not supported in a group of Monte Carlo 
models that consider the detailed density 
profile of the cluster (28). In these mod- 
els, the binaries, each with twice the 
mass of a single star, settle toward the 
center and outnumber single stars in the 
inner regions, driving the mass segrega- 
tion instability discussed above. Binary- 
binary reactions become dominant and 
have been taken into account approxi- 
mately. The energy released by binaries 
is mostly carried away by energetic reac- 
tion products, which travel away from 
the center and give up relatively little of 
their energy to the central core. As a 
result, the cores finally collapse, even if 
50 percent of the system mass is in 
primordial binaries. The final stage of 
this collapse may result from the gravo- 
thermal instability shown in systems of 
single stars. 

The details of the evolution shown by 
these models would certainly have been 
altered if a distribution of stellar masses 
had been taken into account. In particu- 
lar, exchange reactions, in which a 
heavy single star displaces a lighter star 
in a binary system, will occur frequently 
(29, 30). Even if only a few binaries are 
present in the core, these will probably 
end up containing the heaviest stars, or 
possibly some even more massive black 
holes, formed long ago by supernovae. 

Unfortunately the relative number of 
hard primordial binaries in globular clus- 
ters is uncertain. The orbital velocity in a 
hard binary should substantially exceed 
the random velocities of single stars, and 
the variable Doppler shift should be easi- 
ly measurable spectroscopically with 
modern techniques. In a recent study 
(31) of the globular cluster M3, 33 stars 
(all of them red giants, the brightest 
cluster stars) were measured two or 
more times and showed no variation of 
radial velocity significantly greater than 
the measuring error of about 1 kmlsec. 
There is a similar scarcity (32) of spec- 
troscopic binaries for other old stars 
distributed through the galactic disk. 
Like the globular clusters themselves, 
these stars were formed early in the life 
of our Galaxy, and have large velocities, 
over 100 kmlsec relative to the Galaxy. 

The chief evidence for the presence of 
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some binaries in globular clusters is the 
presence of x-ray sources in several of 
these systems. In the galactic disk, most 
strong x-ray sources are believed to be 
binaries, with gas expelled from a rela- 
tively normal star falling on its dense 
companion, generally a neutron star. 
The position of eight high-luminosity x- 
ray sources with respect to the visible 
cores of globular clusters is shown (33) in 
Fig. 5. The circle represents the radius at  
which the apparent surface brightness in 
each core is half its central value. If the 
visible stars are assumed all to have the 
same mass (0.8 Mo for the giant stars in 
question), the distribution of source po- 
sitions is consistent (34) with a mass of 
about 1.5 ri: 0.5 Mo, supporting the as- 
sumption that these are normal x-ray 
binaries. 

In addition to  these strong sources, 
which are believed to be neutron stars, 
with normal less massive stars as  compo- 
nents, weaker x-ray sources, with lumi- 
nosities less by some three orders of 
magnitude, are also seen in several clus- 
ters (35). Some of these are  found well 
outside the cluster cores, suggesting a 
binary mass less than 1 M,. The evi- 
dence suggests that these sources are 
binaries in which gas from a normal 
dwarf star falls onto a lower-mass white 
dwarf. Thus, some binaries containing 
neutron stars and some containing white 
dwarfs seem to be present in a number of 
globular clusters. 

As we shall see later these relatively 
compact binaries may have been formed 
during core collapse, especially since the 
neutron-star binaries are found mostly in 
the most compact clusters. Thus they 
provide no evidence for the presence of 
primordial binaries. While it seems un- 
likely that primordial binaries will avert 
the initial collapse of cores, binaries 
formed early or late in the cluster's his- 
tory almost certainly play a major role in 
the final stages of this collapse, a com- 
plex process to which we now turn. 

To Collapse and Beyond 

The final stages of core collapse and 
the subsequent dynamical fate of the 
surrounding cluster have been explored 
only partially. The discussion of this 
fascinating problem must rely partly on 
approximate models with homogeneous 
spherical cores and partly on some pro- 
visional, more realistic, calculations. 

Interesting guidance is provided by 
precise dynamical computations for sys- 
tems with a small value of N (36). For  a 
cluster with 250 stars and a distribution 
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Fig. 5. Location of x-ray sources in eight 
globular clusters. The circle defines one core 
radius (see text). The plotted points (33) show 
preliminary Einstein Observatory results for 
the position of the observed strong sources; 
the error bars show approximate 1 = a val- 
ues. Final positions (34) to be published. 

of stellar masses, binaries form by three- 
body encounters in the contracting core, 
and two of the most massive stars gener- 
ally end up as  a central binary, whose 
binding energy may exceed half the total 
binding energy of the cluster. The energy 
released by the hardening of this massive 
binary goes into the expansion of the 
cluster, with escape of many stars. The 
system gradually dissipates at  a slower 
and slower rate as its density falls. In the 
final, most probable, accessible state- 
beyond the range of the computations- 
the central binary is presumably sur- 
rounded by an unbound, expanding ag- 
gregation of single stars, binaries, and 
perhaps some triple systems. 

The effect of three-body binary forma- 
tion on a system with a large N has been 
computed (37) in some detail with a 
Monte Carlo program, following the dif- 
fusion of particle orbits in E and J. 
Among the modifications made to earlier 
programs of this type were the following: 
assumption of a suitable distribution of 
stellar masses; inclusion of binary forma- 
tion by three-body encounters (24); dy- 
namical integration of encounters be- 
tween single stars and binaries; inclusion 
of binary-binary encounters (28); and 
modification of the E, J diffusion calcula- 
tions to give an approximate value for 
the escape rate. The results show that 
binaries are formed in the very central 
region, harden and then escape because 
of their recoil energy. The central densi- 
ty reaches a maximum, about lo5 to lo6 
times its initial value, and then decreases 

systematically. The total number of bina- 
ries also decreases after peak density is 
reached. The general behavior is quali- 
tatively similar to  that of the small N 
systems. Further studies of such models 
will be needed to clarify the details of 
what is happening. 

Binaries formed by tidal capture are 
also important during the collapse phase. 
The process involved is a close encoun- 
ter between two stars, with a distance of 
closest approach between stellar centers 
equal to roughly three stellar radii. The 
tides each star produces in the other 
absorb sufficient energy that the two 
stars are bound in a highly elliptical 
orbit. At each successive close ap- 
proach, further energy is lost, decreasing 
the semimajor axis of the orbit and the 
eccentricity, until the orbit becomes cir- 
cular with a radius roughly twice the 
original distance of closest approach. 

The theory of tidal capture receives 
some confirmation from the presence of 
x-ray sources in globular clusters. In 
particular, the number of weaker sources 
can be accounted for by this process (35) 
if white dwarfs, thought to be the com- 
pact objects in these systems, constitute 
about 10 percent of the stellar popula- 
tion. The number of binaries contain- 
ing neutron stars, and constituting the 
stronger sources, seems also consistent 
with preliminary calculations based on 
the tidal capture theory. However, a 
more conclusive comparison of theory 
with observation requires more detailed 
models, taking into account the strong 
concentration of the relatively massive 
neutron stars toward the cluster center 
and the concentration of neutron stars in 
binaries as  a result of exchange reactions 
with lower-mass binaries. 

A binary produced by tidal capture 
will have an orbital velocity exceeding 
100 kmisec. Such a binary is so hard that 
if it interacts with a single star, both the 
binary and the star will likely be ejected 
from the cluster with appreciable energy, 
and only a small part of the reaction 
energy will be available to heat the clus- 
ter by reducing the mass M of the bound 
system. On the other hand, tidal dissipa- 
tion involves a loss of translational kinet- 
ic energy by the interacting stars (includ- 
ing the interactions that dissipate only a 
fraction of this kinetic energy) and there- 
fore cools the system, accelerating the 
collapse. Detailed calculations (38, 39) 
indicate that this cooling by two-body 
tidal interactions tends to exceed the 
heating by three-body binaries, a t  least 
during the early stages of collapse. 

There are no detailed models that take 
the spatial structure of the cluster into 



account and that include the effects of 
tidal energy loss and tidal capture. 
Hence the discussion of these effects 
must be tentative. The newly formed 
binaries, each with a mass of two stars, 
will tend to settle to the center of the 
collapsing cluster. At sufficiently high 
densities they will interact with each 
other and with single stars, and will be 
ejected. This loss of mass from the cen- 
ter of the system tends to produce an 
expansion of the system, offsetting, per- 
haps, the tidal cooling. Formation of 
quadruple systems, with two very hard 
binaries bound together, will also occur 
through encounters involving two of 
these binaries and a third mass. Direct 
collisions of stars will also occur (2) ,  
leading either to single stars or to contact 
binaries, with two stellar nuclei in a 
common envelope. Some black holes 
may be formed by coalescence of several 
stars. 

While we d o  not yet know which pro- 
cesses are most important late in the 
collapse of a globular cluster, the accel- 
erating collapse must clearly end. Cer- 
tainly the gravothermal instability can- 
not produce continued collapse when 
there are only a handful of stars in the 
dense central core. The equations used 
for deriving this instability, either in the 
short- or long-mean-free-path limit, are 
not applicable when the number of stars 
in the core is as  small as  10 to 100. After 
the collapse terminates, whatever pro- 
cesses occur near the center will presum- 
ably maintain a quasi-steady state, with a 
continuing release of energy from bina- 
ries leading to a gradual expansion of the 
cluster as  a whole. 

The nature of this post-collapse phase 
has been explored in some half dozen 
investigations, most of them based on 
the assumption that some unspecified 
source of energy is available at  the cen- 
ter. Solutions involving homologous ex- 
pansion have been obtained, again as- 
suming stars all of the same mass. These 
solutions are very similar to those for 

collapse, except that conditions are more 
nearly isothermal (40). In one investiga- 
tion (41) large-amplitude oscillations 
were found under some conditions, with 
the cluster expanding after collapse to a 
normal pre-collapse configuration, and 
then repeating the earlier gravothermal 
collapse. 

The nature of the collapse and post- 
collapse phases is likely to be relevant 
for a t  least some globular clusters. Ac- 
cording to the model computations, the 
time remaining at any instant until the 
singularity is reached equals about 200 
tro at  that instant, where fro is the central 
relaxation time. A detailed tabulation of 
globular cluster properties (42) shows 
that of 41 values oft,,, 7 are less than lo8 
years; 4 of these are less than 3 x 10' 
years. The distribution of these fro  values 
among clusters is consistent with the 
view that a few of these clusters have 
already collapsed and are now expanding 
(43). However, these are not readily dis- 
tinguished from clusters which are still 
collapsing. 

In any case clusters not far from col- 
lapse should show a density increase far 
into the cluster. In fact, precise profile 
measurements (44) have recently shown 
that several compact clusters d o  show 
radial density gradients extending into 
radii of about 1 arcsecond, the limit set 
by variable refraction through our inho- 
mogeneous atmosphere. In a few years, 
the Hubble Space Telescope, yielding 
0.1-arcsecond images, may give more 
conclusive data on the inner structure of 
these systems and should help to unveil 
the final evolutionary history of globular 
clusters. 
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