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which no evidence has been found in 
RHA rats). Our goal was to manipulate a 
hippocampal trait within the limits of its 
natural range and to observe a possible 
covariation with two-way avoidance that 
would remain dissociable from nonspe- 
cific hippocampal damage. Any further 
comparison with hippocampal lesions 
would be inappropriate since their be- 
havioral consequences necessarily re- 
flect the joint activity of the remaining 
brain parts and therefore cannot provide 
any information about the possible func- 
tional relevance of structural variations 
within the hippocampus itself. 

Rat pups of both sexes (n = 51) re- 
ceived a standard dose of L-thyroxine, 
injected in variable intervals that started 
at birth and ended at day 17 (3, 6). 
Control subjects (n = 24) were given sa- 
line (3). The thyroxine treatment result- 
ed in the classical signs of hyperthyroid- 
ism--acceleration of physical and behav- 
ioral development (7). Adult body weight 
was reduced in animals given maximum 
doses of thyroxine. There were no dead 
rat pups, however, and no reduction of 
adult brain weight-a phenomenon ob- 
served after excessive hyperthyroidism 
(8) (Table I). The animals were tested in 
the shuttle-box at the approximate age of 
90 days for the number of trials required 
to achieve a criterion of four consecutive 
avoidance responses (9); thus, the higher 
the score, the poorer the learning. Rats 
failing to reach criterion within 35 trials 
were given a score of 35. There were no 
signs of motor impairment during condi- 
tioning as indicated by almost identical 
escape latencies between controls and 
thyroxine animals (Table I), and no rat 
receiving electric shocks was observed 
to freeze (an immobility reaction fre- 
quently seen in poor shuttle-box per- 
formers). 

The brains of the animals were pro- 
cessed and stained with Timm's silver 
sulfide stain, which is particularly effec- 
tive for the hippocampal mossy fiber 
system (10). Since afferent projections to 
the hippocampus terminate in individual 
layers on the apical and basal dendrites 
of the neurons, the volume ratios of the 
synaptic fields in a given target region 
can be estimated by means of planiwetry 
on histological cross sections (I) (Fig. I). 
Planimetric analysis (11) was done on 
five horizontal sections per animal, tak- 
en from an intermediate portion of the 
long axis of the hippocampus. The mor- 
phometric variables reported here are 
the midseptotemporal volume of the hip- 
pocampal subregion CA3-CA4, the vol- 
ume ratio of the IIP-MF projection in 
this target zone, and, for comparison, a 
pooled volume ratio that includes the 

volumes of synaptic fields of other subdi- 
visions of the mossy fiber projection and 
that of stratum lacunosum-moleculare. 
Together, the two volume ratios repre- 
sent the proportion of synaptic fields in 
CA3-CA4 conveying input of cortical 
origin to the pyramidal cells (Fig. I). 

In comparison with the saline con- 
trols, the thyroxine treatment resulted in 
a significant expansion of the synaptic 
fields of both the IIP-MF projection and 
the other subdivisions (Table I). The 
degree of this volume increase, however, 
was only loosely related to the doses of 
thyroxine. As predicted, only the thy- 
roxine-dependent variation of the IIP- 
MF projection remained significantly 
correlated with the shuttle-box scores of 
the adult animals (r = 0.74, P < 0.0001) 
(12). Practically no correlation with be- 
havior (r = 0.05) was found for the vol- 
ume ratio of the other afferent projec- 

tions (remaining mossy fibers and stra- 
tum lacunosum-moleculare), despite 
their considerable thyroxine-induced 
variability. Therefore, the relation be- 
tween IIP-MF and two-way avoidance 
does not simply reflect a generalized 
trophic action of thyroxine on extrinsic 
derents to CA3-CA4: among the hippo- 
campal fiber systems we examined, it 
was only the mossy fiber projection on 
the basal dendrites of the pyramidal cells 
whose volume and spread were related 
to two-way avoidance. 

Since two-way avoidance is influenced 
by several factors (13), it was not sur- 
prising that the treatment did not trans- 
form the animals into poor avoiders; 
although the animals were subnormal for 
this strain, their performance was still 
superior to that characterizing a parallel 
line selectively bred for inferior shuttle- 
box learning (the Roman Low Avoid- 
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Fig. I .  Morphology and behavior. (A) Diagram of a Timm-stained cross section of the 
hippocampus. The hippocampal subregion CA3-CA4 (the area of morphometry) is indicated by 
black, stippled, and hatched areas. Black areas: Suprapyramidal (SP), intra- and infrapyramidal 
(IIP), and hilar (CA4) mossy fiber terminal fields, originating from the dentate gyrus. Stippled 
areas: stratum oriens (OR) and radiatum (RD), the terminal fields of intrinsic hippocampal 
projections. Hatched areas: stratum lacunosum-moleculare (LM), receiving afferents from 
entorhinal cortex. Abbreviations: CAI, subregion of the hippocampus without mossy fibers; FI, 
fimbria hippocampi; FD, fascia dentata; MO, molecular layers of the fascia dentata (receiving 
entorhinal projections). (B) Scatter plot of the relation between the extent of the IIP-MF 
projection and trials to criterion in a shuttle-box learning task. Since testing was terminated 
after 35 trials, the behavior scores are truncated at this value (12). The IIP-MF score indicates 
the proportion of the synaptic target space within CA3-CA4 that is occupied by mossy fibers 
synapsing on the basal dendrites of the pyramidal neurons. Its variation corresponds to shifts in 
the balance of afferents along the basal dendrites. (C) Timm-stained hippocampus of an adult 
RHA rat in which postnatal hyperthyroidism resulted in a modest hyperplasia of the IIP-MF 
distribution. The rat's behavioral score was eight trials to criterion. (D) Same region of an RHA 
rat in which the treatment induced a marked proliferation of infrapyramidal mossy fibers. The 
animal did not attain criterion within 35 trials. The white arrow points at typical IIP-MF 
hyperplasia in the distal portion of CA3. Scale bar, 1 mm. 
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ance rats) (4). This indicates that the 
treatment did not affect all mechanisms 
responsible for a naturally low capacity 
for shuttle-box learning. Specifically, the 
propensity for shock-related freezing so 
typical for RLA rats was not increased. 
Yet, the hyperthyroidism apparently act- 
ed on a cerebral mechanism strong 
enough to express itself against other 
genetic factors promoting two-way 
avoidance (14). Therefore, this brain 
mechanism seems to play an important 
role in some form of emotional or cogni- 
tive processing that codetermines the 
capacity for shuttle-box learning. 

These data show that a developmental 
factor controls the graded and correlated 
expression of both infrapyramidal mossy 
fiber development and avoidance learn- 
ing. This thyroxine-sensitive factor pre- 
sents a target for either genetic influ- 
ences or developmental interference 
(15). We cannot rule out the possibility 
that the behaviorally relevant target sys- 
tem is situated outside the hippocampal 
formation and its proximal circuitry. 
Even so,  the extent of the infrapyramidal 
mossy fiber projection would still be the 
best structural marker of a measurable 
learning behavior found so  far, a trait 
that ultimately may permit the tracking 
of a hitherto unknown system comediat- 
ing two-way avoidance. The thyroxine 
treatment, in spite of its potential side- 
effects and its crudeness, mimics a natu- 
ral correlation. As under natural condi- 
tions, the volume ratio of only the infra- 
pyramidal mossy fiber projection was 
significantly correlated with length of 
time to learn a shuttle-box response, de- 
spite considerable variation of other syn- 
aptic fields in CA3-CA4 (1). Neuroana- 
tomically, the IIP-MF projection is stra- 
tegically located in a bottleneck of hippo- 
campal circuitry (16) that is itself 
important for mediating two-way avoid- 
ance (17), and it forms part of a fiber 
system capable of "plastic" rearrange- 
ment only during a critical period in 

development (3, 18). This IIP-MF cir- 
cuitry thus seems to be in a commanding 
position and to have the necessary adult 
invariance to form a structural bias af- 
fecting shuttle-box learning throughout 
life. It is thus tempting to think that 
either the variation of the infrapyramidal 
mossy fibers or that of a closely related 
structure inside the hippocampal forma- 
tion (19) is a determinant of the capacity 
for two-way avoidance learning. 
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