F) raises the question of which spinal
neurons are ultimately responsible for
the observed nDRP’s and iVRP’s. Al-
though our experimental method does
not allow a direct answer, we believe
that the finding of distinct groups of
interneurons with specific and consistent
activation and connectivity patterns sup-
ports the view that the investigated cells
do mediate the actions attributed to them
(9). The interneurons we have assumed
mediate the PAD of group Ib fibers seem
to be consistently activated by cutane-
ous volleys with strengths above
1.22 X T, which is about the minimal
intensity required to evoke PAD of
group Ib fibers (5, 7). The sets of neurons
mediating nonreciprocal postsynaptic in-
hibition of motoneurons without produc-
ing PAD are instead activated by cutane-
ous fibers with strengths below
1.25 x T. In other words, our investiga-
tions document the existence of at least
two distinct groups of inhibitory inter-
neurons in the intermediate nucleus with
different activation patterns and synaptic
connections; these intérneurons may
play different roles in sensory discrimi-
nation and motor control.
M. SoLoDKIN
I. JIMENEZ
P. RubominN
Department of Physiology and
Biophysics, Centro de Investigacion y
Estudios Avanzados del Instituto
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Sequencing the erbA Gene of Avian Erythroblastosis Virus

Reveals a New Type of Oncogene

Abstract. Avian erythroblastosis virus (AEV) contains two distinct oncogenes,
erbA and erbB. The erbB oncogene, which is homologous to a portion of the
epidermal growth factor receptor, is related to the src family of oncogenes and
efficiently transforms erythroblasts, whereas erbA potentiates the effects of erbB by
blocking the differentiation of erythroblasts at an immature stage. This ‘‘potentia-
tor’”’ was sequenced; the amino acid sequence deduced from it was clearly different
from the sequences of other known oncogene products and was related to carbonic
anhydrdases. These enzymes participate in the transport of carbon dioxide by
erythrocytes, the precursors of which are main targets of avian erythroblastosis
virus. A src-related oncogene such as erbB in synergy with an activated specific cell-
derived gene such as erbA can profoundly affect early erythroid differentiation.

Two distinct oncogeries can act in syn-
ergy or complementation to transform
normal cells (/-3). Some retroviruses
contain two specific cell-derived se-
quences in their genome (4—6), probably
leading to their selection as highly trans-
forming viruses.

Avian erythroblastosis virus (AEV), a
defective leukemia virus that transforms
mainly erythroblasts (7, 8), contains two

A Rsal+Haelill

independent oncogenes, erbA and erbB
(9-14), expressed in transformed cells
from two distinct messenger RNA’s
(mRNA’s) (13, 15, 16). A 5.4-kilobase
(kb) mRNA codes for a cytoplasmic
P75848-¢rbA fusjon protein (17, 18) while a
subgenomic spliced 3.5-kb mRNA pro-
duces a 65 to 68-kilodalton (kD) mem-
brane-associated glycoprotein (/9-21).
Both erbA and erbB oncogenes are ho-

Fig. 1. (A) Sequenc-

Rsal ing strategy. The
——
Ret % complete AEV DNA
Hinf | ...&"’ — is represented linear-
Pvull —_— - ized by Eco RI (12).
o <o % b The erbA sequence
Haelll < D an SN was obtained from
Alul il ~ Al + I — oy three subclones, and
Sauilly, "% RN solid bars indicate the
gag-erb DNA inseérts:
1-kbp Ava I-Ava I,
B sait . Sl 0.5-kbp Sal I-Sac I,
and 0.7-kbp Sac I-
v Aval _______ Aval Sacl __ BamHl Bam HI. Gel-purified
- ~ TTT7  restriction fragments
ﬂl ] p19 lp1Wy erbAW////// v-erbB . lestmiction Tagments
LTR p27 quencing (restriction
A 0.5 kbp enzymes in the col-
P75929-erbA e umn at left) were la-
! " ] beled at their 5’ termi-
261 e ni with [y-**Pladeno-
3 (+2) - . NP1 sine triphosphate and

. polynucleotide kinase

and sequenced by the method of Maxani and Gilbert (37). Closed circles indicate the cleavage
points inside of each insert and horizontal arrows the direction and length of the sequenced
DNA strands. (B) Reading frames in the genome of AEV. The DNA sequence was determined
(hatched). The recombination of erbA with the viral genome occurred at the sites shown as
thick vertical bars in the diagram of AEV DNA. p27 denotes the remaining coding domain for
the p27 protein of the gag gene, which was truncated during the recombination events leading to
capture of the erb insert. The open reading frame for P75%9-"*A and the two other reading
frames in erbA are shown below the AEV DNA. A different open reading frame was detected
for erbB. Vertical bars denote stop codons. LTR indicates a long terminal repeat.
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mologous to avian and mammalian chro-
mosomal DNA sequences (c-erbA and c-
erbB) (4, 13, 22) that may play a role in
the metabolism of normal cells, possibly
in the differentiation of immature red
blood cells (23).

Wild-type AEV-transformed erythro-
blasts are tightly blocked in their matura-
tion (at the colony-forming unit stage)
(24, 25). Studies involving deletion mu-
tants in erbA and erbB indicate that
erbB, in vitro as well as in vivo, yields
transformed erythroblast-like cells at dif-
ferent stages of maturation, whereas
erbA alone induces no transformation.

Thus erbA potentiates the transforming
activity of erbB and appears to be re-
sponsible for the early blockage of cell
differentiation within the erythroid lin-
eage (26-29).

Although several oncogenes have
been extensively studied, ‘‘potentia-
tors” such as erbA have not been stud-
ied. Therefore we analyzed the nucleo-
tide sequence of erbA. Computer analy-
sis showed that the deduced amino acid
sequence of the erbA stretch of
P75898-¢A is clearly different from the
sequences of other reported transform-
ing proteins. Thus erbA appears to rep-

resent a distinct new member of the
oncogene families.

A molecular clone of AEV (p-AEV 11)
(30) with biological activity was used to
sequence the erbA oncogene by the
Maxam and Gilbert procedure (3/). Fig-
ure 1A shows the strategy used to pro-
duce the nucleotide sequence (Fig. 2)
defining the erbA boundaries (Fig. 1)
between the structural gag gene up-
stream and the second oncogene, erbB,
downstream. The left boundary of erbA
was assessed by comparison to the nu-
cleotide sequence of the Prague-C strain
(Pr-C) of Rous sarcoma virus (32). The
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Fig. 2. Nucleotide sequence of the erbA gene and of the 5’ end of erbB. The sequence of 2012 nucleotides encompassing the erbA gene is shown.

The deduced amino acid sequence of the erbA domain of P7584%"

¢rbA is indicated from nucleotides 1 to 1194 and the deduced amino acid sequence

of the 5’ end of erbB is indicated from the putative splice acceptor site (Sa, nucleotide 1370) to nucleotide 1841. Nucleotides are numbered in the

right column and every tenth amino acid is numbered.
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Ava I site at the extreme left of our
sequence (Fig. 1) is within the coding
domain for the virion protein p10“4. The
nucleotide sequences of Pr-C and AEV
are almost identical from this position
rightward to residue 1 in the AEV se-
quence, where complete divergence of
the two sequences marks the point of
insertion of erbA. This insertion is locat-
ed within the coding domain for the
virion protein p274% (32).

The reading frame of erbA continues
uninterrupted from the p27%“¢ reading
frame at position +1 until it is terminated
by an amber codon at position 1195; this
is followed by a stretch of noncoding
sequences up to a putative splice accep-
tor (Sa in Fig. 2) site (33), TTTCC-
TTTTTGCAG.G (T, thymine; C, cyto-
sine; G, guanine; A, adenine) for the
erbB gene at nucleotide 1370. It is un-
likely that the other two erbA reading
frames are used because they are fre-
quently closed by termination codons
(vertical bars in Fig. 1B). The consensus
splice acceptor site at position 1370 could
generate the subgenomic erbB mRNA in
an open reading frame different from that
of erbA, and we present the deduced
partial amino acid sequence of this read-
ing frame (Fig. 2). Thus the erbB product
may start at the AUG (U, uracil) codon
of gag used to produce P758%¢%A (as-
suming that AEV and Pr-C use the same
splice donor site in gag); the two pro-
teins then share a few common amino
acids at their NH, terminus. Alternative-
ly, the erbB product could initiate at the
in-frame AUG codon at position 1386 in

our sequence (Fig. 2). The structure of
erbB is virtually identical, in the region
we studied, to the one recently described
for another independent isolate of AEV,
namely AEV-H, which lacks the erbA
oncogene (34). Importantly, erbB is
closely related to the src gene of avian
sarcoma virus [(34) and our sequence
data] and to a portion of the epidermal
growth factor receptor (35).

The deduced amino acid sequence of
erbA (398 amino acid residues) is shown
under the nucleotide sequence in Fig. 2.
The calculated molecular size of the
erbA polypeptide is 45.4 kD, yielding for
P75898-¢A (36) a deduced molecular size
of 72 kD. Cellular adenosine 3’,5'-mono-
phosphate-dependent protein Kkinases
phosphorylate serine or threonine resi-
dues within sequences x-y-z-(Ser or Thr)
(37), where x and y are basic residues;
two such serine residues are found in the
erbA stretch at positions 14 and 15.
There are no potential glycosylation sites
Asn-x-(Thr or Ser) (38) in this polypep-
tide. Thus erbA may be phosphorylated
but not glycosylated. Two domains can
be defined within the erbA protein; nota-
ble features of the amino acid composi-
tion are found in the first domain of erbA
(amino acids 1 to 209 in Fig. 2) with
elevated levels of cysteine and basic
residues (10 percent and 21 percent, re-
spectively, within amino acids 1 to 131),
in strong contrast with the rest of the
molecule. Hydrophilicity studies with
the Hopp-Woods procedure (39) indicate
that erbA encodes a relatively hydrophil-
ic product (the value for the erbA poly-

peptide is 0.1, whereas the average pro-
tein has a net hydrophilicity of 0.07), as
expected for a cytoplasmic protein (2/).

A search for similarities between the
erbA protein and the other proteins con-
tained in the protein data bases (40, 41)
revealed no obvious relationships with
other oncogenes. Thus erbA may be a
genuinely new member of this class of
proteins. Domain 1 showed no salient
homology with other known proteins,
but a relatedness was found between the
carboxyl terminal half of erbA (domain 2
in Fig. 2) and the carbonic anhydrase
family (Fig. 3). The homology begins
with erbA amino acid residue 219 (amino
acid residue 10 for the carbonic anhy-
drases) and extends across 180 residues
up to the carboxyl terminus of the mole-
cule (residue 398 of erbA or residue 195
of the carbonic anhydrases, which con-
tinue for another 64 residues). When
compared with the four mammalian car-
bonic anhydrases II available in the data
banks we used, the overall homology
was 27 percent for 180 amino acids,
clustered in some portions of the mole-
cule. For example, close to one of the
known active sites of carbonic anhy-
drases (42), the homology increases to
more than 51 percent (erbA residues 248
to 274), although the two residues report-
ed to be important in the active site
(His®®* and Asn®) (42) are not found in
the erbA protein. This may imply a
structural, but not a functional relation-
ship. Another example is erbA residues
310 to 330, with more than 40 percent
homology. This homology between the

v-erb A 210 I TR-VVOF AKNJL[FIMF S[EJLP CEM]QI[TILLKGCCMEMMSLRA R £5sE T[T G[EIM[A]v K[R]E Q@K GL
CRSH 2 1 sunwcvcan]cp Elnwnxorp ADGERQSPVDIDTKAVVPDPALKPLAYQAS RMVN HS
CRRB 2 1 SHHWGYGKHNG|P HWHK|D|FPiTI]JADGERQS PO 1D TO[A[AKH[DPISLKP|LIR V[S]YlEIH P I S|RIR I I N HS
CRBO2 1 SHHWGYGEKHSBG|P ZHWHK|p|F PlifaNGERQSPVNIDTKIAVIVaDPlAL K P[L|A[LIV Y6 EfA]T slRIR MV N HS
CRHU2 1 SHHWGYGKHNG[P EnwnkloJrerlijJakcerQsPvoIDTHTAKNYODP)S L kPls vsly o alalts L R I@NN HaA
v-erb A 277 G V[V[SDAIFDLGKS[L]SAF D[TIEVALLQAVLLM RI[EILIC KIEKCQME]S Y[TILAFEH (V]I NYR(K]
CRSH2 65 FNIVIEFDDSQDKAV|LIKDG TGITIYRLVQFHFHWG|sSsDO|[pDQ|G[S EHT{vD[RKKYAAJE[LH[LIVHWNTK|Y[GDFGT
CRRE 2 65 F N|VIEFDDSHDKS V[L|KEG EG|T|YRL I QFHFHWG|SSDJE|G[S EHT|V KKYAAEIL HILIVvHWwNTK|Y[cDFG[K)
CRBO 2 65 FN|V[EYDDSQDKAV|ILIKDGP|L|TG|T[YRLVQFHFHWG|SS[BBQ|G[SEHT|VDRKKYAAJE|L HLIVHWNTK|Y[cOFGT
CRHU2 65 FNWEFDDSQDKAV[LKGGP clyyrurtaruruwalsftlole algls e v Tlv.o kjk k v A AlgfL HlLfv 1w T k|¥]6 0 F 6[K]
v-erb A 362 HNIPHFWSKL[TIM A CJRMIGAYHA[SIRFLHMKIVECPTELPPRIRCRALQI[TIGSIL [PIFV
CRHS 2 132 AAQQPDGLAVVGVFL GANPALQKVLDVLDSIKIKGKSADFPNFDPSSLLKRA LINY W TY|PlGS
cRRB 2 132 AvVKHPOGLAV[LorFLlk[IesaTpaflakvvoris|siikTkalk|svorINFolpRIGLLPES [LfpYwTvy|plcs
CRBO 2 132 AAQQPDGLAVVGVFL coJanpajijakvioaLd|sjikTkalklsTorpNFDOlPlGsLLP NV [LIDYWTv|p[c s o B4AA
CRHU 2 132 AvQQPODGLAV[UGIFL csAkPGlLJak vvovLDOlsfIKTKGlkKISADFINFOD|PRIGLLPES LDYNTYPGSS

Fig. 3. Relatedness of erbA domain 2 to the carbonic anhydrase family. Using the sequence of the putative erbA polypeptide, we performed

exhaustive homology searches on the NBRF (4/) and NEWAT (40) protein data banks with our computer system (47). These searches revealed a
homology encompassing 180 amino acid residues between erbA domain 2 and the carbonic anhydrase family. The significance of this homology
was further assessed by an alignment program (48) and adapted by one of us (J.M.C.). The amino acid sequences of the predicted erbA
polypeptide and of sheep (CRSH2) (49), rabbit (CRRB2) (50), bovine (CRBO2) (57), and human (CRHU2) (42) carbonic anhydrases II were
compared. The optimal alignment was found when we used a deletion weight of 1 for each gap plus 0.2 times the number of residues in each gap.
In this case, the Needleman-Wunsch similarity value (52) was found 3.8 standard deviation units above the mean of 30 shuffled sequences. Scores
that are 3 or more standard deviation units above the mean can reasonably be expected to represent authentic relationships (53). Common
residues are boxed. Closed circles indicate amino acids known to be important in the active site of carbonic anhydrases. The one-letter symbols
for the amino acids are A, alanine; R, arginine; N, asparagine; D, aspartic acid; C, cysteine; Q, glutamine; E, glutamic acid; G, glycine; H,
histidine; I, isoleucine; L, leucine; K, lysine; M, methionine; F, phenylalanine; P, proline; S, serine; T, threonine; W, tryptophan; Y, tyrosine; V,
valine; B, asparagine or aspartic acid; and Z, glutamine or glutamic acid.
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erbA product and, for example, human
carbonic anhydrase II (CRHU 2 in Fig.
3) is 3.8 standard deviation units above
the mean of 30 shuffled sequences, con-
siderably higher than the cutoff value of
3, which indicates, with statistical signif-
icance, an evolutionary relatedness (40)
(for details of the computer program see
Fig. 3). Moreover, in human carbonic
anhydrase I, which has a 61 percent
homology with human carbonic anhy-
drase II, most of the homologies depict-
ed in Fig. 3 are conserved (not shown).
Although erbA domain 2 is related to
carbonic anhydrases, we showed that it
is not the enzyme itself. Using a viral
erbA DNA probe corresponding to do-
main 2, we screened both chicken and
human genomic DNA libraries and found
that normal DNA in both species con-
tained a similar locus. The human cellu-
lar erbA domain 2 was cloned, and a
nucleotide sequence was determined
(corresponding to nucleotides 675 to 936
in the erbA domain 2 of Fig. 2). Homolo-
gy at the nucleotide level was 83 percent,
and the deduced amino acid sequence in
the corresponding open reading frame
showed 96 percent homology (the two
other reading frames were closed by stop
codons) (43). The homologies of the hu-
man erbA domain 2 with human carbonic
anhydrase remained but were not aug-
mented. Thus the erbA gene is related to
but not identical to known carbonic an-
hydrases.

In conclusion, AEV is an unusual ret-
rovirus in that it can specifically block
the maturation of erythroid cells at an
immature stage of differentiation. This is
achieved by the synergistic action of two
distinct oncogenes, erbA and erbB. The
erbB product is a membrane glycopro-
tein (20, 21) that is homologous to a
portion of the epidermal growth factor
receptor (35) and shares extensive ho-
mology with the src oncogene family
[(34) and our results]. This latter homolo-
gy is also functional, since both erbB in
the absence of erbA and other src family
viral genes such as src or fps (44) can
transform erythroblasts (28). Such cells
require complex growth conditions and
partially differentiate into mature eryth-
rocytes in vitro (28). In contrast, erbA in
combination with erbB is capable of ar-
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resting erythroid leukemic cells at an
early stage of differentiation where they
are able to grow in simple tissue culture
media unsuitable for normal erythroid
precursors (45, 46).

The finding that the deduced erbA
protein bears statistically significant re-
latedness, but not identity, with carbonic
anhydrases is interesting because such
enzymes play a fundamental role in the
CO, transport by erythrocytes, the pre-
cursors of which are precisely the main
targets of AEV.

Our finding of this new type of onco-
gene leads to the idea that some src-
related oncogenes found—with the ex-
ception of AEV—to be single transform-
ing genes in retroviruses and to trans-
form mainly fibroblasts can affect early
hematopoietic differentiation when act-
ing in synergy with a specific activated
cell-derived gene such as erbA.
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