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the attentional (Nl)  component of the 
ERP.  Our results suggest that rapid 
changes in blood volume occur accord- 
ing to a similar schedule and are of Predator-Induced Defense in a Marine Bryozoan 
similar proportion (19). The temporal 
similarities between response of the ce- Abstract. Laboratory experiments showed that predation by both trophically 
rebral vasculature and the electrical re- specialized and generalized nudibranch species triggers rapid induction of defensive 
sponse of the brain suggest common spines in the bryozoan Membranipora membranacea. Spines effectively control the 
generating mechanisms. For  instance, pattern and extent of intracolony mortality caused by nudibranch predation. 
decreased baroreceptor activity (as dur- Previously found only in plants, rotifers, and cladocerans, consumer-induced 
ing diastole) is associated with increased defenses may be widespread among clone-forming or colonial taxa exposed to 
cerebral blood flow and release from nonfatal encounters with predators. 
neuronal inhibiton (13). Our results sug- 
gest that stimulation during diastole can Most plants (1) and some asexually can therefore respond with an appropri- 
evoke rapid changes in cerebral vascular reproducing invertebrates (2) respond to ately timed defense. Although individual 
events and augment the ERP. The EVR attack by consumers with production units may be killed, predation on rotifers 
may prove to be a neurally mediated and mobilization of inducible defenses, and cladocerans is usually nonlethal to 
phenomenon that not only yields clini- Inducible defenses are produced only in the genome (the appropriate evolution- 
cally relevant information regarding the response to stimuli from consumers and ary unit), which is represented by a 
integrity of vasomotor systems but also consequently are as  temporally and spa- spatially discontinuous collection of ra- 
may provide new information of brain tially intermittent as  the stimuli trigger- mets (4). Partial predation on any taxon 
metabolism related to detecting and ing them. Among animals, the capacity may favor the evolution of induced de- 
processing external information in real to respond to predation with induced fenses if initial damage is a reliable pre- 
time. defenses has been demonstrated only by dictor of additional tissue loss and if 

CURT A. SANDMAN asexually reproducing groups such as  sufficient time and resources are avail- 
JAMES P. O'HALLORAN cladocerans and rotifers (2). Attacks by able for the prey to mobilize an effective 

ROBERT ISENHART internal parasites also trigger induced defense. I now describe a novel morpho- 
Department of Psychiatry and Human immunological defensive responses in logical defense elaborated by a cheilo- 
Behavior, University of California most metazoan hosts (3). Attacks on stome bryozoan in response to  attack by 
Zrvine Medical Center, plants, metazoans (by parasites), and slowly feeding, spatially and temporally 
Orange 92668, and Fairview Hospital, rotifers share the common feature that intermittent molluscan predators. 
Costa Mesa, California 92626 the prey are only partially damaged and Bryozoans, like other colonial inverte- 

22 JUNE 1984 1357 



brates, can be well endowed with chemi- 
cal defenses (3, but neither structural 
nor consumer-induced defenses have 
been shown. Because most colonies are 
large relative to individual predators and 
are constructed of numerous replicated 
units, they are only rarely killed in a 
single attack (6). Membranipora mem- 
branacea is a circumglobal cheilostome 
bryozoan that grows epiphytically on 
kelp. The large encrusting colonies are 
attacked by several kinds of predators 
but most commonly by Doridella stein- 
bergae, a nudibranch that is trophically 
speciaIized on Membranipora (7). Yo- 
shioka (8) suggested that spines present 
on colonies of Membranipora membran- 
acea are predator-induced and, further, 
that two closely related spined species- 
M. villosa and M. serrilamella-might be 
conspecific morphs of the unspined M. 
membranacea (8). Induced morphologi- 
cal defense in Membranipora should be 
an effective strategy for surviving attack 
from a slowly feeding, intermittent pred- 
ator. Production of spines is probably 
costly (8), resulting in slower growth. 
The price of slowed growth is high in a 
space-limited system, where final size is 
ultimately limited by abutting conspecif- 
ics (9). 

In controlled laboratory experiments 
(101, spines were induced on M. mem- 
branacea within 2 days by exposing col- 
onies to direct predation by two species 
of nudibranch (Table 1 and Fig. 1, a and 
b). Within a single zooid, flexible chitin- 
ous spines grow at two locations: corner 
spines from existing buds at the corner of 
each zooecium, and membranous spines 
directly out of the frontal membrane 
(Fig. 1, b and c). Colonies in treatments 

Table I. Membranipora membranacea spine 
induction experiment. Colonies were subject- 
ed to three treatments: predation by the nudi- 
branchs Doridella steinbergae and Onchidoris 
muricata and a control treatment with no 
predation. 

Colony Doridella Onchidoris Control 
type ( N  = 40) (N = 30) (N = 40) 

Spined 28 12 0 
Unspined 4 2 29 
Dead 8 16 I I 

exposed to the nudibranchs Doridella 
steinbergae, a Membranipora specialist, 
and Onchidoris muricata, a bryozoan 
generalist, produced spines, whereas 
control colonies did not (P < 0.001, x2); 
there was no statistical difference be- 
tween the number of spined colonies 
produced in the Doridella or Onchidoris 
treatments (P > 0.05, x2). In the induc- 
tion experiment, only colonies subject to 
direct, mechanical damage by nudi- 
branchs produced spines. For example, 
four out of 32 colonies surviving the 
Doridella treatment failed to produce 
spines; these colonies did not appear to 
be attacked by Doridella. This suggests 
that neither waterborne cues from nudi- 
branchs nor chemical signals from in- 
jured colonies are sufficient to trigger 
induction (11). The absence of spines on 
control colonies shows that general me- 
chanical damage alone cannot trigger in- 
duction, because even control colonies 
suffered some mechanical damage (killed 
polypides and broken zooecia) during 
removal from kelp substrate during the 
transplantation procedure (10). 

Spines were induced on existing and 
developing zooids around the entire pe- 

Fig. l .  Induced spines 
on Membranipora 
mernbranacea: results 
of a controlled labora- 
tory experiment. (a) 
Scanning electron mi- 
croscope (SEM) pho- 
tograph of a colony 
grown without nudi- 
branchs (control 
treatment); scale bar, 
1000 um: (b) SEM 
photograph of a colo- 
ny grown with Dori- 
della steinbergae; 
scale bar, 1000 km; 
(c) SEM photograph 
of a magnified, spined 
tooid of Memhrani- 
pora membranacea; 
CS, comer spine; 
MS. membrane spine; 
scale bar, 100 pm. (d) 
Pattern of intracolony 
mortality on a spined colony due to nudibranch predation. The peripheral, defended margin of 
the colony is not killed; DZ, dead zooids; scale bar, 10 mm. 

r i m e  of an attacked colony, thereby 
fortifying the edges of colonies. The con- 
sistent formation of regular bands of 
spined zooids on most colonies produc- 
ing spines suggests that information 
about a nudibranch attack can be trans- 
located to a site remote from the attack 
and can trigger a programmed response 
of peripheral spine development. Al- 
though the possibility that peripheral 
bands form in response to peripheral 
foraging patterns of nudibranchs cannot 
be excluded, the regularity of these 
bands on most colonies with spines sug- 
gests translocation. In laboratory cul- 
tures, spine growth on colonies was im- 
mediately terminated (within a day) 
when nudibranchs were removed. Exist- 
ing spines were permanent; thus the 
presence of spined zooids on colonies is 
an indicator of previous nudibranch at- 
tack. I have found colonies in nature that 
are completely armored with spines; this 
may indicate that colonies can continue 
producing spines when nudibranchs pose 
a constant threat. 

Spines can effectively control intra- 
colony feeding patterns of the nudi- 
branchs and slow nudibranch feeding 
rates. On 67 percent (N = 126) of par- 
tially spined Membranipora colonies 
censused from field populations, nudi- 
branch damage was restricted to the cen- 
tral, unspined portions of the colony; 
spined marginal zooids were largely un- 
damaged (Fig. Id). The defended mar- 
ginal zooids can usually regenerate new 
tissue to replace damaged central zooids. 
Feeding rates of nudibranchs on spined 
colonies were significantly lower than on 
unspined colonies (P < 0.05, Mann- 
Whitney U test). Unspined colonies 
were consumed by individual nudi- 
branchs at a median rate of 44 zooids per 
day [mean = 58.3, standard deviation 
(S.D.) = 41.7; N = 171; spined colonies 
were consumed at a median rate of 
eight zooids per day (mean = 19.4, 
S.D. = 20.1; N = 5). Spines therefore 
effectively control the pattern and mag- 
nitude of intracolony mortality due to 
nudibranch predation. 

These results have important implica- 
tions for the study of coevolution and 
paleoecology as well as predator-prey 
interactions involving clonal or colonial 
prey. The reciprocal adaptation demon- 
strated in the interaction of Membrani- 
pora membranacea and its primary pred- 
ator, Doridella steinbergae, represents 
one of the strongest in a limited number 
of examples (12) of coevolution in the 
sea. Important adaptive features main- 
taining the specificity and reciprocal na- 
ture of the interaction are (i) temporal 
synchronization of the seasonal appear- 
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ance of predator and prey, both of which 
are sub-annual species (presumably an 
adaptation of Doridella to exploit Mem- 
branipora); (ii) requirement of Doridella 
larvae for contact with Membranipora to 
trigger metamorphosis to the adult form 
(7); (iii) cryptic coloration of Doridella 
with respect to Membranipora; and (iv) a 
fast-acting, induced defense by Mem- 
branipora in response to predation by 
Doridella and the other, more general- 
ized nudibranch predator. 

Little is known about the chemical or 
physical arsenal available to most colo- 
nial organisms in the evolutionary arms 
race with their predators or about the 
patterns of spatial and temporal deploy- 
ment of constitutive and induced de- 
fenses. As shown with Membranipora, 
induced or spatially variable patterns of 
colony defense may determine intermit- 
tent foraging patterns displayed by many 
predators on bryozoans (13) and other 
colonial prey. 

Bryozoans are well represented in the 
fossil record (14). On the basis of infor- 
mation extracted from present-day inter- 
actions, paleontologists make inferences 
about events structuring interactions in 
"paleo-assemblages." However, preda- 
tion has been a notoriously difficult pro- 
cess for paleontologists to quantify (15). 
If other species of recent and fossil anas- 
can bryozoans respond to predators with 
the production of spines, then the exis- 
tence of fossil bryozoans with bands of 
spined zooids would allow us to make 
inferences about the prevalence and inci- 
dence of predation in paleoseas. 

C. DREW HARVELL 
Friday Harbor Laboratories, 
Friday Harbor, Washington 98250, 
and Department of Zoology, University 
of Washington, Seattle 98195 
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Decreased Neuronal Inhibition in Vitro After 
Long-Term Administration of Ethanol 

Abstract. The pathophysiology of brain dysfunction was studied with an animal 
model of chronic alcoholism. Rats were fed a liquid diet with or without ethanol for 
20 weeks and then the diet without ethanol for three more weeks. Hippocampal slices 
were prepared and intracellular recordings were obtained from dentate granule and 
CAI cells. SigniJicant depression of orthodromically elicited inhibitory postsynaptic 
potentials and postspike afterhyperpolarizations was observed in neurons from 
ethanol-exposed animals. No differences were observed in other active or passive 
membrane characteristics. These results suggest that a loss of neuronal inhibition 
could contribute to brain dysfunction in chronic alcoholism. 

Generalized learning deficits in rats However, physiological changes in neu- 
and mice ( I ) ,  loss of dendritic spines (2 ) ,  rons have been little studied in animals 
decreased dendritic branching (2 ,3) ,  and with ethanol-induced brain damage. 
cell death (4) have been reported in the Augmentation of paired-pulse facilitation 
hippocampus after three or more months (1, 5) and changes in the distribution of 
of ethanol administration and several synaptic current in CAI cells (6) were 
weeks of withdrawal on liquid diets. measured extracellularly in the rat hip- 

Table 1. Effects of long-term exposure to ethanol on intracellularly measured physiological 
parameters of granule cells. The amplitude and duration of the AHP were normalized to the 
number of spikes. Statistical analysis was done with a two-tailed t-test for all parameters except 
input resistance, subthreshold IPSP, and AHP amplitude and duration, for which a two-tailed 
Mann-Whitney U test was used because standard deviations for the two groups were 
significantly different by analysis of variance (a = 0.05). N.S., not significant. 

Control group Ethanol group 

Measure Mean 2 Mean + P 
standard error standard error N 

Resting potential (mV) 
Action potential (mV) 
EPSP (subthreshold) (mV) 
IPSP 

Subthreshold (mV) 
Maximum (mV) 
Maximum (second) 

Rheobase current (nA) 
AHP (mV per spike) 
AHP (second per spike) 
Input resistance (megohms) 
Time constant (msec) 
Rectification 

N.S. 
N.S. 
N.S. 

< 0.05 
< 0.025 
< 0.01 

N.S. 
< 0.015 
< 0.02 

N.S. 
N.S. 
N.S. 
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