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tion papers (3, 4) and a collection of 
recent contributions (5) which give a 
good overview of the current state of 

Computer Vision and 
Natural Constraints 

C. M. Brown 

Computer vision is a general term that 
embraces most aspects of the analysis of 
"visual" input by computer; it includes 
reliable industrial systems, academic re- 
search systems, and theoretical studies. 
One major goal of much computer vision 
research is to shed light on animal vision 
systems through computer models. Com- 
puters have provided fresh metaphors 
and models that are of increasing influ- 
ence in the cognitive sciences (such as 
psychology, neuroscience, philosophy, 

tions in the process. If the model is 
indeed precise enough to be pro- 
grammed, the resulting program is a fi- 
nite, formal, experimental artifact whose 
performance may be thoroughly and 
quantitatively evaluated. This article is 
meant to be a brief tutorial incorporat- 
ing three case studies in computer vi- 
sion. It discusses some major directions 
of current computer vision research and 
indicates how such research is related 
to psychology and neuroscience in the 

Summary. Computer vision, the automatic construction of scene descriptions from 
image input data, has just entered its second decade. Approaches have varied 
widely, especially in the amounts of symbolic, domain-dependent knowledge and 
inference that are incorporated into the vision process. Much current research 
addresses the extraction of physical properties of the scene (depth, surface orienta- 
tion, reflectance) from images by using only a few general assumptions about the 
scene domain. Extraction of physical parameters is part of a hierarchy of operations 
needed to transform image input data to symbolic descriptions. Two other processes 
that serve as examples are stereo fusion and the partitioning of image phenomena 
into related groups. Computer vision research is influencing theories of animal 
perception as well as the design of computing architectures for artificial intelligence. 

and linguistics). In addition, computers 
lend themselves to a certain disciplined 
approach and to the use of computa- 
tional (or information-processing) mod- 
els to complement descriptive models. 
An important aspect of a computational 
model is the precise specification of the 
form and content of inputs and ancillary 
information available on the process un- 
der investigation. Likewise, the form 
and content of outputs must be precisely 
specified. Finally, the logical, mathemat- 
ical, symbolic, or other transformations 
that are to produce the output from the 
input must be explicitly specified, as 
must the intermediate data representa- 

investigation of general vision systems. 
The technical scope of this article is 

narrow; attention is focused on a few 
results and many more are not men- 
tioned. The three case studies (stereop- 
sis, understanding image shading, and a 
general grouping process) were chosen 
from many that could have served equal- 
ly well. The references are repre- 
sentative, not complete, and are mostly 
to accessible books and survey articles 
from which original sources may be 
traced. They include a text that empha- 
sizes cognitive techniques in computer 
vision (I), a book that describes the state 
of computer vision systems (2), two posi- 

computer vision, and Marr's book (6) 
which is an ambitious and exciting at- 
tempt to develop an intellectual basis for 
vision research and to integrate ideas 
and results from the neurosciences and 
computer vision into a coherent theory 
of animal vision. 

Computer vision began in the 1950's 
with statistical pattern recognition (7), 
whose goal is to assign an input image 
into one of a small number of classes 
(optical character recognition is a repre- 
sentative application). Digital image 
processing technology for the enhance- 
ment, restoration, coding, and transmis- 
sion of images began to appear at about 
the same time, and is now a large and 
sophisticated field that incorporates 
many recent computer vision techniques 
(8). True computer vision, with the goal 
of "understanding" images of complex 
three-dimensional scenes, was first at- 
tempted in the early 1960's (9). The 
immense computational complexity of 
vision began to become apparent; intu- 
itively appealing detectors for visual fea- 
tures (such as object boundaries) and 
schemes to control processing proved 
unreliable and inadequate. Devoting 
massive amounts of processing at the 
early stages of vision was economically 
impossible, so in the 1970's a cognitive 
approach to computer vision arose that 
conveniently minimized image-level 
computation and emphasized the sym- 
bolic manipulations to which computers 
are well adapted. In such "knowledge- 
directed" vision, computational effort is 
directed by processes that use facts 
about such phenomena as gravity, sup- 
port, occlusion, or the likely spatial rela- 
tions between objects in the scene. Re- 
search turned toward representing and 
manipulating facts about particular do- 
mains (such as polyhedral blocks or of- 
fice scenes) and exploiting the domain- 
specific knowledge in vision. The repre- 
sentation and application of knowledge 
is itself, however, a very difficult branch 
of artificial intelligence, and the available 
techniques proved inadequate to bridge 
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the gap between the input image and the 
desired symbolic descriptions of it. In 
the 1980's the consensus of the comput- 
er vision community is that the gap is 
bridged by a varied and redundant set of 
visual data representations arranged in a 
hierarchy of increasing abstraction. Pro- 
duction of many intermediate represen- 
tations requires a huge amount of com- 
putation, but animal vision systems in- 
deed seem to do it, albeit with neural 
structures that operate differently from 
today's digital computers. 

Much of current research centers 
around the production of physical prop- 
erty images, which are intermediate rep- 
resentations formed before object recog- 
nition is attempted. These image-like 
representations are registered with the 
input image and contain values of physi- 
cal parameters of scene points such as 
the distance from a sensor to the point, 
the albedo of surfaces, the direction of 
motion of objects, the location of shad- 
ows and light sources, and so forth. It is 
usual to assume that the processes that 
produce physical property images are 
part of "early vision." That is, they do 
not require domain-dependent facts, 
much less conscious reasoning, but are 
robust general processes whose outputs 
are reliably correct in a broad range of 
natural circumstances. In fact, these pro- 
cesses cannot be completely general and 
reliable, since so much information is 
projected away in the two-dimensional 
input image. The fact that they so often 
work correctly in animal vision seems to 
imply that they rely on natural con- 
straints or assumptions about the world 
to derive unambiguous output. A goal of 
modern computer vision research is the 
identification and use of such con- 
straints. This, in turn, calls for seeking 
out properties of the physical world that 
could help a visual process do useful 
work, making mathematical models of 
their interaction with visual phenomena, 
and implementing the mathematics in 
computer programs. Currently, attention 
is centered on the design of processes 
that can operate in parallel computation- 
al architectures, since only through the 
cooperative, simultaneous activity of 
many processes is the speed and reliabil- 
ity of animal vision explicable. With this 
background, let us consider our first case 
study, stereopsis. 

Stereopsis and Natural Constraints 

Stereopsis is an example of an impor- 
tant visual ability, producing a physical 
property image of relative distance or 
depth. It illustrates several points about 

modern computer vision and its relation 
to neuroanatomical and psychophysical 
studies. Stereopsis is a typical vision 
process in that its neural implementation 
is not known, nor even is the true form of 
its input (it is not known how the visu- 
al system processes incoming light in 
stages before stereopsis). In stereo vi- 
sion, relative depth is computed by trian- 
gulation, given the disparity of points 
from two images that are known to cor- 
respond to the same point in a scene. As 
a physical property of the real world 
unaffected by lighting changes, depth is 
more suited than image intensity data for 
higher-level visual tasks such as object 
recognition or description. Depth infor- 
mation is thus a step along the way from 
highly variable input data to the percep- 
tion and recognition of stable objects. 
The most interesting and difficult opera- 
tion in stereopsis is the matching be- 
tween the two images that identifies cor- 
responding points and hence yields dis- 
parity. 

Several fairly effective computer algo- 
rithms have been developed to calculate 
disparities based on a correlation opera- 
tion between image intensities. These 
algorithms do not purport to have any 
relation to human stereopsis. As under- 
standing of human stereopsis grew, so 
did the desire to construct a computa- 
tional model of it. Constructing and test- 
ing such an algorithm and explicitly con- 
fronting its technical issues is salutary, 
because the algorithm is a description of 
the process at a level between those 
provided by psychology and neurosci- 
ence. Such algorithms should both ex- 
plain behavior and suggest useful forms 
of input, thus furnishing a framework for 
understanding both psychological and 
neurophysiological data. 

A well-founded computational model 
makes explicit the input and output, the 
computational processes, and the under- 
lying natural constraints upon which the 
computation rests. One influential stere- 
opsis algorithm was proposed in (10). 
Although it has mainly been tested on 
random-dot stereograms, it is based on 
several natural constraints that guide the 
algorithm. For instance, the assumption 
that the world is made of smooth solid 
objects with opaque surfaces dictates 
that only one disparity will be sensed at 
each image point, and that disparity usu- 
ally varies slowly, with neighboring im-, 
age points likely to have similar dispari- 
ties. To these physical contraints was 
added the constraint that the stereopsis 
algorithm should be implementable with 
an array of simple independent comput- 
ing elements, connected only to their 
close neighbors. Such a model was men- 

tioned in ( I I ) ,  although there the analogy 
was to an array of coupled magnets, not 
computing elements. 

The cooperative algorithm for dispari- 
ty calculation uses a three-dimensional 
array of simple computing units. Two of 
the dimensions correspond to the image 
dimensions, and the third to disparity 
values. Each unit is activated by a possi- 
ble match between image elements at its 
disparity (that is, by the presence of 
identical image features in the two im- 
ages offset horizontally by the unit's 
disparity). Each unit is connected to its 
neighbors in three dimensions. In a man- 
ner analogous to neuronal connections, 
some connections are inhibitory (activity 
in one unit reduces the activity of the 
connected neighbor) and other connec- 
tions are excitatory. Each unit is con- 
nected with inhibition to all the others 
(each for a different disparity) at the 
same image location. This implements 
the natural constraint that a scene is 
usually made up of opaque surfaces and 
that each point on an opaque surface has 
a unique disparity. Each unit is connect- 
ed with excitation to its spatially neigh- 
boring units at the same disparity value. 
This implements the constraint that a 
scene is mostly made up of smooth sur- 
faces, and thus disparity will not often 
vary rapidly between neighboring image 
points. The network of units operates in 
parallel, achieving a stable state through 
a process that minimizes the constraint 
violations by communicating excitation 
and inhibition through the local connec- 
tions. The algorithm is effective and, 
with its cooperation between units, ex- 
hibits the hysteresis (perseverance of 
fusion despite disparity increases) and 
interpolation (filling in areas) capability 
of human stereopsis (11). This sort of 
spatially indexed array of processing ele- 
ments, connected to neighbors, calculat- 
ing in parallel and collectively minimiz- 
ing some set of constraint violations, is a 
constraint relaxation network. The algo- 
rithm it computes can be calculated by 
iterating the parallel computations until 
the network converges. Parallel iterative 
schemes and locally connected comput- 
ing networks are quite popular today in 
computer vision because they accord 
with the basically two-dimensional struc- 
ture of the retina and cortex, and their 
parallelism and simple units are biologi- 
cally plausible and computationally fast. 
As a practical matter, they also may be 
adaptable to current fabrication technol- 
ogies for integrated circuits. 

The parallel algorithm is not a com- 
plete description of human stereopsis. It 
does not incorporate eye movements or 
vergence, which seem important for hu- 
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man stereo vision. Humans can over- 
come global differences between images 
that would defeat the algorithm, such as 
a 15 percent size difference or a defo- 
cused image. A second algorithm (12,13) 
introduces several new ideas. First, the 
matching is not between simple image 
intensities but between edge elements 
developed by earlier processes. Edge 
information can be more robust than 
intensities when developed at several 
spatial resolutions. The algorithm uses 
four resolutions, or spatial frequency 
channels, suggested by psychophysical ' 

research (14). Vergence is set at some 
arbitrary value, to be modified later by 
the algorithm. At the current vergence 
setting, edge elements are matched in the 
four paired edge arrays. Edges with 
strictly horizontal offsets match if their 
angles are roughly equal (within 60") and 
their contrasts are of the same polarity. 
Each match creates a positive, negative, 
or zero horizontal disparity. Edges that 
are not matched are marked, and if more 
than 30 percent of the edges in a region 
are unmarked, all matches in the region 
are deleted on grounds of inadequate 
evidence. Vergence is modified by using 
low-resolution edge matches to improve 
matching in high-resolution edges, and 
the process iterates. Finally, interpola- 
tion between points where disparity is 
computed produces a smooth surface in 
depth. 

This algorithm uses nondirectional 
smoothing and feature detectors thought 
to be consistent with retinal anatomy, 
but the method of achieving variable 
resolution and edge detection is not cen- 
tral to the stereopsis algorithm. Grim- 
son's book (13) is devoted to the imple- 
mentation of the algorithm and its appli- 
cation to many natural and synthetic 
images (Fig. 1). The algorithm is partially 
implementable in parallel hardware, but 
the control structure governing the ver- 
gence and matching is not cooperative; 
hysteresis must be explained by another 
mechanism. Only edges are used in 
matching, while monocular cues and oth- 
er local and global image features (tex- 
ture, regions of similar intensity or color) 
are not. Vertical disparity is not ac- 
knowledged. Interpolation poses a difi- 
cult problem, since it should be inter- 
rupted across object boundaries. A brief 
critique of the theory and implementa- 
tion of the algorithm appears in (15), and 
complementary studies on the subject 
have been published (16, 17). 

Before proceeding to another case 
study, let us see how component compu- 
tational processes and representations 
like stereopsis might fit into a general 
vision system. 

A Hierarchy of Representations 

The high-level tasks of a biological 
vision system involve recognition, de- 
scription, manipulation, and locomotion 
in a world of moving solid objects, some 
rigid but many not, with complex surface 
composition and under complex and 
varying illumination. The Gestalt psy- 
chologists (18), and to a greater extent 
Gibson (19), often were concerned with 
high-level visual tasks and how they 
could be met with available data. Both 
schools were handicapped by inadequate 
appreciation of the power or necessity of 
computation. The Gestaltists wondered 
how we isolate (group) visual phenome- 
na into objects. Gibson wondered how 
we extract invariant .and unambiguous 
perceptions from continually changing 
input that theoretically could arise from 
many physical situations. Computer vi- 
sion researchers believe these to be rele- 
vant, important questions about system 
goals, available input, and natural con- 
straints. Gestaltist rules and Gibson's 
invariance calculations were inadequate 
to formalize and describe the necessary 
computations; computer science pro- 
vides much more powerful techniques. 

Modem computer vision spans the gap 
between input image and object percep- 
tion with a hierarchy of representations, 
operated on by powerful computational 
processes (Table 1). These processes 
create representations that pass from im- 
age-like representations of physical pa- 
rameters to symbolic descriptions of en- 
tities. The last levels of vision involve 
cognition, and here computer vision re- 
search overlaps the areas of artificial 
intelligence concerned with symbolic 
representations, problem-solving, and 
inference. 

At the earliest level, the goal of a 
general vision system is to derive a rep- 
resentation of image brightness changes 
that can be used for stereo disparity 
calculations, detecting changes in sur- 
face composition, orientation, distance, 
reflectance, and so forth. Perceptual 
phenomena (for instance, subjective 
contours, the ability to discern colinear- 
ity of dissimilar shapes) suggest compo- 
nents for the earliest image representa- 
tions (such as locations, orientations, 
and end points of features). Feature de- 
tectors that derive these components 
may then be designed. The next stage, 
intrinsic image computation, is one of 

Fig. 1 .  (a) Two stereo images. (b) Loci of large intensity gradient in a restricted spatial 
frequency channel, computed as zero crossings of a Laplacian operator smoothed with a 
Gaussian filter. (c) A representation of the disparity image resulting from Marr's disparity 
algorithm as implemented by Grimson. [Photographs used with the permission of W. E. L. 
Grimson] 
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the major foci of current computer vision 
research. Surfaces in three dimensions 
are of vital concern to behaving animals, 
and it seems likely that their visual sys- 
tems deal with surfaces at a basic level. 
Computer vision algorithms and repre- 
sentations for surfaces are designed by 
taking into account the content of avail- 
able input representations, natural con- 
straints such as smoothness and homo- 
geneity, known mathematical techniques 
such as interpolation theory, and imple- 
mentational constraints such as prefer- 
ence for parallel algorithms. The step 
beyond intrinsic images is a large one; 
although they contain physical informa- 
tion they are still image-like entities, not 

yet described in terms of objects. The 
generation and use of symbolic descrip- 
tions is a large topic beyond the scope of 
this article. 

Two of the most important visual phe- 
nomena involve motion and texture, 
which each transmit much information 
about the objects and surfaces in a 
scene. Extracting information from mo- 
tion, or from the optic flow of the visual 
field on our retina as objects or viewer 
move, is at this writing one of the most 
active areas of research in computer 
vision, and is a particularly good illustra- 
tion of the symbiosis that can occur 
between psychology and computer vi- 
sion. Our second case study is a more 

subtle phenomenon and involves the in- 
formation yielded by shading variations 
in a static image. The approach shows 
again the interaction of physical con- 
straints in a parallel computation to de- 
rive a physical property image, in this 
case not depth but surface orientation. 

Shape from Shading: 

A Surface Recovery Algorithm 

The variation of an object's perceived 
brightness, its shading, is a strong clue to 
its shape. An egg usually appears to be 
rounded because of shading variations; 
scanning electron microscope images 

Table 1. A general vision system is thought to develop a hierarchy of multiple redundant descriptions (37). Information flows in both directions, 
and processes and representations can be skipped in the vision process. For practical reasons, processes are not completely general but are tuned 
to a particular visual domain. Sources of constraints that operate in a general computer vision system are shown here opposite the affected 
processes. Early processes isolate and describe information-containing phenomena (discontinuities). Later processes extract physical 
characteristics of the scene, using input from earlier processes and relying on constraints operating in nature to recover information that has been 
confounded and projected away in imaging. The processes extracting surface orientation from shading and range from stereopsis (see text) are 
two examples. Processes for collecting elements into related groups are widespread. The Hough transform is a technique that is useful throughout 
the hierarchy. Computer vision research indicates that construction of the many intermediate descriptions is feasible and probably necessary but 
involves complex computations. 

Source of constraints Process Representation 

Photometry; geometry; sensor 
characteristics 

Smooth, spatially coherent 
surfaces; complex surface 
reflectance phenomena at 
several scales; smooth loci of 
discontinuities denoting 
boundaries; continuity of motion 

Physics; psychophysics; 
photometry; geometry; 
smoothness; object symmetries; 
known imaging geometry 

Surface homogeneity, continuity, 
coherence; psychophysics 

Sensing: television input; digitization of 
photographs; satellite remote sensors; 
computer-aided tomography 

Scaling and correction: modulation transfer 
function correction; gray-level histogram 
equalization; Fourier filtering; contrast 
enhancement; satellite image destriping; 
background subtraction; image warping and 
reprojection; computer-aided tomography 
reconstruction 

Two-dimensional analysis: feature finding and 
grouping; directional and circularly 
symmetric differential "edge detectors" 
(sometimes in hardware running at 
television rates); some aggregation of 
related features in image; operations at 
several levels of resolution; computation of 
spatial relations and feature statistics 

Recovery of physical parameters: extraction 
of local surface orientation from shading, 
texture statistics, texture element or object 
two-dimensional shape, stereo, optic flow, 
boundary contours; determination of 
albedo, color reflectance, apparent motion, 
illuminant direction, depth contours 

Grouping: aggregation into physically 
meaningful parts; interpolation techniques, 
boundary interpretation, association of 
similar characteristics; multiple resolutions 
useful 

Physics; epistemology; domain- Object, scene, event recognition: matching 
dependent knowledge; causality; abstract relational structures; deriving 
intention; convention invariants; problem-solving; knowledge 

representation; inference; planning 

Image: intensity at a point I ( x , y ) ;  multispectral 
(color) intensity; computer-aided 
tomography number; stereo pair; image 
sequence 

Generalized images: multiple spatially organ- 
ized and symbolic descriptions of image 
information, more robust for calcula- 
tions than image; representations of edge 
elements (width, orientation, contrast), blobs, 
regions, feature terminations, groups, bound- 
aries, virtual lines, interframe intensity 
changes, texture descriptions, fused stereo 
image, light source and transparency, aver- 
age local intensity, average size, local 
density, local orientation, local distances 
of features at several levels of grouping 

Physical property images: more robust for 
matching to three-dimensional world than 
image description; representations of local 
surface orientation, depth (distance), 
contours of light, shadow, object, 
background, color and reflectance, three- 
dimensional geometry of edges 

Surfaces, volumes, spatial relations: 
representations of surface patches (simple 
analytic surfaces, splined patches), volumes 
(combinations of simple volumes, complex 
volumes swept out by varying cross section 
alorig curve in three-dimensional space), 
and spatial relations (symbolic propositions 
or data structures like "semantic nets"); 
multiple resolutions useful 
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give three-dimensional perceptions 
through shading that gives a "backlit 
velvet" effect; and the moon looks flat 
because its perceived brightness does 
not vary with surface orientation. Shape- 
from-shading algorithms (20) derive 
physical property images of local surface 
orientation from single intensity images. 
Like disparity, local orientation can be 
used to obtain relative depth, or shape. 
Symmetric objects in the world can, 
through their projected shapes in the 
image, provide information about sur- 
face orientation (21), but shape-from- 
shading algorithms use local clues rather 
than more global two-dimensional 
shape information [similar approaches 
can derive shape from other types of 
input such as texture or optic flow 
(2211. 

The goal of the algorithm is to derive 
the local orientation of a surface from its 
image by using three constraints: (i) sur- 
faces are smooth; (ii) the local orienta- 
tion of the surface is fixed and known at 
some points, providing a boundary con- 
dition; and (iii) there is a known corre- 
spondence between image brightness 
and surface orientation at a point. The 
irradiance equation formalizes the third 
constraint: 

where Z is the brightness at an image 
point and R is a reflectance map, which 
maps every possible surface orientation 
to a single image brightness. The unam- 
biguous association of a single brightness 
to each orientation is a strong constraint, 
ruling out many phenomena such as 
shadows, mutual illumination, and 
"paintv-that is, a reflectance function 
or albedo that varies over the surface. 
One can derive R from the reflectance 
function of the surface and the imaging 
geometry (illumination, viewpoint) or 
from measurement. Boundary condi- 
tions giving local surface orientation can 
arise from several sources, but a power- 
ful one is that the surface normal around 
the boundary of a smooth shape is fully 
determined, being orthogonal both to the 
grazing line of sight and to the local two- 
dimensional contour line in the image. 
Figure 2 illustrates the constraints in 
shape from shading. 

The algorithm produces an intrinsic 
image of local surface orientation. This 
array can be integrated (since orientation 
determines differential depth changes) to 
provide an intrinsic image of relative 
surface depth (up to a constant of inte- 
gration). The computational algorithm is 
an implementation of a mathematical op- 
timization problem. The problem is to 
find the orientations that minimize viola- 

tion of the smoothness constraint and of 
the irradiance constraint (Eq. 1). If the 
smoothness error term is the sum of 
squared differences of direction compo- 
nents of neighboring orientation vectors, 
the mathematics that emerges is a modi- 
fied version of Gauss-Seidel iteration to 
solve a partial differential equation. In 
Eq. 2, f (x,y) and g(x,y) are the two 
components of surface orientation at lo- 
cation (x,y), f n  + '(x,y) is the value of 
f(x,y) at the (n + 1)st iteration of the 
calculation; f *"(x,y) and g*"(x,y) are the 
average values of neighbors of fn(x,y) 

Fig. 2. (a) A synthesized image of a smooth 
object with a Lambertian (matte) reflectance 
function illuminated from the viewpoint. The 
sphere in the upper left is not part of the input 
image; it is a visualization of R, the reflec- 
tance map of Eq. 1. Knowing R is equivalent 
to having a spherical calibration object in the 
scene. (b) A small patch of given brightness 
on the object must have one of the orienta- 
tions lying along the corresponding isobright- 
ness contour on R. Thus the brightness con- 
strains the orientation to a one-parameter 
family. The contour of a smooth object pro- 
vides orientation boundary conditions. (c) 
The intrinsic image of local surface orienta- 
tions yielded by the shape-from-shading algo- 
rithm may be integrated to derive depth. 

and gn(x,y); Z(x,y) is the image intensity 
function; R(f,g) is the reflectance map 
that defines the reflectance of the surface 
at (viewer-centered) orientation (f,g); 
and w is a weight expressing the relative 
importance of the two terms in the calcu- 
lation of the next value off. A similar 
equation determines gn + '(x,y). 

The algorithm has an easy geometric 
interpretation. The orientation at a point 
in the image is provisionally taken to be 
the average of its neighbors' orientations 
(to satisfy the smoothness constraint). 
This accounts for the first term in the 
right-hand side of Eq. 2. Any difference 
between the brightness this orientation 
would produce (calculated from the re- 
flectance map) and the actual brightness 
at this point (taken from the image) is 
reduced by tilting the orientation vector. 
The second term of Eq. 2 embodies this 
irradiance constraint. The orientations 
around the boundary are usually as- 
sumed to be known, and by iteration of 
the basic step the algorithm works its 
way in from the boundary, adjusting the 
orientations to conform better to both 
constraints. 

Shape from shading is still an active 
area of research. with current effort bent 
on extending its power by reducing the 
restrictive constraints (nonvarying re- 
flectance function) and necessary a prio- 
ri knowledge (the precise imaging situ- 
ation, or illuminant position). "Shape- 
from" algorithms have proliferated as 
ways were discovered to extract orienta- 
tion from texture, flow, and even the 
seemingly sparse clue of an object's 
boundary contour (23). 

These algorithms can be implemented 
in arrays of processors, one per spatial 
location, connected to neighbors and 
running in parallel. Compared to stere- 
opsis, the computations are more com- 
plex, sometimes global information 
(such as the reflectance map) is neces- 
sary, and usually more precise informa- 
tion must be passed between units. The 
attractive and versatile computational 
properties of constraint relaxation algo- 
rithms make them useful throughout the 
vision hierarchy; for example, in sym- 
bolic processing they may be used to 
assign semantic categories or labels to 
scene elements. A different computa- 
tional paradigm that is also useful 
throughout the hierarchy is employed in 
our third case, which exhibits nonitera- 
tive but parallel computations that imple- 
ment grouping processes. 
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Hough Transform: A Grouping Algorithm 

Often a phenomenon of interest, such 
as a shape outline or a feature like a 
straight line, is represented in an image 
by partial and conflicting evidence mixed 
with confusing noise. The Hough trans- 
form has come to denote any of a wide 
variety of clustering, histogram analysis, 
and estimation strategies. The point of 
commonality is the transformation of 
data into a parameter space where phe- 
nomena of interest form clusters. The 
natural analysis strategies are based on 
these clusters, or modes, in the parame- 
ter space. Hough transformation is relat- 
ed to matched-filter detection strategies, 
and mode-based estimation makes 
Hough techniques highly resistant to the 
effects of outliers. In perceptual psychol- 
ogy, the basic idea has been articulated 
by Barlow (24), who speaks of accumu- 
lating linking features (local features to 
be grouped) in nontopographic maps (pa- 
rameter spaces). In image analysis, the 
Hough transform was conceived as an 
operation like a Fourier transform for the 
detection of certain parameterizable 
curves in noisy data. Recently it has 
been realized that the Hough transform 
is useful throughout the hierarchy of 
visual processing as a generalized tech- 
nique for grouping, representation trans- 
formation, and evidence weighing (25). 

For example, consider the Hough 
transformation used for line detection. 
Accumulating local edge features into 
straight lines is a useful early processing 
step in computer vision and will serve as 
an example. The transform may be con- 
sidered as a voting process, in which an 
image feature indicating a line produces 
a set of votes in a parameter space of 
lines, where votes are accumulated. 
Each feature votes for the lines that 
could have caused it and, after all the 
features are taken into account, the line 
with the most votes explains the most 
image evidence. Let a line be parameter- 
ized by (p,0) in the line equation p = x 
cos 8 + y sin 0 (Fig. 3a). Represent this 
parameter space by a two-dimensional 
array, named Lineparams, whose two 
indices correspond to quantized values 
of p and 0. Last, suppose the feature 
detector applied to a point (x,y) of the 
image responds with a local edge orienta- 
tion 0 and a measure of edge contrast. 
Then one version of the algorithm is as 
follows. 

For each point (x,y) in the image, do 
the following two steps: 

1) Apply the detector to get 0 at (x,y); 
2) If edge contrast exceeds some 

threshold: 
compute p = x cos 0 + y sin 0 ;  
increment LineParams[p,B]; 

Several implementations of the Hough 
transform are possible. The straightfor- 
ward sequential computer implementa- 
tion just described represents parameter 
space in an array. This representation is 
costly for multiparameter transforms, 
since it demands space exponential in 
the number of parameters, but there has 
been progress in implementations of the 
accumulating parameter space that use 
less space. Finally, the Hough transform 
can be implemented in massively parallel 
computing networks in which prewiring 
accomplishes all the voting in one time 
step (Fig. 3c). 

The neural net realization of the 
Hough transformation shows how com- 
plex wiring carrying simple excitation 
can replace the complex information 
flow of voting. Our final example of the 
cooperation of the brain sciences and 
computer sciences involves the recent 
renaissance of interest in neural nets. 
Nets of fairly simple computing units 
with highly structured connections car- 
rying simple excitatory and inhibitory 
levels can provide a uniform architecture 
for computation at many levels of ab- 
straction, from early vision to symbolic 
and cognitive levels. 

Fig. 3. (a) A line with equation p = x cos 
0 + y sin 0 .  The circles represent edge fea- 
tures, or local evidence for a white-black 
transition (a long intensity step edge) in the 
image. Three features could have arisen from 
one such straight long edge (dashed line); the 
other three are inconsistent with any single 
longer edge. In the I3ough transform, a fea- 
ture "votes" for parameters of phenomena 
that could have led to the feature. (b) The 
results of the voting algorithm (see text). This 
visualization of the line parameter space 
shows the votes cast for four different line 
parameters (p,O). The three consistent fea- 
tures in (a) vote for the same line; the mode of 
the votes yields (without influence from other 
evidence) the parameters of the best line. (c) 
A prewired neural net implementation of the 
Hough transform with voting implemented by 
excitatory connections. Each edge feature 
excites a neural unit in the (nonretinotopic) 
line parameter space with which it is consist- 
ent. The best line unit receives the most 
excitation. 

Computing Architecture and 

Implementational Constraints 

Digital computers of the usual (von 
Neumann) architecture have internal in- 
formation that is represented in a binary 
code and interpreted as program or data. 
The program is a sequence of individual 
instructions that usually specify opera- 
tions (arithmetic, logical, copying, tests), 
but it also allows the sequence of instruc- 
tions to be altered as a result of tests. 
Instructions are executed one at a time at 
extremely high rates (on the order of 10 
million a second). Computer vision algo- 
rithms have been implemented almost 
exclusively on such computers, insulat- 
ed from the hardware by several layers 
of abstraction culminating in a high-level 
programming language. Recently, sever- 
al forms of alternative computing archi- 
tecture have emerged. Some operate on 
vectors of data as well as individual data 
items; many have multiple processors, 
either identical or specialized, working 
together. Computing architectures are 
being designed and built for image pro- 
cessing and management (26); these and 
new technologies such as very large 
scale integrated (VLSI) circuits can be 
used to i~p lemen t  more directly the lo- 
cally connected, parallel computations 
that are common in intrinsic image com- 

Neurons are simple, relatively slow 
computing units that are highly intercon- 
nected (often on the order of 10,000 
connections) into complex structures op- 
erating in parallel. Such massively paral- 
lel, structured computational architec- 
tures will be very fast if the semantics of 
the information passed between units 
resides largely in the wiring connecting 
them. The wired-in semantics of these 
connections substitutes for the time-con- 
suming interpretation process needed in 
systems that pass symbolic information. 
This is important because complete, 
complex animal behaviors can occur in 
less than a hundred neural firing times, 
which are in the millisecond range, 
where existing sequential artificial intel- 
ligence programs require millions of 
steps. Differences of this magnitude may 
indicate that the qualitatively different 
computation methods of animal brains 
may have to be taken into serious con- 
sideration in a viable computational 
model. There was considerable research 
activity in the 1960's to model the behav- 
ior of random nets of simple computing 
units and to obtain visual discrimination 
from such networks by self-organizing 
changes in the weights units that gave 
their excitatory and inhibitory inputs [for 
example, see (27)l. As the limitations 
and difficulties of such approaches were 



better understood (28) they gave way to 
those based on processes and, more re- 
cently, on highly structured nets (29). 

There are many reasons for the renew- 
al of interest in nonsequential models of 
computation. Of course, the ultimate 
goal of linking perception to brain theory 
and thus reducing behavior to structure 
is always in the background. The neuro- 
sciences are elucidating the structure 
and physiology of brain regions and are 
beginning to formulate theories of func- 
tion. Many of their theories involve neu- 
ral nets [for example, (30)l. Psycholo- 
gists have long used models of spreading 
activation (31,32) and are now beginning 
to explore questions involving errors, 
deficits, reaction times, perceptual rival- 
ry, associative memory, and so on for 
which conventional computer models 
are not well suited. Computer architec- 
tures for vision and parallel cognitive 
algorithms are being designed. Prototype 
systems that compute with connections 
at several levels of abstraction have been 
built [for example (33)l. Other processes 
being investigated for neural net imple- 
mentation are motor control in the ves- 
tibulo-ocular reflex system (34), spread- 
ing activation models applied to the dis- 
ambiguation of word senses in natural 
language sentences (33,  recognizing hi- 
erarchically stored geometric models, 
learning, and change. These efforts 
promise to extend significantly our abili- 
ty to conceptualize and reason about the 
powerful, parallel, and distributed com- 
putations needed in a general vision sys- 
tem (36). 

Concluding Remarks 

Considered as an information-process- 
ing task, vision can be usefully described 
in three ways, all of which are needed for 
a complete description. 

1) Visual tasks, inputs, strategies, and 
assumptions (described by psychologists 
and physicists). 

2) Visual processes and representa- 
tions (described by computer vision). 

3) Visual "hardware" (described by 
neurosciences). 

All these descriptions influence and 
constrain each other. The gap between 
the concerns of psychology and of brain 
science is often wide, and their descrip- 
tions of the vision system have been 
developing separately for good scientific 
reasons. Computer vision may provide 

an intermediate set of descriptions that 
can help bridge the gap. 

The evolution of a theory of general 
vision can be guided by formulations of 
system goals and examination of natural 
constraints. The former suggest what the 
system may be computing and the latter 
suggest how the computation may be 
possible. The theory should incorporate 
algorithms and representations for im- 
portant visual subtasks and should be 
constrained by facts about the imple- 
mentation of vision in animals. As the 
theory evolves, it will provide structure 
for the choice, evaluation, and under- 
standing of experiments in psychophys- 
ics and the neurosciences. It will incor- 
porate smoothly and in a well-founded 
way many phenomena not currently ad- 
dressed by vision theory, such as per- 
ception of figure and ground, color con- 
stancy, and surface orientation in natural 
scenes. Computer vision represents a 
relatively holistic stance in the investiga- 
tion of seeing systems, but a larger syn- 
thesis is possible and may ultimately be 
necessary. For example, consider the 
following three issues. 

1) How are physical property images 
linked with the symbolic and cognitive 
models we seem to have that let us 
reason about visual scenes rather than 
just react to them? 

2) Seeing animals develop with motor 
systems, yet current research in comput- 
er vision supposes that the vision system 
can be (logically) dissociated from motor 
capabilities. How are the two systems 
linked, and can one really be constructed 
without the other? 

3) Learning is a basic ability of ani- 
mals that is still so little understood that 
only a few artificial intelligence research- 
ers have considered it seriously. Do gen- 
eral vision systems need learning, and if 
so can a usable theory of learning be 
developed? 

Despite much progress in the cognitive 
sciences, there is not yet a complete 
description (the tasks, processes, and 
hardware) of any interesting visual pro- 
cess. In computer vision, very difficult 
technical problems remain at all levels of 
the vision hierarchy, from feature detec- 
tion to description of shapes. More fun- 
damentally, abstract definitions of infor- 
mation processing have been dominated 
until recently by a model of computation 
that may be inadequate for tasks such as 
general vision. However, computer vi- 
sion has made much progress in a few 

years. Building on a base of mathemat- 
ics, engineering, technology, computer 
science, psychology, and neuroscience, 
it will continue to develop powerful 
hardware, software, and conceptual sys- 
tems with which to explore theories of 
vision. 
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