
ment progresses it becomes more and 
more difficult to get the drug dosage 
within acceptable limits: too low, and 
rigidity occurs; too high, and dyskinesia, 
distressing writhing movements, results. 
Consistent therapy eventually becomes 
impossible. Some authorities say the de- 
terioration simply reflects progressive 
degeneration of the nigra. Others con- 
tend it is due, in part a t  least, to a toxic 
effect of the L-dopa itself. Long-term 
regimes with MPTP-induced parkinson- 
ian monkeys, some treated with L-dopa, 
some not, should give important data on 
what really is happening. 

The question to be resolved now, of 
course, is whether o r  not MPTP has 
anything at  all to do with the natural 
disease. The unfolding story of MPTP 
happened to coincide with the accumula- 
tion of as  many as 80 twin pairs in 
several studies relating to  the genetic 
component of the disease. The answer 
seems to be fairly clear: "for most pa- 
tients genetic factors are not important," 
wrote Langston and Donald Calne, of 
the University of British Columbia, in a 
recent review. "We conclude that envi- 
ronmental factors are likely to play a part 
in the etiology of Parkinson's disease in 
most patients." 

Langston notes that most major neuro- 
logical diseases can be identified from 
descriptions of symptoms in literature 
going back to the Bible and beyond. Not 
so for Parkinson's disease. "There 

doesn't seem to be any recognition of it 
before James Parkinson's description in 
1817, so perhaps it is related to the 
advent of industrial society." Irwin 
notes that MPTP can be synthesized 
from a mixture of very simple chemicals 
and under very mild conditions. Inciden- 
tal synthesis at low levels during other 
processes is therefore conceivable. H e  
and Langston plan to look for traces of 
the chemical in autopsy specimens of 
Parkinson's patients. 

The very high selectivity of the neuro- 
toxicity is a puzzle and a challenge. The 
cells of the substantia nigra are not the 
only ones in the brain to  produce dopa- 
mine, and yet this group is the only one 
affected in the disease. Substantia nigra 
cells have high levels of the black pig- 
ment neuromelanin, but then so  d o  other 
cells that are spared. What is special 
about the substantia nigra? 

These cells produce large amounts of 
dopamine, which are pumped up pro- 
cesses, released onto striatum cells, and 
then taken up again. This secretionireup- 
take cycle in the striatum might well 
intensify the dopamine association, thus 
making a quantitative difference between 
the cells of the substantia nigra and other 
dopaminergic brain centers. The adrenal 
medulla also makes dopamine, but in this 
case as an intermediate in the synthesis 
of epinephrine. The adrenal medulla is 
also unaffected by MPTP. 

Langston and his colleagues have re- 

cently been looking at  the metabolism of 
MPTP in the hope of pinning down its 
toxicity. First, they noted the removal of 
the double bond in the pyridine ring 
makes the product completely innocu- 
ous, thus indicating that oxidation in this 
ring might be important in the toxicity. 
Indeed, it turns out that MPTP is very 
rapidly oxidized to the 1-methyl-4-phen- 
ylpyridinium ion (MPP+). Langston and 
Irwin suspect that MPP+ itself is 
not the toxin they seek but that the cul- 
prit lies somewhere in between it and 
MPTP. 

Blockage of the MPTP to MPP+ oxi- 
dation in a test animal, by pretreatment 
with a monoamine oxidase inhibitor, pre- 
vents the development of the condition. 
As it happens, monoamine oxidase in- 
hibitors are used in Europe, but not in 
the United States, in the treatment of 
Parkinson's disease. "The fact that here 
we have come across a drug that blocks 
MPTP neurotoxicity and is used in treat- 
ment of Parkinson's is of more than 
passing interest," notes Langston. 

Progress has been like dismantling a 
Chinese puzzle, says Langston: "Every 
step forward we make we seem to push 
the problem back a step. We've found 
the metabolite, and we've found out how 
to block the metabolite and so prevent 
the disease. We seem to know more, but 
we still have no idea why the nigral cells 
are specifically affected." 

-ROGER LEWIN 

Crystal Anisotropy Directs Solidification 
Simplified mathematical models of solidification elevate crystalline 

anisotropy to main player in selecting dendritic growth patterns 

Two groups of theoretical physicists 
have produced evidence for the essential 
role of crystalline anisotropy in deter- 
mining the feathery dendritic growth pat- 
terns assumed by many materials in 
growing from the melt o r  vapor. "You 
need to have anisotropy to get the side 
branching characteristic of dendritic 
growth," says Eshel Ben-Jacob of the 
Institute for Theoretical Physics at  the 
University of California at  Santa Barba- 
ra, a member of one of the groups. 

N o  one who has marveled at  the intri- 
cacies of snowflakes, whose hexagonal 
patterns reflect the symmetry of ice crys- 
tals, would be surprised at  the findings. 
Nonetheless, previous work had de- 
clined to treat anisotropy effects, partly 
because the problem was fierce enough 

without them. Because of the simplified 
nature of the mathematical models used 
by the theorists, however, some re- 
searchers wonder if they are realistic 
enough for the asserted role of anisotro- 
py to be accepted without further study. 

Not all solids exhibit dendritic growth. 
Co'nsider a molten, elemental metal en- 
cased in a container that is maintained at 
a temperature just below the melting 
temperature. Solid will freeze out on the 
walls of the container and grow smoothly 
inward at  a rate limited by how fast heat 
can flow from the hot liquid through the 
solid to the container walls. 

If, however, for some reason such as 
the presence of a seed crystal, solid 
forms initially in the center of liquid, it 
will grow outward toward the cool walls 

through liquid that has cooled to below 
the melting temperature. Growth into an 
undercooled liquid of this type is unsta- 
ble. Small bumps or  perturbations on the 
surface of the solidifying material grow 
faster than neighboring areas, forming 
fingers of solid that project into the liq- 
uid. Later, perturbations on the fingers 
result in side branches and so on. Even- 
tually, the feathery dendritic patterns 
exemplified so  well by snowflakes result. 

Economically important instances of 
dendritic growth occur in multicompon- 
ent metal and semiconductor systems 
even when growth is not into an under- 
cooled liquid. Here chemical diffusion of 
minority components plays a role analo- 
gous to  heat diffusion and leads to den- 
dritic growth, which is undesirable. For  
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Dendrites 
Tin solidijied from the 
melt exhibits typical 
dendritic growth pat- 
terns. [Photograph: 
Kurt Nassau, West- 
ern Electric] 

example, dendrite formation can delete- 
riously effect the mechanical properties 
of metal alloy castings. 

The two groups of theorists consid- 
ered the simplest case, that of a single 
component material solidifying in an un- 
dercooled liquid. As the liquid solidifies, 
latent heat is released that must diffuse 
through the liquid to the cool container 
walls before growth can continue. The 
problem comprises a second order par- 
tial differential equation that describes 
the thermal diffusion and two boundary 
conditions. One condition requires that 
the rate of heat production at the inter- 
face equal the rate at which heat diffuses 
away. The other fixes the temperature at 
the interface in terms of physical proper- 
ties of the system, such as the melting 
temperature. 

Because the interface moves with 
time, the problem is a nonlinear one that 
has stoutly resisted decades of attempts 
to solve it. In the early 1960's, groups in 
the Soviet Union and the United States 
independently found solutions for part of 
the problem. American researchers now 
speak of the Mullins-Sekerka instability, 
after William Mullins and Robert Se- 
kerka of Carnegie-Mellon University, 
who initially considered the case where 
the motion of the interface was slow 
enough to be neglected. 

Using a technique called linear stabil- 
ity analysis, in which deviations from the 
smooth interface are introduced as small 
perturbations, Mullins and Sekerka veri- 
fied that spherical interfaces are unsta- 
ble. There are two effects. The destabi- 
lizing one occurs because the tempera- 
ture gradient in front of a perturbation 
projecting into the liquid is slightly high- 
er than that ahead of the smooth part of 
the interface. There is a positive feedback 
effect in which the higher temperature gra- 
dient enhances thermal diffusion, which 

causes more growth, which increases the 
temperature gradient, and so on. Surface 
tension, however, acts as a counterbal- 
ancing force that stabilizes but does not 
eliminate the growing perturbation. 

Surface tension acts to reduce the lo- 
cal melting temperature at the interface 
between solid and liquid. The surface 
tension is largest at the tip of the growing 
perturbations, so the reduction is great- 
est there. The lower melting temperature 
stabilizes the liquid against solidification 
and thereby slows the growth rate of the 
tip relative to other locations on the 
interface. The heat released from the 
growing, flatter parts of the interface 
also retards tip growth by diffusing to- 
ward the tip. 

Competition between opposing forces 
that results in a unique physical proper- 
ty, such as the velocity of the tip of a 
growing finger of solid in an undercooled 
liquid, is one instance of a more general 
phenomenon that practitioners of nonlin- 
ear dynamics call pattern selection. 
Analogous problems occur in widely 
varying physical, chemical, and biologi- 
cal systems governed by nonlinear equa- 
tions. The interaction of oil and water in 
underground reservoirs during oil recov- 
ery operations is a good example. 

For dendritic growth, needle-shaped 
solids are a better starting point than 
planes or spheres. Unfortunately, the 
mathematics is less tractable, and only 
the problem with vanishing surface ten- 
sion has been solved. The growing solid 
assumes the shape of a parabola (in the 
two-dimensional problem). The tip of the 
parabola is characterized by a radius and 
a velocity whose product is constant. 

An unresolved issue stems from the 
fact that the mathematics allows any tip 
radius and velocity whose product 
equals the constant; that is, there is a 
family of allowed solutions. Experi- 

mentally, however, only one is chosen. 
Parabolas are subject to the same Mul- 

lins-Sekerka instability as the planar and 
spherical interface. In particular, pertur- 
bations near the tip can grow into para- 
bolic side branches on the main parabo- 
la. The main parabola is said to be "sta- 
ble" if it maintains its shape near the tip 
and continues to grow while side 
branches periodically appear and then 
grow away from the tip. 

As it happens, none of the parabolas is 
stable in this sense. But in the late 
1970's, James Langer (now at the Insti- 
tute for Theoretical Physics) and Heiner 
Muller-Krumbhaar (now at the Kern- 
forschungsanlage Julich in West Germa- 
ny) of Carnegie-Mellon reconsidered the 
growth problem with surface tension in- 
cluded. 

Using linear stability analysis, Langer 
and Muller-Krumbhaar showed that the 
addition of surface tension stabilized all 
growing parabolas if their tip velocities 
were above a certain minimum. They 
further proposed a "marginal stability 
hypothesis" in which the parabola se- 
lected in the solidification process was in 
fact the one with the lowest stable veloc- 
ity. Experiments seem to support the 
hypothesis, but there has never been a 
proof. In particular, both analytical and 
numerical calculations of the tip velocity 
and side branch spacings have eluded 
researchers. 

An important feature of the solidifica- 
tion problem is the fact that the tempera- 
ture gradient in front of any part of the 
interface is controlled by the diffusion of 
heat from all locations on the interface, 
not just that part of interface nearest by. 
Theorist call the problem "nonlocal" for 
this reason. A "local" problem would be 
considerably easier to solve. 

The two groups of theorists now tout- 
ing the role of crystalline anisotropy 
have taken the tack of converting the 
complicated nonlocal problem into a lo- 
cal one in the hopes that the governing 
principles of the solidification process 
would be retained and more easily identi- 
fied in the simplified model. 

One group, consisting of Ben-Jacob, 
Nigel Goldenfeld, Langer, and Gerd 
Schon of the Institute for Theoretical 
Physics, constructed a boundary layer 
model as an approximation of the full 
problem. The second group, comprising 
Richard Brower (now at the University 
of California at Santa Cruz), David 
Kessler (now at Rutgers University), and 
Joel Koplik and Levine of Schlum- 
berger-Doll Research Ridgefield, Con- 
necticut, took what they call a geometri- 
cal approach. In essence, both groups 
find that growing dendrites do not form 
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even with surface tension incorporated 
unless an anisotropy is added as  well. 

The boundary layer model devised by 
the theorists a t  Santa Barbara is the 
more realistic of the two in that it was 
derived from the full solidification prob- 
lem. Boundary layer refers to the ap- 
proximation that the liquid heated by the 
latent heat of solidification remains con- 
fined to a thin layer near the interface. 
The thickness of the boundary layer be- 
comes a variable of time and of position 
on the interface. An equation governing 
the local boundary layer thickness re- 
places the diffusion equation of the full 
solidification problem. 

In the real world, the temperature only 
gradually decreases to that of the con- 
tainer walls. For  a large undercooling, 
however, most of the temperature de- 
crease will be near the interface, and the 
approximation is rather good. Unfortu- 
nately, careful experiments are possible 
only for small undercooling. Ben-Jacob 
argues that "the important point is that 
the model retains all the physics of the 
solidification problem. For  small under- 
coolings we won't reproduce all the ex- 
perimental details." 

For  the simplest case of no surface 
tension, the boundary layer model does 
reproduce the parabolic solutions of the 
corresponding full solidification prob- 
lem. In this respect, it is more realistic 
than the geometric model, whose zero 
surface tension solutions are not parabo- 
las. Upon adding in surface tension, the 
theorists found nondendritic structures 
with bulbous tips, which is apparently 
the result of an attempt to minimize 
surface area and thereby minimize sur- 
face energy. This result contradicts the 
linear stability analysis of Langer and 
Miiller-Krumbhaar, which predicted sta- 
ble growth without anisotropy. 

To introduce anisotropy into the prob- 
lem, the Santa Barbara group added a 
new term to the equation fixing the inter- 
face temperature. The idea is that the 
motion of the interface between solid 
and liquid reflects the lack of thermal 
equilibrium there. In particular, the in- 
terface moves faster the more the inter- 
face temperature is depressed. A simple 
approximation is to make the depression 
linear with velocity. Anisotropy comes 
in by making the coefficient of the veloci- 
ty vary periodically around the initial 
circular solid. Metallurgists know inter- 
faces have anisotropic properties, so  the 
idea is not arbitrary. 

With this change in the model, the 
theorists were able to  obtain rather real- 
istic-looking dendritic structures (see fig- 
ure). Ben-Jacob notes that the same tip 
velocity and pattern of side branches is 
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"Snowflake" 
Numerical simulation of the time evolution of 
dendritic growth in two dimensions with a 
sixfold symmetry imposed. The jgure shows 
early and mid stages in the growth pattern. 
Calculation of later stages is precluded by the 
onset of long-range effects not included in the 
model. A real snowjake grows from the va- 
por, which is a problem with different physics 
than growth from the liquid, so it is not quite 
true that the mystery of snowjakes has been 
solved. [Source: E. Ben-Jacob, Institute for 
Theoretical Physics] 

obtained even for runs with different 
starting conditions; that is, the pattern 
selected is determined by the equations. 
This behavior is consistent with the mar- 
ginal stability hypothesis, in which the 
tip velocity selection is seen as  a dynami- 
cal effect. "It looks as  if the marginal 
stability hypothesis is holding up," adds 
Langer. 

The geometrical model is a bit more 
controversial. Work on it proceeded in 
parallel a t  Santa Barbara and at  Schlum- 
berger-Doll when Langer was consulting 
there. However, when the Santa Barbara 
group was unable to obtain dendritic 
behavior from its geometrical model, it 
turned to the boundary layer approach. 

In the geometrical model, the theorists 
devised an equation governing the nor- 
mal velocity of the interface at  each 
point in terms of functions of the local 
interface curvature (inverse of the radi- 
US) and its derivatives. Choice of the 
teims was determined mainly by general 
considerations of restrictions on growing 
interfaces. For  example, there is no con- 
stant term because an absolutely flat 
interface will not move in a purely geo- 
metrical model. But there is a term pro- 
portional to the curvature because of 
the well-studied asymptotic result that 
an almost flat interface grows linearly 
with the curvature. The final equation 
has linear, quadratic, and cubic terms 
plus a surface tension-related second 

derivative but no nonequilibrium term. 
The main objection to the geometric 

model is that the physics content is mini- 
mal. The coefficients of the terms cannot 
be quantitatively related to  real physical 
properties for example. Levine admits 
this, but says "We tried to get the sim- 
plest set of equations that would give 
dendritic growth." 

At first, dendritic behavior did not fall 
out when the equation was solved nu- 
merically. For  example, in the two-di- 
mensional case starting from a circular 
solid, mushroom-shaped structures inev- 
itably resulted, whatever the starting 
conditions. This unstable behavior is 
called "tip splitting," because side 
branches forming at  the tip dominate and 
the tip velocity plummets to zero. Real 
dendrites d o  not exhibit tip splitting. 

It  was only when the the tip velocity 
was forced to have an angular depen- 
dence similar to  that in the boundary 
layer model that stable dendrite-like 
structures "grew." Moreover, the am- 
plitude of this anisotropy had to exceed a 
critical value. Finally, in consonance 
with earlier ideas, the tip velocity of 
stable dendrites oscillates between high 
values during rapid growth and low val- 
ues during side branch formation. And, 
as  in the boundary layer model, for a 
given set of growth conditions, there is 
only one "average" tip velocity that is 
selected. 

Have the two groups of theorists suc- 
ceeded in keeping all the relevant phys- 
ics of solidification in their simplified 
models? In one way, they certainly have 
not, as  everyone agrees. Real dendrites 
do not have neighboring side branches 
growing into the same space. Local mod- 
els cannot prevent this from happening, 
as  there is no way for the tip of one side 
branch to know about a side branch 
approaching from some distance away. 

Speaking of the local models, Sekerka 
at Carnegie-Mellon agrees that one has 
to put in anisotropy to get dendritic- 
looking structures. However, "anisotro- 
py is a controversial point," says Se- 
kerka. H e  regards it as  yet to  be proven 
that one could not get similar structures 
from the full solidification equations with 
only isotropic terms. The long-range ef- 
fect that prevents side branch overlap, 
for example, could impose a pattern on 
the growing structure. 

If the numerical simulations do not 
guarantee that the patterns seen in real 
dendrites are due to  anisotropy and not 
long-range or other effects, it nonethe- 
less looks as  if physicists and metallur- 
gists have good cause to  take a deeper 
look at  the possible role of crystalline 
aniS0tropy.-ARTHUR L. ROB~NSON 




