
malian CNS. Since many human neurons 
display a Thy-1 molecule on their surface 
(9, these results may have implications 
for the regeneration of human CNS tis- 
sue (27). 
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Metabolic Mapping of the Brain During 
Rewarding Self-stimulation 

Abstract. Local rates of cerebral glucose utilization were measured in rats by the 
quantitative 2 - d e o ~ ~ - ~ - [ ' ~ C ] ~ l u c o s e  autoradiographic method during electrical stim- 
ulation of the ventral tegmental area. Rats trained in intracranial self-stimulation 
showed a pattern of changes in forebrain metabolic activity distinctly different from 
the pattern seen in rats stimulated by the experimenter. These Jindings provide 
information about the distribution of local cerebral activity spectfic to reinforced 
instrumental behavior. 

Rats will perform operant responses to 
deliver brief trains of electrical pulses 
directly to their brains. This phenome- 
non, known as intracranial self-stimula- 
tion (ICSS), is frequently used to study 
the neural mechanisms subserving goal- 
oriented behavior because the work ani- 
mals will do to receive electrical stimula- 

tion resembles the work they will do to 
receive more conventional reinforcers 
such as food and water (I). The essence 
of such behavior is the contingent associ- 
ation between the response and its con- 
sequences. By definition, positive rein- 
forcers facilitate behavior only when the 
rewarding event is made contingent on 
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the occurrence of a response. Noncon- to 400 g) were anesthetized and unilater- 
tingent presentation fails to facilitate vol- 
untary or instrumental behavior (2). In 
fact, with respect to ICSS, noncontin- 
gent brain stimulation is not positively 
reinforcing inasmuch as rats will learn to 
press a lever to escape the same stimula- 
tion for which they had previously per- 
formed a voluntary response (3). 

The purpose of this study was to iden- 
tify the neural circuitry involved in the 
sensory, motor, and integrative activity 
associated with the performance of goal- 
oriented self-stimulation behavior and to 
distinguish these circuits from those acti- 
vated by electrical stimulation itself. We 
report that the behavioral distinctions 
between response-contingent ICSS and 
noncontingent experimenter-adminis- 
tered stimulation (EAS) result in dis- 
tinctly different patterns of changes in 
local cerebral metabolic activity as mea- 
sured by the quantitative 2-deoxy-D- 
['4C]glucose autoradiographic method (4). 

Male albino Sprague-Dawley rats (350 

ally implanted with electrodes aimed at 
the ventral tegmental area (VTA) (5). 
After recovering from surgery, rats were 
screened for self-stimulation; those posi- 
tive for self-stimulation behavior were 
trained to press a lever on a continuous 
reinforcement schedule (6). Animals 
were then randomly assigned to one of 
three groups: ICSS (N = 8 ) ,  EAS 
(N = 8), and no stimulation (NS) 
(N = 6) .  During a 3- to 5-day training 
period, rats in the ICSS group were 
allowed to self-stimulate until respond- 
ing stabilized; responding of rats in the 
EAS and NS groups was extinguished 
over several sessions until the animals 
no longer pressed the lever (6). 

On the day of the experiment each rat 
was lightly anesthetized with halothane, 
and catheters were inserted in a femoral 
artery and vein. The catheters exited 
through the nape of the neck to permit 
the animals free movement during the 
experimental procedure. After at least 2 

hours of recovery, each rat was placed in 
the experimental chamber and stimula- 
tion was begun, either ICSS or EAS, at 
the animal's preferred rate and current 
intensity that had been determined be- 
fore extinction training. Animals in the 
NS group were allowed to move freely in 
the chamber. Ten minutes after the onset 
of stimulation, the experimental period 
was initiated by an intravenous pulse of 
2-deoxy-~-['~CIglucose (125 pCiikg) and 
timed arterial samples were drawn for 
analysis of plasma deoxy-~-['4C]glucose 
and glucose concentrations. Stimulation 
continued throughout the entire experi- 
mental period. After 45 minutes the rat 
was killed with an overdose of sodium 
pentobarbital, and the brain was rapidly 
removed, frozen, and prepared for quan- 
titative autoradiography (4). 

Local tissue 14C concentrations were 
determined by quantitative densitometry 
of the autoradiographs (4, 7) in 35 struc- 
tures both ipsilateral and contralateral to 
the side of the electrode. Rates of local 

Table 1. Means and standard errors of lard cerebral glucose utilization (in micromoles per 100 g of tissue per minute) in NS ( N  = 6), EAS 
(N = 8), and ICSS ( N  = 8) animals, ipsilateral and contralateral to the placement of the electrode. 

Structure 

- - -  

No stimulation Experimenter-admin- 
istered stimulation Self-stimulation 

Ipsi- Contra- Ipsi- Contra- Ipsi- Contra- 
lateral lateral lateral lateral lateral lateral 

Ventral tegmental area 
Substantia nigra pars compacta 
Substantia nigra pars reticulata 
Medial forebrain bundle 
Diagonal band of Broca (horizontal limb) 
Pontine gray 

Nucleus accumbens 
Caudate (ventrolateral) 
Olfactory tubercle 
Lateral septum 
Bed nucleus of the stria terminalis 
Amygdala (central) 
Amygdala (basolateral) 
Medial prefrontal cortex 
Anterior cingulate cortex 
Entorhinal cortex 
Lateral habenula (medial) 
Lateral habenula (lateral) 
Mediodorsal thalamus 
Hippocampus (CA3) 
Dorsal raphe 
Locus ceruleus 
Medial parabrachial nucleus 

Motor cortex 
Somatosensory cortex 
Caudate (dorsomedial) 
Caudate (dorsolateral) 
Globus pallidus 
Lateral dorsal thalamus 
Ventromedial thalamus 
Ventrolateral thalamus 
Red nucleus 
Cerebellar cortex 
Internal capsule 
Corpus callosum 

Stimulation pathway 
59 2 4 59 2 4 182 r ~ o * t  
63 k 3 63 k 4 116 t 6* t  
49 k 3 50 k 3 78 t 2* 
60 k 2 59 k 2 103 t 6* t  
71 r 4 72 r 4 114 k 7 * t  
60 r 2 59 t 3 105 k 5 * t  

Terminalj5elds of the ventral tegmental area 
82 r 4 83 t 4 8 8 k  3 
99 t 5 99 r 5 101 r 6 
98 t 6 97 k 5 105 r 7 
58 k 3 59 +. 2 76 k 4 t  
53 r 1 54 r 2 7 0 2  5 
42 r 1 43 t 1 4 6 r  3 
79 * 4 79 k 4 9 2 2  3 
81 * 3 82 k 2 7 4 *  3 
98 t 5 97 k 5 106 k 3 
71 * 3 69 r 3 7 2 r  3 
82 k 5 83 k 6 7 7 k  4 
97 k 7 97 k 7 111 k 5 

100 k 5 100 r 6 1 1 9 k  6 t  
70 -1- 4 72 r 4 87 +. 3 t  
75 k 3 151 r 6* 
66 t 4 65 a 4 87 k 5* 
51 k 3 55 k 4 6 7 t  5 

Sensory-motor systems 
97 k 5 97 t 4 119 -1- 4* 
97 k 5 97 t 5 134 t 7* 

101 +. 5 102 r 5 1 1 9 5  3 
99 +. 4 101 r 4 1 1 5 k  4 
54 r 4 58 t 3 79 -1- 3* 

100 r 5 100 r 7 133 +. 8* 
102 r 5 99 r 6 127 +. 5* 
95 k 5 96 +. 5 134 t 6* 
71 * 4 71 k 4 101 +. 2* 
53 * 1 56 k 2 108 t 5* 
36 * 1 37 r 1 4 0  3 
30 -1- 2 31 k 3  2 8 5  1 

*Combined ipsilateral and contralateral values differ from the combined values in the NS control group (P 
contralateral values differs from the corresponding difference in the NS control group (P i 0.05) (8). 
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146 -1- 9* 142 t 9 
121 r 6* 125 t 5 
119 * 7 1 1 7 t  6 
122 r 8 1 1 9 r  7 
76 * 5* 7 4 r  3 

135 r 7* 131 r 7 
150 + l o *  148 * 10 
160 r 7* 167 + 9 
l l O r  8* 104 k 9 
95 + lo*  116 k 12 
3 6 r  3 3 8 r  3 
3 7 t  3 3 8 t  3 

tDifference between ipsilateral and 



Table 2. Projection fields of the ventral tegmental area in which increased glucose utilization 
was found in ICSS and EAS animals. In bilateral fields, changes were ipsilateral and 
contralateral to electrode site. In ipsilateral fields, increases were confined to the side of 
stimulation. 

Bilateral Ipsilateral 

abolic rates in ICSS and EAS animals 
were divergent, however, in the terminal 
fields of the VTA. In the ICSS animals 
significant bilateral increases in LCGU 
were found in the nucleus accumbens, 

Self-stimulation 
Nucleus accumbens Medial prefrontal cortex 
Lateral septum Central nucleus of the amygdala 
Bed nucleus of the stria terminalis Basolateral nucleus of the amygdala 
Hippocampus (CA3) 
Mediodorsal nucleus of the thalamus 
Locus ceruleus 
Medial parabrachial nucleus 
Dorsal raphe 

Experimenter-administered stimulation 
Locus coeruleus Lateral septum 
Dorsal raphe Mediodorsal nucleus of the thalamus 

Hippocampus (CA3) 

cerebral glucose utilization (LCGU) 
were calculated from the tissue 14C con- 
centrations and the time courses of the 
plasma deoxy- glucose and glu- 
cose concentrations (4). For each struc- 
ture, statistical comparisons of LCGU 
were made between stimulated (either 
ICSS or EAS) and NS animals and 
between rates of LCGU ipsilateral and 
contralateral to the electrode placement 
relative to the controls (8). 

Histological analysis showed the elec- 
trode tips of all animals to be located 
within the VTA (9). Rats in the EAS 
group were stimulated at rates of 65 to 80 
stimulation trains per minute, closely 
approximating the rates of ICSS rats (65 
to 90 responses per minute). In contrast 
to ICSS, EAS to the VTA was not posi- 
tively reinforcing. This was demonstrat- 
ed in a similarly implanted and trained 
group of rats that pressed a lever to 
escape EAS to the VTA at rates and 
stimulus parameters that had previously 
supported ICSS (10). The distinction be- 
tween these groups is, therefore, behav- 
ioral. 

In the EAS animals, metabolic activity 
increased sharply at the site of stimula- 
tion in the VTA (Table 1 and Fig. I), 
extending laterally into the substantia 
nigra pars compacta. Rostral to the site 
was evidence of discrete fiber activation 
through the dorsolateral aspect of the 
medial forebrain bundle extending into 
the diagonal band of Broca, whereas 
caudal fiber activation was more diffuse, 
spreading through the pontine gray. In a 
number of thalamic sensory-motor nu- 

the VTA were limited to an increase in 
the metabolic rate of the lateral septum 
ipsilateral to the side of stimulation, as 
well as in the ipsilateral mediodorsal 
nucleus of the thalamus and the ipsilater- 
al hippocampus. Bilateral increases in 
the locus ceruleus and midline dorsal 
raphe (Table 1) were also observed. No 
other consistent changes in LCGU were 
apparent. 

In the ICSS group, the metabolic ac- 
tivity around the site of stimulation in the 
VTA and the adjacent substantia nigra 
resembled that of the EAS animals as did 
the pattern of LCGU in the medial fore- 
brain bundle, diagonal band of Broca, 
and pontine gray (Table 1 and Fig. 1). 

The pattern of alterations in local met- 

qoc SNer V T A  

clei as well as in sensory and motor 
Fig. 1. Autoradiographs of coronal brain sec- neocOrtex and in tions at the level of the midbrain from ICSS 

LCGU was bilaterally higher in EAS and EAS rats. Note the similarity in the area 
than in NS animals, probably reflecting of high optical density in the lower part of the 
the behavioral activation of these ani- left side of both sections, corresponding to the 

site of electrical stimulation. Abbreviations: mals relative to the unstimulated rats VIA, ventral tegmental area; SNpc,  substan- 
(Table 1). Significant alterations in glu- tia nigra pars compacts; S N ~ ~ ,  substantia 
cose utilization in the terminal fields of nigra pars reticulata. 

lateral septum, bed nucleus of the stria 
terminalis, mediodorsal nucleus of the 
thalamus, hippocampus, locus ceruleus, 
and the medial parabrachial nucleus. In 
addition, side-to-side differences were 
seen in the central and basolateral nuclei 
of the amygdala, bed nucleus of the stria 
terminalis, medial prefrontal cortex, lo- 
cus ceruleus, and medial parabrachial 
nucleus (Table 1). These changes differ 
from those found in EAS animals in two 
ways (Table 2). First, in one group of 
structures, for example, the nucleus ac- 
cumbens and medial prefrontal cortex, 
significant changes in metabolic rate 
were present in ICSS animals but not in 
EAS animals. A second category of dif- 
ferences was apparent in the lateral sep- 
tum, mediodorsal thalamic nucleus, and 
hippocampus, in which increases in 
LCGU were found bilaterally in ICSS 
animals, but only ipsilateral to the elec- 
trode site in EAS rats. These findings 
demonstrate that the complex pattern of 
metabolic changes present in rats lever- 
pressing for electrical stimulation of the 
VTA, which we have described (9), is 
specific to the goal-oriented behavior of 
these animals and not merely the result 
of electrical stimulation of the VTA. 

A number of major differences be- 
tween the behaviors resulting from con- 
tingent and noncontingent electrical 
stimulation may account for the differ- 
ences in the patterns of glucose utiliza- 
tion. (i) In the response-contingent con- 
dition (ICSS), the motor behavior of the 
rats was highly organized and directed, 
whereas during noncontingent stimula- 
tion (EAS) behavioral activation was 
nondirected. This difference is reflected 
in the higher rates of glucose utilization 
in the motor cortex of the ICSS animals 
(Table 1). It is unlikely, however, that 
motor behavior can account for all the 
differences in the patterns of glucose 
utilization, because many of the areas in 
which differences were observed, partic- 
ularly the terminal fields of the VTA, 
have not been found to be activated 
during various motor behaviors as stud- 
ied with the 2-deoxy-~-['~C]glucose 
method (11). (ii) The behavior of the rats 
in the contingent condition was rein- 
forced in that the electrical stimulation 
was contingent on pressing a lever. (iii) 
ICSS behavior is characterized bv the 
performance of a learned response, in 
this case pressing a lever. Many of the 
areas in which changes were found, such 
as the amygdala (12) and hippocampus 
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(13), play roles in the acquisition and 
performance of learned goal-oriented be- 
haviors. 

The 2-deoxy-D-['4C]glucose method 
(compared with techniques that can sam- 
ple only one pathway at a time) has 
allowed the simultaneous visualization 
of widespread yet highly selective neural 
circuits specific to a goal-oriented behav- 
ior. These findings provide a basis for 
isolating the critical patterns of neural 
activity uniquely associated with the re- 
warding dimension of the process of re- 
inforcement. 
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Multiple Microtektite Horizons in 
Upper Eocene Marine Sediments? 

Keller et al. recently suggested (I) that 
there are several middle Eocene to mid- 
dle Oligocene microtektite horizons and 
implied that these horizons indicate sep- 
arate tektite events. Although there is no 
a priori reason why there could not be 
multiple tektite events during this peri- 
od, Keller et al. do not provide any 
descriptive, petrographic, or composi- 
tional data to support their identification 
of microtektites from previously unre- 
ported stratigraphic layers. Further- 
more, the lack of data on abundance 
versus depth and of compositional data 
does not allow the reader to decide if the 
microtektite occurrences are due to sev- 
eral events, as Keller et a/. claim, or 
merely to one event with scattered 
younger occurrences attributable to re- 
working. 

For example, Keller et al, show (I) 
three microtektite layers at site 292 
(cores 29, 36, and 38). I have examined 
cores 36 and 38. The microtektites in 
core 36 are small (< 125 km in diame- 
ter), rare, and scattered over most of the 
core. In core 38 the microtektites are 
generally larger (up to 1 mm in diame- 
ter), are more abundant, and occur in a 
well-defined layer. The microtektites 
from core 36 are petrographically and 
compositionally similar to those in core 
38; thus the microtektites in core 36 are 
probably from the same event as those 
found in core 38, but they have been 
reworked into younger sediment. I have 
found similar results for site 94, cores 14 
and 15, where Keller et al, also claim to 
have found two different events. Keller 
et al. further claim (I) to have found four 
layers of microtektites at site 242 (cores 
10, 15, 18, and 19). I have searched for 
microtektites in 10-cm3 samples taken at 
20-cm intervals through cores 18 and 19 
and did not find a single microtektite. If 
microtektites are present in these two 
cores, they must be rare and may there- 
fore be reworked. 

Keller et al. also conclude (1) that no 
faunal extinctions can be correlated with 
any of the late Eocene to middle Oligo- 
cene microtektite layers. However, it 
has been shown that the last abundant 
appearance of several species of Radio- 
laria (for example, Thyrsocyrtis bromia, 
T. tetracantha, T. jinalis, and Calocy- 
clas turris) is closely associated with a 
late Eocene microtektite layer at ten 
sites ranging from the Caribbean Sea to 
the Indian Ocean (2). Keller et al. sug- 
gest that the coincidence between the 
extinctions and the microtektite layer is 
due to a hiatus. Indeed, they suggest that 
most of the late Eocene to middle Oligo- 
cene microtektite occurrences are asso- 
ciated with a hiatus or dissolution zone. 
However, they discuss the evidence for 
a hiatus at only two of the sites and in 
both cases the evidence is at best ambig- 
uous; the exact relation between the 
"hiatus" and the microtektite layer is 
not defined. 

Another puzzling aspect of the report 
of Keller et al. (I) is their discussion of 
the age of the North American tektite- 
strewn field, which they say is 37.5 to 
38.0 million years. They fail to mention 
the potassium-argon and 40Ar-39~r  data 
for the North American tektites, which 
confirm an age of 34 to 35 million years. 

B. P. GLASS 
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University of Delaware, Newark 19716 
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Glass comments that the two late Eo- 
cene and middle Oligocene microtektite 
layers represent a single meteorite im- 
pact (this conclusion is based on petro- 
graphic and chemical analyses) and that 
the multiple layers are due to reworking 




