
was 28.5 million years with a confidence 
level of 99.8 percent. 

Perhaps more impressive than the ap- 
parent high confidence levels and near 
identity of calculated periods is the coin- 
cidence of the reported times of comet 
showers and mass extinctions. Alvarez 
and Muller find the most recent comet 
shower to have been 13 1 2 million years 
ago, the same age reported for the most 
recent extinction event. The next three 
or  four periodic extinction events fall 
neatly within the age ranges of the cra- 
tering episodes, in part because their 
permissible age ranges expand with the 
accumulation of the million-year uncer- 
tainty in the cratering periodicity. Errors 
in the dating of mass extinctions also 
increase in the more distant past, allow- 
ing a doubling up of two extinctions at  
the seventh and ninth cratering cycles. 

Some researchers are not convinced 
by the statistical arguments for periodic- 
ity. Richard Grieve of Brown Universi- 
ty, who originally compiled the terrestri- 
al cratering record, is not bothered by 
the suggestion of spikes of cratering in 
the record, but periodicity is another 
matter."They've done it the best way 
they can," he says of the analyses, but 
"it's just not a data set that's amenable 

to time-series analysis." The problem, 
he says, is that any million-year date 
without a crater in the selected record is 
assumed to lack a crater in reaiity, and 
this creates an artificial and misleading 
background of zero events per million 
years. Among other problems, Grieve 
notes that chemical analyses of some of 
the selected craters indicate an asteroid 
as the impactor rather than a comet. 

One of the few cautionary notes of the 
workshop was sounded by David Jab- 
lonski of the University of Arizona when 
he noted, on the basis of an admittedly 
hasty compilation, a curious coincidence 
between the ages of craters and apparent 
decreases in sea level. Could the crater- 
ing record be biased by a periodic in- 
crease in the area of the impactor's tar- 
get-the continents-due to a fall in sea 
level? No one had a ready answer. 

The suggestion of periodic extinctions 
by comet showers is stimulating as much 
constructive hypothesis testing as did 
the original claim for a devastating im- 
pact 65 million years ago, as well it 
should. The implications are profound 
not only for the driving forces behind 
evolution but also for those behind cli- 
mate change; if periodic comet showers 
instead of climate change are the ulti- 

mate cause of mass extinctions, then 
presumably comet showers also cause 
permanent changes in climate. 

Tantalizing evidence of the expected 
association between multiple impacts, 
climate change, and extinctions was pre- 
sented at the workshop. Erle Kauffman 
of the University of Colorado has found 
apparent climate oscillations in the half 
million years immediately preceding the 
extinctions of 91 million years ago. N o  
signs of an impact have yet been found 
there, but similar oscillations seem to 
have preceded other mass extinctions, 
including those now associated at least in 
part with the impact 65 million years ago. 
Gerta Keller of the USGS in Menlo Park 
reported evidence (3) of debris from sev- 
eral impacts clustered around 38 million 
years ago, about the time of major cli- 
mate changes and extinctions. Expand- 
ing on such studies, as  well as  searches 
of the sky for the companion, will be the 
next steps in testing the new hypothe- 
s e s . - R l c ~ n ~ o  A. KERR 
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The Necessity of Knowledge 
The essence of intelligence seems to be less a matter of 

reasoning ability than of knowing a lot about the world 

The field of artificial intelligence, or 
AI, is split into two camps. The "engi- 
neers'' are trying to get their programs to 
do smart things, by whatever means they 
can. The "scientists," a much smaller 
group, are after a general theory of intel- 
ligence, both human and machine. 

Either way it is a tough job. Even the 
enthusiasts have to admit that AI's 
achievements to date are at best embry- 
onic. The utilitarian approach has pro- 
duced some reasonably effective soft- 
ware, and in the case of the so-called 
expert systems that software has begun 
to be successful in the marketplace (Sci- 
ence, 24 February, p .  802). But the main 
thing that A1 researchers have gained on 
the theoretical front is a certain humility, 
an appreciation of how awesomely com- 
plex the most ordinary human act can 
be-and of just how much a computer 
(or a human) has to know before it can do 
much of anything. 
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On the other hand, it is the computer 
that gives A1 its promise. The fundamen- 
tal assumption of A1 is that the mind can 
be modeled as a processor of symbols- 
in effect, as  a computer program. Cogni- 
tion is considered to be a high-level 
process, which means that it can no 
more be understood in terms of the firing 
of individual neurons than a computer 
program can be understood in terms of 
the 1's and 0's flitting through an individ- 
ual memory register. 

Given that assumption, the fundamen- 
tal methodology of A1 is strikingly like 
that of mathematical physics: first turn a 
set of abstract speculations about the 
mind into a concrete computer program 
(write down the equations), and then 
make that program perform (solve the 
equations). If it works, then maybe the 
model was a good one to begin with; if it 
does not, then maybe a study of how the 
model breaks down can suggest a better 

one. At the very least this process en- 
forces a certain clarity and precision, 
and weeds out ideas that are fuzzy, or 
incomplete, o r  wrong. 

Historically, A1 was a product of the 
post-World War I1 ferment in informa- 
tion theory, control theory, and cyber- 
netics; people were writing AI-like pro- 
grams almost as soon as  computers were 
equipped with enough memory (about 4 
kilobytes) to handle them. But it really 
only emerged as  a well-defined field in 
the mid-1950's. In fact the name "artifi- 
cial intelligence" itself was only invent- 
ed in 1956, when John McCarthy, now at 
Stanford University, used it to describe a 
summer workshop he was organizing at 
Dartmouth College. 

Those were the days when everything 
seemed possible. One of the brightest 
dreams was the creation of a program 
that would mimic the full range of human 
problem-solving abilities, from getting 
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Knowledge in a machine 
A frame-like representation of the concept of "primes" [taken from Douglas B. Lenat's 
program AM]. 

up in the morning to getting to the air- 
port. In fact, one of the earliest and most 
influential A1 programs ever written was 
called the General Problem Solver 
(GPS). Devised in 1957 by Allen Newel1 
and Herbert Simon of Carnegie-Mellon 
University, and J. Clifford Shaw of the 
RAND Corporation, GPS was based on 
the idea that humans reach solutions to 
problems through a kind of "means- 
end" analysis: given that one is here, 
and that the goal is over there-take 
steps to reduce the difference. 

Alas, the dream tarnished rapidly. In 
all but the very simplest cases the gener- 
alized programs failed, overwhelmed by 
something called the "combinatoric ex- 
plosion. " 

A classic example is the game of 
chess. As its own well-defined and self- 
contained world, chess has long been a 
favorite challenge to A1 programmers. 
However, any chess-playing program 
quickly has to  face the fact that there are 
some 10lZ0 sequences of legal moves in 
the game. A completely general program 
would essentially have to examine them 
all. And yet the fastest computer ever 
built could spend the lifetime of the 
universe at it (actually, the lifetime of a 
great many universes), and still have a 
long way to go. 

The problem turns out to be ubiqui- 
tous. Even a much simpler game like 
checkers has some lo4' sequences. S o  as 
a purely practical matter, most of the 
early A1 researchers confined them- 
selves to very narrow problems and 
made liberal use of "heuristics," rules of 
thumb about the task at  hand. In chess, 
for example, a heuristic might be some- 
thing along the lines of "IF a pawn has a 
choice between moving forward or cap- 

turing your opponent's queen, T H E N  
take the queen, " 

Using task-specific heuristics meant 
giving up any hope of generality-the 
pawn-capture-queen rule would find lim- 
ited use in proving theorems-but a t  
least it was a way of pruning the choices 
down to something manageable. 

Now, in a sense no one could really be 
surprised by this. Humans obviously 
used specialized knowledge in judging 
the reliability of a fact, for example, or in 
deciding whether a solution was reason- 
able. But the appalling thing was how 
much knowledge was needed. A1 sys- 
tems were already among the largest and 
most complex programs ever written, 
and still they needed more. Knowledge 
was like an addiction. By the mid-1970's 
the ideal of the general problem-solver 
had begun to seem hopelessly nai've. 

In fact, by the mid-1970's the conven- 
tional wisdom in A1 had undergone a 
fundamental change. The essence of in- 
telligence was no longer seen to be  rea- 
soning ability alone. More important was 
having lots of highly specific knowledge 
about lots of things-a notion inevitably 
stated as, "Knowledge is power." 

Unfortunately, "knowledge" is a very 
slippery concept, and "knowledge pro- 
gramming" turns out to be a very tangled 
affair. For more than a decade it has 
been the greatest single preoccupation of 
A1 research. It  is true that the purest and 
most narrowly defined form of knowl- 
edge programming, the so-called "expert 
systems" that try to  mimic the abilities 
of human experts, have done rather well 
(page 1281). But that does not change the 
fact that knowledge programming is in 
theoretical limbo, much as physics was 
before Newton. 

At the moment, people find them- 
selves grappling with three interrelated 
issues: the representation of knowledge, 
which is roughly the machine equivalent 
of human memory; the control and use of 
knowledge, which corresponds to  human 
abilities in problem-solving and plan- 
ning; and the acquisition of knowledge, 
or what humans call learning. 

Representation: It is easy enough to 
store names and numbers in a computer. 
But a string of data is not knowledge, 
any more than the telephone directory is 
knowledge. Since no one can say what 
knowledge is exactly-30 years of A1 
have not necessarily improved upon 
3000 years of philosophy-AI's only re- 
course is an operational definition: 
knowledge is what helps a computer do 
smart things. It might consist of informa- 
tion about objects and events in the 
problem domain, for example; it might 
involve instructions on how to perform 
in certain situations; occasionally it 
might even consist of "metaknow- 
ledge," which tells the program how to 
control its own operation. 

The oldest and simplest representation 
scheme is just standard symbolic logic: 
"All crows are black," and so forth. The 
advantage is that the statements are pre- 
cise and well defined. Moreover, logical 
deductions are easy to automate. Power- 
ful algorithms already exist, and the con- 
clusions are guaranteed correct. 

For all its appeal, however, logic pro- 
gramming in its purest form has long 
since fallen out of favor, and for a famil- 
iar reason. A general-purpose deduction 
algorithm has no way of sorting out 
essential statements from irrelevancies; 
set it to work on a knowledge base of any 
size, and it bogs down in the combinator- 
ics. 

(Logic programming has nonetheless 
retained some passionate adherents, es- 
pecially in Europe. Moreover, a logic- 
based language known as  PROLOG has 
been chosen by the Japanese as  the 
programming language of their Fifth 
Generation project (Science, 6 May 
1983, p. 581)). 

A related problem with logic is that a 
large knowledge base quickly becomes 
an amorphous, unstructured listing of 
statements. Quite aside from being in- 
comprehensible to programmers, such a 
listing does not reflect the fact that hu- 
man knowledge is very structured-in- 
deed, that human thought is often just a 
matter of one thing suggesting another. 

The current most popular alternative 
to logic is the production systems ap- 
proach, first developed by Newel1 and 
Simon in the mid-1960's. Essentially it is 
a simplified version of logic program- 
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ming that allows only certain kinds of 
statements-an important example being 
heuristics of the form "IF this is true, 
THEN do that"-and only certain types 
of logical deductions. The payoff is that a 
production system is much easier to han- 
dle, and much less subject to  the combin- 
atoric explosion. Moreover, they can 
handle statements about the reliability of 
the rules. 

Also popular are Frames and Scripts, 
respectively pioneered in the mid-1970's 
by Marvin Minsky of the Massachusetts 
Institute of Technology and Roger 
Schank of Yale University. These are 
very elaborate data structures that model 
human expectations. A DOG frame, for 
example, would have "slots" for facts 
that are typically known about dogs, 
such as  BREED, NAME, or OWNER. 
A RESTAURANT script would have the 
typical sequence of events at a restau- 
rant, such as  being seated, reading the 
menu, ordering, and so forth. 

The list does not stop there-recently, 
for example, there have been some inter- 
esting attempts to codify a qualitative 
physics or a qualitative psychology-yet 
there remains a key problem. Any repre- 
sentation of knowledge in a computer is 
just one rather rigid mapping of the 
world. But humans are not always rigid. 
Sometimes, when we  are baffled by a 
problem, we can step back, look at  it a 
different way, and AHA!-the solution is 
obvious. Whatever is going on in the way 
of "knowledge representation" inside 
our heads, it is both high-structured and 
wonderfully reshapeable. Trying to get a 
program to do that is one of the foremost 
goals in AI. 

Inference: A perennial issue in A1 is 
the matter of control-what does the 
program do next? 

In most A1 programs the control 
knowledge is implicit, buried as  heuris- 
tics deep in the code. This has the virtue 
of being efficient and the defect of being 
rigid; as  long ago as  1959, John McCar- 
thy pointed out that problem-solving 
strategies would really be far more un- 
derstandable, more flexible, and easier 
to modify if they were first dissected out 
and made explicit. Unfortunately, this is 
easier said than done: it leads right back 
to the quandary of the general problem- 
solver. 

On the other hand, there have been 
some interesting attempts in recent 
years. For  example, in his work on 
TEIRESIAS, a knowledge acquisition 
subsystem for MYCIN, Stanford's Ran- 
dall Davis included meta-rules that could 
adapt rule selection strategy to the na- 
ture of the problem. Meanwhile, Stan- 
ford's Michael Genesereth has devel- 
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Artificial Experts 
It may seem paradoxical that mimicking a highly trained human expert is 

so much simpler than imitating an everyday ability such as language. But in 
fact, expertise is easier because it is specialized, because it focuses on 
narrow classes of problems. 

An example is the first expert system, DENDRAL, developed at  Stanford 
by Edward A. Feigenbaum and his colleagues in the late 1960's. DEN- 
DRAL simply advised chemists on the structure of unknown compounds, 
largely through the use of nuclear magnetic resonance and mass spectral 
data. But within that one domain it did rather well. For  some families of 
compounds it could outperform the human specialists; a variant, GENOA, 
is now widely used in chemical laboratories. 

A more sophisticated program, MYCIN, followed in the mid-1970's. 
MYCIN advised physicians on the diagnosis and treatment of blood and 
meningitis infections, again doingjust about a s  well as the human experts. It 
also helped forge a lasting relationship between the medical community and 
the A1 community: much of the work on expert systems has been done by a 
nationwide group of physicians and programmers working through Stan- 
ford's SUMEX-AIM network. 

MYCIN was likewise influential in terms of its structure, which set the 
pattern for virtually all the expert systems that have followed. First, general 
information about the problem domain-in this case, infectious diseases- 
was encoded in a knowledge base of about 500 rules. (The rules themselves 
were in the form of IF-THEN statements, such as, "IF (i) the infection is 
meningitis and (ii) organisms were not seen in the stain of the culture and 
(iii) the type of infection may be bacterial and (iv) the patient has been 
seriously burned, T H E N  there is suggestive evidence that Pseudomonas 
aeruginosu might be one of the organisms causing the infection.") 

A second MYCIN database contained information about the specific 
patient, including such things as  age, sex, o r  test results. An "inference 
engine" then operated on the knowledge bases to draw conclusions or  ask 
questions. Finally, and perhaps most importantly for MYCIN's credibility, 
there was a system for explaining the conclusions so that the users could 
evaluate MYCIN's advice. 

In the wake of MYCIN have come systems such as INTERNIST-I 
(internal medicine), PROSPECTOR (geological exploration), Rl  (computer 
layout and configuration), P U F F  (interpretation of pulmonary tests), and a 
host of others. Moreover the pace is picking up: a number of expert systems 
have gone commercial and venture capital is pouring into the field (Science, 
24 February, p. 802). 

This seems a little surprising at first, since even the enthusiasts have to 
concede that present-day expert systems are sharply limited. They are 
narrow: as  Stanford's Bruce Buchanan says, "We operate, reluctantly, with 
a 'closed world' assumption-that nothing outside of the program is 
televant." They are shallow: having no general principles, just thousands of 
rules of thumb, they are unable to infer missing knowledge. And perhaps 
most important, they do not learn: their "expertise" has to be put in by 
hand. 

But then, human experts can be pretty narrow too, and as  the above list 
indicates, there are a surprising number of well-defined domains where 
expert systems are appropriate. 

Moreover, while the development of a new expert system can hardly be 
called easy, researchers have gotten the development time down to a 
reasonable 1 man-year. (Feigenbaum, a man solidly in the engineering camp 
of AI, talks about "knowledge engineers" who "mine" the knowledge from 
the expert's heads.) One important step in that direction was EMYCIN, 
which consists of the inference engine and explanation subsystem of 
MYCIN; the knowledge base is left empty to be filled in by rules from a new 
domain. More.recently, Daniel G. Bobrow and his colleagues at  Xerox Palo 
Alto Research Center have been trying to ease the critical shortage of 
knowledge engineers with LOOPS, an experimental knowledge program- 
ming system designed for easy learning by non-A1 programmers.-M.W. .. 
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oped a meta-level control language as  
part of an effort to create programs capa- 
ble of introspection. 

Another set of issues cluster around 
the banner of nonstandard logic. For 
instance. how does one automate the 
reasoning process when the knowledge 
base includes statements like "He be- 
lieves this," or "She knows that"? With 
symbolic logic it was easy, because the 
truth or falsity of a statement only de- 
pended upon its structure. But, here, 
truth or falsity depends upon meaning. 
Another example, strongly emphasized 
by Minsky in recent years, is that AI's 
focus on logical deduction ignores peo- 
ple's common sense ability to retract a 
conclusion upon further information. 
Technically referred to  as  the problem of 
"non-monotonic logic" it is almost in- 
variably known a s  Minsky's "Dead 
Duck" challenge: If all ducks can fly and 
if Charlie is a duck, he points out, then 
Charlie can fly-unless Charlie is dead, 
in which case he cannot fly. 

Finally, there is the matter of veason- 
ing with uncertainty. A fact or a defini- 
tion is absolute. but a rule-of-thumb is 
only plausible. S o  how much reliance 
can a heuristic program place in its own 
conclusions? In the case of MYCIN, 
weighting factors were assigned to the 
rules and were used to generate a numer- 
ical estimate of the conclusion's reliabil- 
ity. But it was not always clear what the 
final numbers meant. Efforts have been 
made to apply classic probability theory, 
without much success: most of the time 
the uncertainty in our knowledge is less a 
question of randomness than of vague- 
ness. Several important steps have been 
taken to broaden probability theory, but 
still, no one really understands how a 
program is supposed to proceed in the 
face of ignorance-or how it can even 
learn to recognize the limits of its knowl- 
edge. 

An even more fundamental question is 
whether reasoning ability is really all that 
important to  intelligence. Consider the 
experiments of Herbert Simon and his 
colleagues on the way experts and nov- 
ices solve physics problems (Science, 20 
June 1980, p. 1335). Novices seem to go 
at it just a s  an A1 program would. They 
work out elaborate strategies, complete 
with goals and subgoals, and solve every 
equation in sight. At each step, they ask, 
"What do I d o  next?" 

Experts, on the other hand, seem to 
just look at a problem and see it whole: 
"AHA!" Whatever is going on, it is less 
a matter of reasoning than of recogni- 
tion, of pattern matching on a huge store 
of memory and experience. Appropriate 
problem-solving sequences are simply 

there when they are needed. Certainly 
experts d o  use conventional reasoning, 
but only to  solve unfamiliar problems. 
Once again it seems that knowledge, not 
reasoning, is power. 

Acquisition: Until fairly recently, 
learning was not a major issue in AI. 
People were much more concerned with 
getting performance out of the knowl- 
edge bases they had. But several things 
have now brought learning to the fore. 

On a purely practical level, the people 
building expert systems have to live with 
the fact that little human expertise is 
really codified, and that the experts are 
not necessarily doing what they think 
they are doing. Getting their knowledge 
into a machine is a slow, painstaking 
process. It would be nice if the machine 
could help. 

More generally there is AI's quest for 
a mastery of "common sense," which 

Is reasoning ability 
really all that 
important to 
intelligence? 

seems to consist of massive expertise 
about the world in general. Quite aside 
from questions about knowledge repre- 
sentation and reasoning ability, building 
a machine with common sense means 
building a knowledge base containing 
millions of rules and facts-which is im- 
practical unless the system can learn for 
itself. 

And finally, there are deep theoretical 
problems: What is learning? How can a 
machine modify its knowledge according 
to experience? How can it be taught to 
learn from its mistakes? 

Not surprisingly, the modern work on 
machine learning has tended to focus on 
the acquisition of knowledge, as opposed 
to the acquisition of motor and cognitive 
skills. [This may be an unconscious re- 
flection of the distinction between 
"fact" memory and "skills" memory 
that has recently been made by psychol- 
ogists (Science, 23 December 1983, p. 
1318); there is some suggestion that the 
latter is inherently nonsymbolic.] More- 
over, the tendency is to  emphasize 
knowledge as  a prerequisite. The idea is 
that machines, like humans, will learn 
best when they learn slowly-when they 
relate each new concept to what is al- 
ready known instead of trying to orga- 
nize a whole mass of facts by some 
instantaneous gestalt. In practice this 
means that the programs have to incor- 

porate learning heuristics, rules of thumb 
to focus the program's attention, pro- 
pose experiments, and choose the con- 
cepts to  acquire. 

Current work has also emphasized the 
need for a broad range of strategies. 
Programs that learn by example were 
first written back in the 1950's. Now 
they have been joined by programs that 
learn from instruction, that learn by anal- 
ogy, and that learn by discovering con- 
cepts and categories on their own. A 
particularly intriguing example of the lat- 
ter is AM, written by Stanford's Douglas 
B. Lenat. It works by a kind of natural 
selection process: starting from a knowl- 
edge base of concepts in set theory, it 
combines old concepts into new ones, 
and keeps those new concepts that seem 
to lead to a significant number of new 
results: it takes about 2 minutes of this to  
go from nalve set theory to  arithmetic 
and the prime number theorem. (Unfor- 
tunately, it only takes an hour or so for 
AM to start studying such things as 
numbers that are simultaneously odd and 
even. A successor program, EURISKO, 
shows a bit more common sense.) 

Perhaps the strongest single impres- 
sion one gets from a survey of knowl- 
edge programming is that issues like rep- 
resentation, control, and acquisition are 
inextricably tied up in a knot-so inter- 
woven that they might as  well be the 
same thing. Is it a coincidence that the 
same could be said of human thought? 
Analogy, for example: people learn by 
analogy, they reason by analogy, they 
recall things by analogy, they even come 
up with creative new ideas by analogy. 

In an invited talk on computer learning 
at  the Washington, D.C., meeting of the 
American Association for Artificial In- 
telligence in August 1983, Lenat stressed 
this idea of underlying sources of power. 
"A1 researchers have tended to focus on 
mechanisms and task domains instead of 
on why their programs worked," he 
said. There seems to be something very 
profound here. And perhaps it is time for 
a refocusing. 

Perhaps so. The human mind is fluid, 
mercurial, nonlinear, continuously con- 
necting and reconnecting, able to  reorder 
itself and say "AHA!"-things that the 
careful representations and reasoning 
schemes devised by the A1 researchers 
can do only with difficulty, if a t  all. One 
can reasonably ask whether a fundamen- 
tal theory of intelligence is even possible 
within the symbolic processing model. 

But then, there is only one way to find 
out. The A1 researchers have their vi- 
sion, and they are determined to push 
their ideas as far as they can. 

-M. MITCHELL WALDROP 
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