
Computing Without Dissipating Energy 
Computers are machines and should be subject to thermodynamics; 

what is the minimum energy needed for computation? 

The best you can do  is break even 
(First Law of Thermodynamics). You 
can' t  even break even (Second Law of 
Thermodynamics).  

These popular expressions pithily con- 
vey the sweeping and seemingly tyranni- 
cal sway of the laws of thermodynamics. 
In the case of heat engines, such as  the 
one in your car, the first law says that the 
useful work produced by an engine can- 
not exceed the energy put in. The second 
law then asserts that even an ideal (re- 
versible) engine free of friction or heat 
losses will see some of the input energy 
turned into waste heat rather than useful 
work. A nonideal (irreversible) engine 
will be even less efficient. How do these 
laws apply to computers? 

Computers do no work in the usual 
sense, so there are no energy losses in a 
reversible machine. Nonetheless, com- 
putation as presently carried out is an 
irreversible or entropy-generating pro- 
cess and produces a great deal of waste 
heat, enough to require elaborate cooling 
strategies in some computers. Some sci- 
entists have wondered if it is possible, in 
principle if not in practice anytime soon, 
to bring the energy dissipation per logical 
operation arbitrarily close to zero. In the 
last few years, a significant number have 
come to believe it is. 

The matter is far from settled, howev- 
er,  as underscored by a group of physi- 
cists at Arizona State University in Tem- 
pe, who critically analyzed previous ar- 
guments in favor of dissipationless com- 
puting in the 16 January Physical Review 
Letters.  Their conclusion is that compu- 
tation inherently requires the expendi- 
ture of energy of the order of kT per bit 
of information processed, where k is 
Boltzmann's constant and T is the tem- 
perature. This is about 4 x joules 
at room temperature. 

Rebuttal letters are being prepared for 
publication. For  the moment, no one is 
budging from strongly held positions. 
Resolution of the debate may not be 
imminent. Says Robert Bate, an interest- 
ed observer at Texas Instruments in Dal- 
las, "It probably won't be settled until 
someone builds [a dissipationless com- 
puter] . '  ' 

Over the years, engineers have made 
considerable progress in reducing the 
energy requirements of computers. In 
energy units of kT ,  transistors in today's 

integrated circuits dissipate about lo8 
per switching operation, whereas old 
mechanical relay switches lost up to a 
billion times more. However, there are 
so many transistors in a computer and 
these switch so often that the total heat 
generated remains high. 

Even if dissipationless switches were 
devised, the electronic circuits of com- 
puters contain resistors, either as  dis- 
crete elements or as an imbedded prop- 
erty of other circuit elements. Resistors 
are the electrical equivalent of mechani- 
cal friction and thereby make all circuits 
irreversible. 

These considerations are technology- 
specific. Those scientists pondering the 
possibility of dissipation-free computers 
are interested in the more generic ques- 
tion of whether there is anything in the 
computation process itself that demands 
the dissipation of energy. As Rolf Lan- 

For the moment, no one 
is budging from strongly 

held positions. 

dauer of the IBM Yorktown Heights 
laboratory puts it, "Are there any funda- 
mental limitations on computer perform- 
ance that we can arrive at without antici- 
pating every possible future computer 
technology?" 

Does it matter whether such limits 
exist or not? The near-term future of 
computer technology clearly does not 
depend on the answer. The energy limits 
being discussed are many orders of mag- 
nitude lower than engineers can attain 
today. Ultimately, of course, it will be 
important to establish whether a funda- 
mental limit exists, so engineers will 
know when to stop trying. 

For the moment, says Landauer, the 
question of dissipationless computing is 
more of an intellectual adventure. "In- 
formation, whether it is in biological 
systems, in a digital computer, or han- 
dled by pencil and paper, inevitably has 
a physical form. As a result, manipula- 
tion of information is inevitably subject 
to the laws of physics." Mathematics 
itself, according to this line of thinking, 
is not excluded. 

For  many years, scientists believed 
that there was an irreducible energy loss 

associated with computation of kT ln 2 
per bit of information transferred or per 
logical decision made. In 1961, Landauer 
argued that a fundamental source of the 
dissipation was the erasure of informa- 
tion. For example, logic circuits have the 
property that they are noninvertible. 
From the output of a logic circuit, one 
cannot always reconstruct what the in- 
put was. This is the lost information. 
Landauer asserted that logical noninver- 
tibility translates into physical irrevers- 
ibility, and hence an energy loss. 

His argument is based on the statisti- 
cal mechanics notion of phase space. 
Each particle in a gas, for example, is 
characterized by a position and a mo- 
mentum that change with time. The 
phase space for a gas of N particles is 
then a multidimensional mathematical 
space with 6 N  coordinate axes, one for 
each component of the position and ve- 
locity of each particle. The occupied 
volume of phase space is defined by the 
allowed positions and velocities of the 
particles. According to statistical me- 
chanics, the amount of occupied phase 
space cannot be changed by an outside 
force but the distribution can; that is, 
some parts may be populated at the 
expense of others. 

Landauer imagined a more abstract 
phase space, with one coordinate being 
the information content of a logical de- 
vice. Prior to an erasure operation, for 
example, the logical device can have two 
states (0 or 1). Afterward, it can have 
only one (the standard state of an erased 
bit). Consequently, the extent of occu- 
pied phase space in the logical coordi- 
nate is reduced by two, and the occupied 
volume must expand in other coordi- 
nates. These coordinates represent 
things like thermal vibrations in whatev- 
er physical system the logic device is 
implemented. Excitation of thermal vi- 
brations means heat is generated. 

Twelve years later, Charles Bennett of 
IBM proposed that logically reversible 
computation is possible. Bennett's dis- 
cussion centered around an abstract enti- 
ty called a Turing Machine, after one of 
the founders of computer science, the 
late British mathematician Alan Turing. 
Computers are supposed to be universal 
machines in the sense that programs can 
be written to carry out almost any com- 
putation, or at least the number of possi- 
ble types of computations greatly ex- 
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ceeds the number of logic circuits in the 
machine. In contrast, it is possible to 
devise networks of logic circuits that can 
handle only a limited number of prob- 
lems that are fixed in advance. 

A Turing Machine is such a universal 
computer and consists of a tape and a 
head. The tape contains a sequence of 
symbols, such as the binary 0's and 1's 
of real computers. The head has several 
internal variables that define its state. It 
reads the contents of the tape. According 
to the contents it can change its internal 
state, change the symbols on the tape it 
has just read, and advance the tape in 
either direction. Changing the contents 
of the tape had been thought to require 
erasure of information. So, by Lan- 
dauer's arguments, a Turing Machine 
should not be reversible. 

Bennett maintained that a Turing Ma- 
chine with three tapes could be revers- 
ible. The first tape would be read and 
processed as above. The second tape 
would be a "history" tape that retained 
all the input data and intermediate re- 
sults of a computation. This would avoid 
the information loss. The third tape re- 
ceives the final result of the computation 
and stores it. Then the machine is run in 
reverse with the result that the input is 
retained but the intermediate history of 
the first tape is eliminated. 

A key point in the argument is that 
erasure of a known quantity does not 
distort phase space because one simply 
replaces one known quantity with anoth- 
er.  Therefore, the elimination of the in- 
termediate history of the first tape during 
the reverse run is not an irreversible 
process. Alternatively, one can think 
that both the forward and backward runs 
save all their intermediate results. It is 
just that the intermediate results of the 
backward run exactly cancel those of the 
forward run and leave a blank history 
tape. 

Bennett has also devised a physical 
model for a reversible computer (see 
figure). H e  calls it a Brownian computer 
because thermal fluctuations impart a 
random motion to the machine. If one 
imagines a linear device as exemplified 
by the tape of the Turing Machine, then 
fluctuations drive it equally likely in the 
forward and reverse directions. Bennett 
therefore imposes a small driving force 
to steer the overall operation in the for- 
ward direction, although at any instant 
the motion may be forward or reverse 
with almost equal probabilities. 

The fluctuations, which are akin to  the 
noise in resistors in electrical circuits, 
make the machine operation dissipative, 
but the amount of dissipation can be 
made arbitrarily small by making the 
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Brownian Turing Machine 
The parts are rigid, frictionless, and loosely jtting, so there is no dissipation of energy. The 
segments a ,  b, and c represent three cells of the Turing Machine tape. The E-shaped bit-storage 
blocks represent binary 1's when they are up and 0's  when they are down. The manipulator m 
reads the contents of the cell and changes the blocks from one position to another according to 
rules in a control mechanism not shown. The control unit contains a master camshaft whose 
motion can be forward or backward according to thermaljuctuations A weak spring imposes 
an overall forward motion and rs the only dissipative element in the system. [Courtesy of 
International Journal of Theoretical Physics 21, 905 (1982)l 

external force arbitrarily small. Then the 
machine is reversible in the same sense 
that heat engines are reversible in ther- 
modynamics. Real heat engines are not 
reversible, but ideal ones can be if they 
are taken through their cycle in a quasi- 
static fashion; that is, very slowly. 

When Bennett first approached Lan- 
dauer with his ideas, he met with consid- 
erable skepticism. After several months 
of discussion, Landauer did become 
fully convinced and is now a proponent 
of reversible computation. 

In the meantime, Edward Fredkin of 
the Massachusetts Institute of Technolo- 
gy has independently developed a differ- 
ent approach to reversible computation. 
Fredkin devised what he calls conserva- 
tive logic gates. These do not lose infor- 
mation in their operation and therefore 
do not dissipate energy by Landauer's 
criterion. For  example, a gate with three 
inputs of binary bits could work as  fol- 
lows: one input travels through the gate 
with no change. The other two either 
come out unperturbed or reversed, ac- 
cording to whether the first is a 1 or a 0. 

According to Tommaso Toffoli, who 
works with Fredkin at  MIT, one can 
translate any computer circuit (such as 
those of commercial mainframe ma- 
chines) into a circuit made of conserva- 
tive logic gates. However, a t  both the 
input and output of such a circuit, certain 
extra signals are required. T o  generate 
the extra input and to erase the extra 
output may require dissipating energy, 
but the amount of energy is independent 
of the complexity of the computation. 
Toffoli calls such a computer virtually 

dissipation-free. "The dissipation is not 
zero, but as we get smarter we can get 
arbitrarily close. " 

Fredkin has also devised a physical 
model for implementing conservative 
logic that he calls the billiard ball model. 
Consider a box with several entrance 
holes (inputs) and exit holes (output) on 
opposite sides of the box. Perfectly 
round and hard balls enter holes where 
the input information is to  be a binary 1 
and none enter where the input is a 0. 
Inside the box are perfectly reflecting 
mirrors. If a ball strikes a mirror, it 
changes direction 90 degrees. If two balls 
collide, both change directions. The 
placement of the mirrors and the input 
determine where balls appear at the out- 
puts to  be registered as 1's. 

The whole affair is reversible by con- 
struction, as  there is no friction and the 
collisions are perfectly elastic. Fredkin 
says that computer simulations verify 
that the model can do computation and 
therefore that in principle dissipationless 
computing is possible. H e  makes an 
analogy with the development of the 
laws of classical mechanics. Newton's 
laws, for example, clearly do not hold in 
the real world where friction is inevitably 
present. Nonetheless, the laws are cor- 
rect. "Scientific progress is made by 
taking out friction to  see the underlying 
law," says Fredkin. 

The billiard ball model can be made to 
work in the real world, say the MIT 
scientists, although at  the cost of intro- 
ducing some dissipation. For  example, if 
the balls are not perfectly aligned at the 
start, after only a small number of colli- 



sions, they will be so  misaligned that 
computation is no longer accurate. The 
cure is to correct the positions from time 
to time. This takes energy and is the 
source of the dissipation. Moreover, the 
energy needed will be proportional to the 
number of logic gates, just as in today's 
electronic computers. The saving fea- 
ture, says Toffoli, is that the proportion- 
ality constant is dictated by the state of 
the current technology. As technology 
improves, there is no lower bound to the 
coefficient, so that once again the billiard 
ball machine is virtually dissipationless. 

A high point for the adherents of re- 
versible computation came in May 1981, 
when Fredkin and Landauer organized 
an international conference on the phys- 
ics of computation that was held at MIT. 
Researchers from Europe and the United 
States met to discuss the issues, and 
some proposed models of reversible 
computers. The conclusion according to 
Fredkin: "All serious workers in the 
field accept that physical models of re- 
versible computation exist." 

One noteworthy convert to the notion 
of reversible computation is Richard 
Feynman of the California Institute of 
Technology in Pasadena. Feynman told 
Science that he has constructed a quan- 
tum mechanical model of a computer 
that is reversible. The energy dissipated 
per operation is kT In 2 times two factors 
that can be made arbitrarily small: one 
by running the machine very slowly and 
the other by building it very carefully to 
avoid imperfections. 

'There are at least a few holdouts. One 
is Carver Mead of Caltech. Mead co- 
authored a 1980 book on designing very 
complex integrated circuits with Lynn 
Conway, then at the Xerox Palo Alto 
Research Center. One chapter contained 
an emphatic denial of the possibility of 
dissipationless computing. Mead is now 
working to put the assertions of that 
chapter on a more solid footing. 

Wolfgang Porod. Robert Grondin, and 
David Ferry of Arizona State and Giinter 
Porod of the University of Graz, Austria, 
are new participants in the discussion, 
but they adamantly reject the concept of 
reversible computation. Their basic ar- 
gument is that the idea of logical revers- 
ibility has been incorrectly applied. It 
has yet to be proved, for example, that 
Bennett's logical reversibility translates 
to physical reversibility. 

Porod discussed Bennett's three-tape 
Turing Machine with Science. From the 
point of view of the head of a Turing 
Machine, all information on a tape is 
random in the sense that the head has no 
way of knowing what is coming next. In 
particular, the head does not know 

whether it is erasing information on a 
single-tape machine (irreversible) or on a 
three-tape machine (reversible). Hence, 
there is no physical difference in the two 
processes, and the purported logical re- 
versibility does not reflect the absence or 
presence of physical reversibility. 

Moreover, there is, according to Fer- 
ry, a contradiction in the three-tape Tu- 
ring Machine argument made by Ben- 
nett. According to Landauer's original 
phase space argument, one-tape ma- 
chines are irreversible if they erase infor- 
mation. According to Bennett, three- 
tape machines can be reversible. But a 
theorem in computer science, applied to 
Bennett's three-tape machine, says that 
the three-tape machine can be emulated 
by a one-tape machine. Therefore, the 
three-tape machine cannot be reversible. 
(However, Bennett has argued that one- 
tape machines can be reversible.) 

"All agree that 
dissipationless computing 
in a noisy environment is 

not possible. This was 
never a point at issue." 

The Arizona State physicists assert 
that the true source of the irreversibility 
in computation is not the erasure of 
information but the reading operation. 
All such operations are done in a noisy 
environment characterized by thermal 
fluctuations. Hence, the physical system 
must be maintained far from thermal 
equilibrium in order to keep the system 
from thermalizaing and thereby losing its 
information. Physical systems main- 
tained in a nonequilibrium state are by 
nature dissipative. "It is the competition 
between measurement and the thermal- 
ization process that requires energy to be 
dissipated," they wrote. 

To  Fredkin's assertion that one has to 
consider noiseless, friction-free models 
in order to discern the underlying physi- 
cal laws of a process, Ferry retorts, "If 
you have to take noise out to  even con- 
ceive of the problem, you have thrown 
out half the germane physics." 

The preoccupation with noise has led 
some in the reversible computing camp 
to wonder if the Arizona State objections 
are as fundamental as the group believes. 
Says Paul Benioff of Argonne National 
Laboratory, who has devised a mathe- 
matical model of a reversible computer 
based on quantum machanics rather than 
classical mechanics, "All agree that dis- 
sipationless computing in a noisy envi- 

ronment is not possible. This was never 
a point at issue." 

A second crucial ingredient in the Ari- 
zona State argument also revolves 
around the measurement process. What 
is it that provides a preferred direction of 
time in computation'? Microscopic pro- 
cesses are time reversible; they are 
equally likely to proceed in either direc- 
tion. Computation, however, "consists 
of a series of steps, which force the 
system from one state to its logical suc- 
cessor." The conclusion is that "only 
systems that are forced along a nonther- 
modynamic path by virtue of measure- 
ment, and thus dissipation, can be used 
for computation." 

This point of view toward computation 
may be too narrow. Bennett, who started 
out his career as a chemist, makes an 
analogy with physical processes like 
crystal growth. A crystal grows approxi- 
mately layer by layer. No atom can 
reside in the second layer until there is a 
first layer atom beneath it, and so on. 
Moreover, near the melting temperature, 
the probability that an atom in the sec- 
ond layer will stick is only slightly higher 
than the probability that the correspond- 
ing atom in the first layer will leave the 
growing surface. 

The end product, the crystal, can be 
likened to the output of a computer. 
Although the correct sequence (growth 
of one layer after the other or completion 
of one logical operation after the other) is 
eventually followed, the individual steps 
leading to the output are not rigidly con- 
strained to occur at predictable times as 
they are in conventional computers. 
Bennett's Brownian computer has built 
in physical constraints that guarantee 
that the correct sequence of steps takes 
place. It is like one of the puzzle cubes 
that can only be taken apart in one way. 
If it is shaken long enough, it will eventu- 
ally come apart piece by piece. 

Mead at Caltech says that Bennett has 
raised a fascinating but yet to be rigor- 
ously answered question: Is it possible to 
make a computing machine that is uni- 
versal in the way a Turing Machine is 
from freely evolving systems such as 
Bennett's Brownian computer or Fred- 
kin's billiard ball model? The answer to 
this question may be the key to revers- 
ible computing. So far, says Mead 
(though Toffoli disagrees), all the revers- 
ible machines demonstrated to work are 
actually combinational networks that 
can solve a limited range of problems 
rather than universal computers. If the 
answer to the question turns out to be 
no, then reversible universal computa- 
tion is not possible. 

-ARTHUR L. ROBINSON 
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