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Inhibitors of Poly(Adenosine Diphosphate-Ribose) 
Synthesis: Effect on Other Metabolic Processes 

Abstract. 3-Aminobenzamide and benzamide, purported to be specijic inhibitors of 
the synthesis ofpoly(adenosine diphosphate-ribose), were used to elucidate possible 
functions of this biopolymer. These compounds, at  frequently used experimental 
concentrations, not only inhibited the action of poly(adenosine diphosphate-ribose) 
synthetase but also affected cell viability, glucose metabolism, and DNA synthesis. 
Thus, the usefulness of 3-aminobenzamide and benzamide may be severely restricted 
by the dijiculty ofjnding a dose small enough to inhibit the synthetase without 
producing additional metabolic effects. 

Mono-ADP-ribosylation (ADP, adeno- 
sine diphosphate) and poly-ADP-ribosyl- 
ation are processes belonging to a class 
of covalent modifiers of proteins (other 
such processes are acetylation, phospho- 
rylation, and methylation) that alter en- 
zyme function and structural conforma- 
tion (1). The biological significance of 
poly-ADP-ribosylation is unclear but ap- 
pears to be related to regulation of sever- 
al aspects of DNA metabolism as diverse 

as DNA synthesis (2), sister chromatid 
exchange (3), and differentiation (4, 5). 
There is evidence that repair of DNA 
damage may depend on the synthesis of 
poly(ADP-ribose) in the nucleus of the 
injured cell (I, 6), causing conformation- 
a1 changes in the DNA (7) and increasing 
the activity of DNA ligase I1 (8). 

Much of the evidence for the cellular 
roles of poly(ADP-ribose) is based on 
inhibition of the enzyme poly(ADP-ri- 

bose) synthetase by compounds such 
as 3-aminobenzamide (3AB) and benz- 
amide (9, 10). Although these com- 
pounds inhibit the synthesis of po- 
ly(ADP-ribose), the specificity of this 
inhibition has not been established. It is 
generally assumed that there are no oth- 
er signifiicant metabolic effects in undam- 
aged cells (11). Our study shows that 
3AB and benzamide in concentrations 
commonly used to inhibit poly(ADP-ri- 
bose) synthetase produce adverse effects 
on other cellular metabolic processes. 

A lymphoid cell line (WIL-2) was 
maintained in suspension culture in 
RPMI 1640 medium supplemented with 
10 percent fetal calf serum, penicillin (50 
Ulml), and streptomycin (50 yglml). In 
all experiments, the cells were incubated 
with one of four benzamide analogs for 
24 hours at 37°C. In addition to benz- 
amide and 3AB, the metabolic effects of 
m-aminobenzoic acid (m-ABOA) and 
benzoic acid (BOA), two analogs of 
benzamide that do not inhibit poly- 
(ADP-ribose) synthetase, were exam- 
ined (10). 

Cytotoxicity of various concentrations 
of benzamide, 3AB, m-ABOA, and BOA 
(0 to 20 mM) was monitored by cellular 
release into the medium of the cytoplas- 
mic enzyme lactate dehydrogenase (12); 
none of the four benzamide analogs af- 
fected this standard enzyme assay. The 
rate of glucose oxidation in cells treated 
with the benzamide analogs (0 to 7 mM) 
was measured by the conversion of D- 

[14C(~)]glucose (0.5 pCiiml, 348.2 mCi1 
mmole) to 14C02 (13). DNA synthesis 
from [methyl-3~]thymidine (10 pCiIml, 
74.9 Cilmmole), [methyl-3H]methionine 
(10 pCilml, 80 Ciimmole) or ['4C]glucose 
(0.5 yCilml) in the presence of one of the 
four benzamide analogs (0 to 5 mM) was 
also determined. DNA was isolated from 
the cells by extraction with a mixture of 
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Fig. 1 .  Effect of the benzamide analogs on (A) release of lactate dehydrogenase (LDH) into 
the medium and (B) glucose oxidation. (m) 3-Aminobenzamide; (A) benzamide; (*) m- 
aminobenzoic acid; and (0) benzoic acid. The asterisk indicates experimental groups that 
were significantly different from controls (P < 0.05). 
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chloroform and isoamyl alcohol (24:l) each other- in that BOA, like 3AB and 
benzamide, inhibited glucose incorpo- 
ration into DNA, whereas m-ABOA did 
not. 

Definitive experimental evidence of a 
requirement for poly(ADP-ribose) in any 
cellular process has not been reported. 

Even the role of poly(ADP-ribose) in 
and subsequent precipitation with etha- 
nol (14), and incorporated radioactivity 
was determined. All data were analyzed 

DNA repair, one of the most extensively 
researched areas, has not been unequiv- 
ocally established. In fact, there are 

by one-way analysis of variance, and 
Dunnett's test was used for comparisons 
of control and experimental means (15). 

some serious drawbacks and contradic- 
tory results in studies of changes in 
poly(ADP-ribose) concentrations and 

Benzamide, the only chemical that DNA repair. For instance, it was neces- 
sary to use excessively high concentra- 
tions of the alkylating agents dimethyl 

caused a significant increase in the re- 
lease of lactate dehydrogenase into the 
medium, was toxic to cells at a concen- 
tration as low as 5 mM (Fig. 1A). Sim- 
ilarly, glucose oxidation was affected 
only by benzamide (55 percent reduction 
caused by 7 mM benzamide) (Fig. 1B). 

The inhibitors of poly(ADP-ribose) 
synthetase, 3AB and benzamide, affect- 
ed DNA synthesis in a similar manner 
(Fig. 2). The incorporation into DNA of 
[3~]methionine and ['4C]glucose, both 

sulfate and N-methyl-N-nitrosourea to 
increase poly(ADP-ribose) synthetase 
activity, even though much lower con- 
centrations depleted cellular pools of 
nicotinamide adenine dinucleotide 
(NAD), the precursor of poly(ADP-ri- 
bose) (11, 19). In another instance, to 
avoid using poly(ADP-ribose) synthetase 
inhibitors, investigators reduced cellular 
NAD to 10 to 20 percent of control 
values by growing cells in medium de- 
void of nicotinamide for four generations 
(1 1). Subsequent impaired DNA repair in 
these cells may be attributed as easily to 
nutritional deprivation as to suboptimal 
poly(ADPribose) concentrations. Fur- 
thermore, poly(ADP-ribose) is not con- 
sistently involved in the repair of all 
types of DNA damage. Although repair 
of some alkylation damage is correlated 
with increased poly(ADP-ribose) synthe- 
tase activity, some is not (11,20). Repair 
of most strand breaks produced in DNA 
by x-rays, gamma rays, and ultraviolet 

of which are involved in de novo synthe- 
sis of DNA, was significantly reduced by 
3AB and benzamide; for example, 3AB 
and benzamide at 5 mM, a common- 
ly used experimental concentration (5, 6, 
8, 16, 17), inhibited incorporation of 
[3H]methionine into DNA by 50 percent. 
In contrast, [3~]thymidine incorporation 
into DNA, an index of nucleotide sal- 
vage capacity, was unchanged by these 
chemicals. Results with nicotinamide, 
another inhibitor of poly(ADP-ribose) 
synthesis also appears to be nonspecific 
in that it inhibits DNA synthesis at con- 
centrations above 2 mM (18). 

The effects of m-ABOA and BOA, the 
radiation does not require poly(ADP- 
ribose) synthesis (17), and inhibition of 
poly(ADP-ribose) synthesis does not in- noninhibitory analogs of benzamide, on 

the metabolic processes differed from crease the cytotoxicity of x-rays (21). 
those of the synthetase inhibitors (Fig. 
2). Both m-ABOA and BOA reduced 
[3H]thymidine incorporation into DNA. 
However, m-ABOA had no effect on 
['4C]glucose incorporation, whereas 5 
mM BOA reduced incorporation of 
[ '4~]glucose into DNA by 60 percent. 
Synthesis of DNA from [3H]methionine 
was not significantly affected by either 

Finally, evidence for an essential role 
for poly(ADP-ribose) in DNA repair has 
depended on the use of poly(ADP-ri- 
bose) synthetase inhibitors, particularly 
3AB. It has been assumed that these 
compounds specifically inhibit the syn- 20 [A- 
thetase and do not affect other basic 
metabolic functions. Our results reveal 
adverse effects of both benzamide and 

chemical. 
These results show that 3AB and 

benzamide are not specific inhibitors of 
poly(ADP-ribose) synthetase. In addi- 
tion, they differ from each other in the 
metabolic processes they affect. Al- 

3AB on several important metabolic 
pathways. These results do not disquali- 
fy poly(ADP-ribose) as a key component 
in a number of metabolic processes, in- 
cluding DNA repair. However, data ob- 
tained by the use of these inhibitors 

though both 3AB and benzamide re- 
duced glucose and methionine incorpo- 
ration into DNA, benzamide had a great- 

should be reevaluated, because changes 
in cellular processes attributed to re- 
duced poly(ADP-ribose) concentrations 

er effect, probably as a result of its 
cytotoxicity. In addition, only benz- 

may instead be due to the compromised 
metabolic integrity of cells after treat- 
ment. We have found that poly(ADP- 
ribose) synthesis in permeable cells is 
more sensitive to 3AB than are strand- 
break rejoining during DNA repair and 

amide was capable of inhibiting glucose 
oxidation. No clear distinction was 
found between the poly(ADP-ribose) 

Concentratlon (mM) 

Fig. 2. Effect of the benzamide analogs on 
incorporation of (A) [3H]thyrnidine, (B) 
[3H]rnethionine, and (C) ['4C]glucose into 
DNA. (H) 3-Aminobenzamide; (A) benz- 
amide; (*) rn-aminobenzoic acid; (@) benzoic 
acid. The asterisk indicates experimental 
groups significantly different from controls (P 
< 0.05). 

synthetase inhibitors and their noninhibi- 
tory analogs. Although m-ABOA and 
BOA differed from 3AB and benzamide 
in their effects on thvmidine and methio- 

the production of sister chromatid ex- 
change in intact cells (22). However, the 
relation between concentrations of exog- 
enous 3AB and the inhibition of nine incorporation, they differed from 
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poly(ADP-ribose) synthesis in intact 
cells versus permeable cells is unknown. 
Thus, achieving a concentration of exog- 
enous 3AB sufficiently low to inhibit 
poly(ADP-ribose) synthesis, but to have 
no nonspecific effects in intact cells, may 
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Biochem. 105, 525 (1980). 

22. C. Borek, W. F. Morgan, A. Ong, J. E. Cleaver, 
Proc. Natl. Acad. Sci. U.S.A. ,  in press; C. 
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23. Supported by the National Institute of Environ- 
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Abstract. A direct hypothalamocerebellar projection in the cat was revealed by 
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