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Localization, Interactions, and the 
Metal-Insulator Transition 

R. C. Dynes and P. A. Lee 

Any material can be characterized as a much less than 2 (instead it is typically 
metal or an insulator according to the 112) and the sign of A is often negative, 
following definition: upon extrapolation so that the conductivity of a metal in- 
to absolute zero temperature, if the con- creases with increasing temperature. 
ductivity remains finite, it is a metal, and The new understanding of the metal also 
if the conductivity goes to zero, it is an has important implications for the under- 
insulator. The zero-temperature conduc- standing of the insulator-to-metal transi- 

Summary. Recent advances in our understanding of electronic conduction have 
pointed up deficiencies in traditional thinking. For a metal at a sufficiently low 
temperature, it is known both theoretically and experimentally that the conventional 
picture in terms of the Boltzmann theory breaks down, Improved understanding of 
both electron localization and the effects of electron-electron interactions in a 
disordered medium has led to experimentally verifiable predictions. These effects 
have an important influence on the nature of the metal-insulator transition. 

tivity of a metal can be understood in 
terms of the scattering of the conduction 
electrons by impurities. Furthermore, as  
the temperature is raised, the traditional 
picture in terms of Boltzmann transport 
theory states that thermal excitation of 
various inelastic processes enhances the 
scattering rate, so  that the conductivity 
decreases. Phase space arguments show 
that the conductivity can be described by 

where T is temperature and the power 
n = 2 if the scattering is due to  electron- 
electron collision and is generally larger 
than 2 if other scattering processes such 
as electron-phonon scattering dominate. 

Recent theoretical developments, to- 
gether with experiments on a variety of 
systems, have shown that almost all as- 
pects of Eq. 1 are wrong as  far as  the 
asymptotic low-temperature behavior is 
concerned. The power n is found to be 

tion, which is the process by which an 
insulator is transformed into a metal by 
changing some material parameter such 
as the concentration of dopants in a semi- 
conductor. The recent advances are based 
on improved understanding of two as- 
pects of the problem: Anderson localiza- 
tion and the effects of electron-electron 
interactions in a disordered medium. 

Anderson Localization 

The concept of Anderson (I) localiza- 
tion deals with the nature of a one- 
electron wave function in a disordered 
medium. If the disorder is weak the wave 
function is extended; that is, it is like a 
plane wave except that its phase be- 
comes randomized on a length scale de- 
fined as  the mean free path I .  In 1958, 
Anderson showed that if the disorder is 
strong the wave function may change its 
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Nakanishi for permission to use results in ad- 
vance of publication. Figure 3 was prepared by 
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results of I. Nakanishi and T. Tanimoto. Sup- 
ported by NSF grant EAR81 1-5236 and NASA 
Geodynamics grant NSG-7610. Contribution 
No. 3921, Division of Geological and Planetary 
Sciences, California Institute of Technology, 
Pasadena 91 125. 

nature completely and become localized; 
that is, the wave function envelope de- 
cays exponentially from a center. The 
decay length 5 is the localization length 
and may become much longer than the 
mean free path. When the wave function 
at the Fermi energy becomes localized, 
we have an insulator. If the disorder is 
gradually reduced, the localization 
length increases until at some point the 
wave function becomes extended and an 
insulator-to-metal transition occurs. 

Mott (2) proposed that a t  this transi- 
tion, the conductivity jumps to a finite 
value urnin. His reasoning was based on 
an extrapolation to the strong disorder 
region of the usual Boltzmann formula 
for the conductivity of a metal 

where e is the electron charge, ti is 
Planck's constant divided by 2 ~ r ,  and k ~ '  
is the de Broglie wavelength of the elec- 
tron. It is reasonable to suppose that 
localization sets in when the mean free 
path 1 becomes of order of k ~ ' ,  because 
if 1 becomes any shorter, the phase is so  
random that a plane wave description no 
longer makes sense. Putting the so-called 
Ioffe-Regel criterion (3) (kF1 = 1) into 
Eq. 2, we obtain Mott's estimate of u,in 
(up to a numerical factor) 

It is interesting to  observe that e21A 
= (2.44 x (ohm)-' has the dimen- 
sions of a conductance, so  that Eq. 3 can 
be interpreted as the condition that a 
microscopic sample of size kF3 has a 
conductance of e2/ti. This point of view 
is even more transparent in two dimen- 
sions (2D), where conductivity has the 
same dimension as conductance and Eq. 
3 becomes 
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These observations led Licciardello 
and Thouless (4) to propose that the 
conductance G(L) of an Ld sample, ex- 
pressed in dimensionless units as 
g(L) = ~ ( ~ ) I ( e * l d ) ,  is the relevant vari- 
able which determines the behavior of a 
( 2 ~ ) ~  block built up from L~ blocks in d- 
dimensional space. This scaling idea was 
formulated by Abrahams et  a / .  (5) by 
introducing a scaling equation 

The point of this equation is that the 
right-hand side is a function of g only, 
independent of L or any other material 
parameter. Analogous scaling equations 
are well known in the theory of critical 
phenomena: in the Ising model a very 
similar equation exists for the dimen- 
sionless variable JlkT, where J is the 
nearest-neighbor coupling and k is the 
Boltzmann constant. The mapping of the 
Anderson localization problem to a 
phase transition problem has since been 
put on a firm footing by Wegner (6). 
According to the scaling theory, all the 
necessary information is contained in the 

function p(g). Abrahams et  a / .  (5) con- 
sidered the limiting cases of large and 
small g .  For small g we expect the wave 
functions to  be localized; g must de- 
crease rapidly with increasing L and P(g) 
is large and negative. For large g 
( k ~ l  9 1) we expect to  find a metal in the 
zeroth-order approximations, so that the 
conductivity is independent of L .  Recall- 
ing that the conductance is related to  the 
conductivity u by G(L) = u Ld-', we 
find that P(g) -+ (d - 2) for large g .  In- 
terpolating smoothly between these lim- 
its, Abrahams et  a / ,  produced a picture 
of P(g) as  shown in Fig. 1. There are a 
number of interesting consequences. In 
one dimension p is always negative, so 
that g always scales toward g = 0 (the 
localized limit) as  L increases. This is in 
agreement with the known result that all 
states are localized in one dimension (7). 
In three dimensions p crosses zero at a 
certain value g = g L .  This means that at 
some critical amount of disorder, the 
conductance (not the conductivity) is 
independent of sample size, a peculiar 
situation indeed. The conductivity of a 
large sample will then become arbitrarily 

small, since u = GIL. In a slightly less 
disordered sample, g is slightly greater 
than g" initially, but gradually increases 
as L increases. Beyond a rength scale 
L = 5 ,  we reach the flat part of the p 
function (p + I), and the conductivity 
beyond that length scale becomes con- 
stant and is given by 

As in critical phenomena, the length 5 
diverges near g* as  

5 - (g - gL)-" (7) 

Combining Eqs. 6 and 7 shows that the 
conductivity goes to zero like a power 
law near the metal-insulator transition. 
This result was first obtained by Wegner 
(8) from general scaling arguments and is 
in disagreement with Mott's concept of 
urnin. 

While the existence of amin cannot be 
reconciled with the scaling theory in 
three dimensions, it is possible in princi- 
ple in two dimensions. This would re- 
quire a p function that vanishes for 
g > g*, as  shown by the dashed lines in 
Fig. 1. However, this ,is ruled out by 
Abrahams et  a / .  (5), who performed a 
perturbation calculation for large g and 
showed that 

Fig. 1. Variation of 
q = ~ / ( e z / h )  ' 1 Y - - - - ~ ?  the normalized con- 

ductance g with 
length scale L as a 
function of the con- 
ductance [from Abra- 
hams et a / .  (5)]. The 
dimensionality is d, 
and the dashed line 
is that expected in 
two dimensions from 
the Mott argument. 
[Courtesy of Physical 
Review Letters] 

where uo is the Boltzmann conductivity 
given by Eq. 1. If a one-parameter scal- 
ing theory exists, Eqs. 8 and 5 imply that 
p -+ -g-' in the large g limit. This, 
together with the assumption that p(g) is 
monotonic, ensures that p is negative for 
all g. Consequently, even if g is initially 
very large (very weak disorder), as L 
increases g scales from right to left in 
Fig. 1 until it eventually becomes expo- 
nentially small (localized). The length 
scale at which this happens (the localiza- 
tion length) may be exponentially large, 

291.8 1 
0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 

H (GAUSS)  

Fig. 2 (left). Resistance of thin Au-Pd films as a function of log T [from 

-6 Dolan and Osheroff (16)l. Fig. 3 (right). Magnetoresistance in 
-0.4 -0.2 0 0.2 0.4 perpendicular H field of a two-dimensional electron gas on the surface 

l og  ( T / I  K ) of a MOSFET (23). The solid line through the data is a fit to the 
theory. [Courtesy of Physical Review Letters] 
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but nevertheless all states are in princi- 
ple localized in two dimensions. While 
the original experiment was based on 
lowest order perturbation theory and an 
assun~ption about the existence of the 
scaling theory, subsequent mapping onto 
a field theory model has put this picture 
on a much firmer footing (6). 

The theory so far has been developed 
for finite samples at  a temperature of 
absolute zero. To  make contact with 
experiments we need a theory for a finite 
temperature and a macroscopic sample 
size. The following physical argument by 
Thouless (9) provides the link. At finite 
T, an electron undergoes an inelastic 
collision in a time T,, and loses phase 
memory. Thus the distance that the elec- 
tron has diffused during this time 

where D is the electron diffusivity, 
serves as  an effective length scale to  be 
used in Eq. 8. In general, T~,, T-P, 
where the power p depends on the mech- 
anism for inelastic scattering. Substitu- 
tion into Eq. 8 produces the following 
prediction for the temperature depen- 
dence of the conductivity: 

For an infinite sample, varying T is 
equivalent to moving along the trajectory 
of Fig. 1 for d = 2. Lowering T results in 
moving right to left, so  that the logarith- 
mic temperature dependence crosses 
over continuously into the exponentially 
localized region. Clearly, a rising resis- 
tivity with decreasing temperature which 
eventually reaches infinity is beyond the 
scope of the Boltzmann transport the- 
ory. 

Interaction Effects 

So far we have considered a single 
electron moving in a disordered poten- 
tial. In a real metal, the electrons interact 
through a screened Coulomb potential. 
The classical theory of interacting elec- 
trons, the Landau-Fermi liquid theory, 
states that as  long as we consider low- 
lying excitations near the Fermi level, 
called quasi-particle excitations, the 
properties of an interacting system are 
not altogether different from those of a 
noninteracting one, except that various 
constants such as  effective mass are re- 
normalized (10).  However, the Fermi 
liquid theory has been studied in the past 
mainly for systems without disorder. 
Thus it came as  quite a surprise when 
Altshuler and Aronov (11) pointed out 
that, even in weakly disordered systems, 
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interaction has a profound effect on the 
physical properties, leading to various 
singular corrections at low temperatures. 
For example, the low-temperature con- 
ductivity in three dimensions (3D) is 
predicted to take the form 

Here T is the elastic scattering time for 
the electron. It  is this time which deter- 
mines the electronic mean free path I .  
Subsequent work has shown that the 
constant a can be either positive or nega- 
tive in sign. Again, Eq.  11 is in strong 
contrast with the Boltzmann prediction 
discussed in the introduction. The tun- 
neling density of states N3,, is predicted 
to show a cusp for energy E near the 
Fermi energy EF: 

Even more singular behaviors are 
predicted for two-dimensional systems 
(12): 

and 

Note that the logarithmic behavior with 
temperature is of the same form as the 
prediction of the localization theory, ex- 
cept that in Eq. 13 the constant a2 de- 
pends on the screening parameter of the 
material. 

Crudely speaking, interaction effects 
are much enhanced in disordered sys- 
tems because electrons diffuse rather 
than freely propagating as  plane waves. 
As a result, an electron stays much long- 
er in a given region in space, where it can 
interact with other electrons. In the usu- 
al Fermi liquid theory, electrons occupy 
plane wave states that are uncorrelated 
with each other except for the effects of 
interactions. In the presence of disorder, 
the wave functions, while extended, 
experience the same disordered poten- 
tial. It is then not surprising that wave 
functions that are nearby in energy are 
also correlated in space. It turns out that 
the requirement of density diffusion 
alone introduces a sufficient correlation 
between electrons that interactions be- 
tween them lead to the singular correc- 
tions shown in Eqs. 11 and 14 (13).  

Thus we see that localization and in- 
teraction effects both play important 
roles in determining the low-temperature 
properties of metals. It turns out that 
their relative contributions to  the con- 
ductivity correction can be separated by 
the effect of a magnetic field. The inter- 
ference effect that leads to the logarith- 
mic size dependence of Eq.  8 is a subtle 
one. Any time reversal symmetry-break- 

Fig. 4. Tunnel junc- 
tion conductance (dI1 
d v l G o  normalized to 
the zero-voltage con- 
ductance Go versus 
fl for various gran- 
ular A1 samples (27). 
A straight line indi- 
cates the depen- 
dence of the density 
of states. Lines with 
steeper slope corre- 
spond to samples with 
increasing resistivity. 
Note that Go goes to 
zero with increasing 
resistivity. The devi- 
ation at low voltage is 
due to the supercon- 
ducting energy gap. 
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ing terms will destroy this logarithmic 
dependence. A magnetic field H normal 
to the plane of the film destroys the time 
reversal symmetry and introduces an ad- 
ditional length scale, the Landau orbit 
radius LH = ( h ~ / e H ) ~ * ,  where c is the 
velocity of light. In the scaling process, 
when the length scale L reaches L H ,  the 
time reversal symmetry-breaking is felt, 
so that beyond that scale, the conductiv- 
ity is no longer dependent on L. Thus, 
instead of Eq. 8, we have (14) 

The changeover from the In T behavior 
of Eq.  10 occurs when LT = LH. At low 
temperature, LT can be sizable, of the 
order of several thousand angstroms, so 
that the crossover field can be very 
small, of the order of tens of gauss. Such 
sensitivity to a magnetic field is highly 
unusual and does not occur for the inter- 
action-derived In T correction of Eq.  13. 

Experimental Observations 

From Fig. 1 it is clear that for d = 2 
the resistivity is dimensionless, and it is 
expected that the various phenomena 
will not depend in a direct way on the 
material studied but will depend rather 
generally on the universal parameter g. 
The Mott argument in two dimensions 
predicts a transition at  a resistance 

R = 10 kilohms per square. It  is seen 
that the scaling extension of these ideas 
predicts a transition in this general re- 
gion, but now from logarithmic to expo- 
nential behavior. Such a transition has 
been observed in several systems with 
widely different physical characteristics. 
As outlined in the previous section, the L 
dependence can be related to  the T de- 
pendence, and an onset to  an exponen- 
tial temperature dependence to conduc- 
tion at  - 10 kilohms per square has been 
seen in such different two-dimensional 
systems as very thin "metal" films (15- 
17), the inversion layer of a silicon-met- 
al-oxide semiconductor field-effect tran- 
sistor (MOSFET) (18, 19), and semimet- 
a1 indium oxide films (20). These systems 
with extremely different electron densi- 
ties display remarkably similar behavior 
(the interelectron :pacing in the metal 
films is - 1 to 2 A, while in the MOS- 
FET it is - 100 A. 

An example of such a logarithmic de- 
pendence on temperature for a thin Au- 
Pd alloy film (16) is illustrated in Fig. 2, 
where it is seen that at low T (below 1 K) 
R increases logarithmically with decreas- 
ing T. At higher R a smooth and continu- 
ous transition to exponential behavior 
results. 

This logarithmic temperature depen- 
dence is that anticipated from both Eq.  
10 (localization effects) and Eq.  13 (inter- 
action effects), and in order to  separate 
the relative contributions the magneto- 

resistance was measured (21-23). As 
outlined earlier, with an applied magnet- 
ic field perpendicular to the conducting 
sheet a new length is introduced into the 
problem (14), LH,  the Landau orbit radi- 
us. With increasing H, LH decreases in 
such a fashion as to destroy the localiza- 
tion effect (or reduce the resistance). 
Interaction effects, on the other hand, do 
not depend as strongly on this orbital 
term, and so low-field magnetoresistance 
measurements allow a determination of 
the relative contributions of the two log- 
arithmic corrections to the conductance. 
Figure 3 shows an example of a magneto- 
resistance measurement (23) in a perpen- 
dicular magnetic field. The logarithmic 
sensitivity at relatively low fields reveals 
the strength of the localization effects, 
and the solid line through the data repre- 
sents a fit to the theory. Experimentally, 
from measurements such as  these, it is 
observed that different systems (different 
metal films and semiconductors) show 
varying relative strengths of the localiza- 
tion and interaction contributions to the 
logarithmic dependence of conductance 
on H, T, and presumably L. The details 
of these differences remain to  be ex- 
plored. Hall effect measurements (24) 
have also indicated that both effects con- 
tribute to  the transport. 

Electron tunneling measurements are 
capable of probing a density of states 
about the Fermi energy EF. From Eq. 14 
it is predicted that interaction effects 

S (kbar)  

Fig. 5. (a) Low-temperature conductivity (adu,,,) of the amorphous alloy Si:Nb as a function of deviation from critical concentration (n - n,)/ 
n,. Here n, is 11.8 percent Nb in Si. (b) Low-temperature conductivity of phosphorus-doped silicon as a function of uniaxial stress S (33). The sol- 
id line is a fit to ~ ( 0 )  (S - s,)" with v = 0.49. 
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rather drastically alter this density of 
states symmetrically about EF with a 
strength that scales like the resistance. 
Such effects have been observed (25) 
with a strength increasing as  the resist- 
ance per square approaches 10 kilohms, 
in qualitative agreement with the predic- 
tior,s of E a .  14. 

From the conductance, magnetic field, 
and tunneling measurements, it is now 
clear that both localization and interac- 
tion effects play an important role in the 
nature of electron transport in the limit 
kF/  - 1 in two dimensions. It is also 
clear that the qualitative aspects of the 
trajectory illustrated for d = 2 in Fig. 1 
are borne out. Specifically, the experi- 
ments show that there is no extended 
state for any value of conductance. Rath- 
er ,  in the region where Mott anticipated 
an abrupt localization-delocalization 
transition, there is a smooth and continu- 
ous transition from exponential to  loga- 
rithmic dependence on L (and T)  as 
anticipated by Fig. 1, and the trajectory 
asymptotically approaches the limit 
p = 0. This single-particle description, 
however, is quantitatively incorrect as 
interaction effects become strong (with 
the same logarithmic dependence). A 
proper description of transport in this 
limit must include both effects. These 
experimental techniques have, in some 
cases, allowed a quantitative determina- 
tion of the relative contribution of these 
two effects, and they point the way to 
f ~ r t h e r  investigations in other two-di- 
mensional systems. 

Many of the techniques used in two 
dimensions have also been applied to 
three-dimensional systems. It is clear 
from Fig. 1 that in the case of three 
dimensions, unlike that of two dimen- 
sions, a metal-insulator transition oc- 
curs, and one of the important issues is 
the nature of that transition-whether it 
is continuous or  discontinuous. As in 
two dimensions, it is expected that both 
localization and interaction effects will 
have an important influence on the na- 
ture of the transport in this regime. 

From E,q. 12, it is seen that the tunnel- 
ing density of states is also strongly 
altered in three dimensions because of 
interaction effects. In this case a cusp in 
N(E) which depends on ElR is predicted 
again with a strength increasing with 
decreasing k F / .  Electron tunneling mea- 
surements have been performed on sev- 
eral systems (25-28) to  probe this density 
of states, and the results are in reason- 

lar aluminum system (27) are shown in 
Fig. 4. Applied voltage is equivalent to  
energy in this case, and so these can be 
interpreted as  plots of N(E) versus En. 
The data can be fitted by the expression 

with N(0) going to zero as the resistivity 
of the film increases. The data in Fig. 4 
have been normalized to the zero-field 
tunneling conductance and should be a 
measure of N(E)/N(O). Insofar as  these 
plots are straight lines (except at lower 
voltages, where the superconducting en- 
ergy gap alters the dependence) they 
demonstrate the validity of the E~ predi- 
cation of Eq.  12. In the case shown in 
Fig. 4 increasing slope is correlated with 
increasing resistivity. The slopes give a 
measurement of the energy scale A de- 
fined in Eq .  16. The data shown here 
correspond to tunneling into granular 
aluminum samples with conductivities 
all less than a,,,, and they imply (i) that 
the metal-insulator transition does not 
occur abruptly at a,,, but proceeds con- 
tinuously to  a = 0, and (ii) at the metal- 
insulator transition N(E) approaches 
zero continuously through this square 
root cusp in N(E). This and other tunnel- 
ing measurements clearly illustrate the 
influence of interaction effects near the 
transition and again imply that the single- 
particle picture must be altered to incor- 
porate these many-body contributions. 
A phenomenological scaling theory that 

incorporates both localization and inter- 
action effects has been proposed by Mc- 
Millan (29), and, more recently, a scaling 
theory was constructed by examining 
higher order terms in the perturbation 
theory (30). 

Transport measurements have been 
performed in a variety of systems near 
the metal-insulator transition. Granular 
aluminum (31), doped semiconductors 
(32), and amorphous alloys (28) have all 
been studied, and although some differ- 
ences between the various systems exist, 
there are some striking similarities. Con- 
ductivity as  a function of temperature 
has been studied in several systems and 
results qualitatively in agreement with 
Eq. 11 have been obtained. From all 
these various measurements, it appears 
that as  a function of some appropriate 
critical variable (concentration, for ex- 
ample) a0 decreases continuously to  zero 
at the transition. Results from two sepa- 
rate studies of a0 are illustrated in Fig. 5. 
The asymptotic uo is plotted in Fig. 5a as  
a function of concentration deviation 
from the critical concentration for the 
amorphous alloy Nb:Si (28) and in Fig. 
5b as a function of stress for the crystal- 
line semiconductor phosphorus-doped 
silicon (33). Although there are clear 
differences in the dependences, it is seen 
that uo decreases continuously to zero at 
the critical value. It  appears in the alloy 
system that a0 varies linearly with n ,  
while in the doped semiconductor the 

ably good agreement with the predic- 
tions. Some typical plots of the tunneling 
conductance (which is approximately the 
tunneling density of states) for the granu- 

27 JANUARY 1984 



variation with stress is best fit by a 
square root dependence. These details 
are not understood at  present and re- 
quire further investigation. These results 
and others do, however, show that no 
abrupt transition occurs at  u,i, and the 
transition appears continuous. 

The temperature-dependent portion of 
the conductivity in these and other sys- 
tems is seen to behave qualitatively as 
predicted in Eq. 11. Resistivity measure- 
ments on the metallic side of phospho- 
rus-doped silicon show T m  behavior 
over more than two decades in tempera- 
ture (34). Another example of this depen- 
dence in a quite different system is illus- 
trated in Fig. 6 (33), where it is seen that 
the conductivity in amorphous alloys 
varies as T"*. 

Near the metal-insulator transition, 
other systems have shown a temperature 
dependence varying from T* to Tm, but 
the central result-a weak temperature 
dependence asymptotically approaching 
a temperature-independent uo at  low 
temperatures-appears general. 

Magnetoresistance measurements in 
three-dimensional systems illustrate 
that, in addition to  these interaction ef- 
fects, localization effects are operative. 
Orbital contributions similar to lhose dis- 
cussed in the two-dimensional case are 
observed in several systems and indicate 
that these effects must also be included 
in any quantitative description of elec- 
tron transport in this highly disordered 
regime. 

Conclusions 

Much theoretical and experimental 
progress has been made on the subject of 
electron transport in highly disordered 
systems. Many questions still remain un- 
answered. Experiments have shown 
clearly that in several different systems, 
in both two and three dimensions, the 
scaling ideas of electron localization are 
qualitatively correct but the picture is 
too simple. Strong interaction effects be- 
tween the electrons have been shown to 
influence the transport as much as  these 
single-particle localization effects. In 
two dimensions, the electrons are appar- 
ently localized at  all values of the disor- 
der and the transition is one from loga- 
rithmic to exponential dependence on 
the length scale. This transition is strong- 
ly affected by both localization and 
many-body effects. 

In three dimensions, it appears that 
the transition is continuous rather than 
abrupt. Again, the transport is strongly 
affected by both contributions, and al- 
though there are differences between the 
various systems studied, the similarities 
give us a qualitative description of trans- 
port in the disordered state and the ap- 
proach to the metal-insulator transition. 
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