In some areas of rat cerebrum AChE
can be used to identify cholinergic neu-
rons; in most areas its presence is not
sufficient to identify a neuron as capable
of releasing acetylcholine at its axon
terminals (33). AChE may therefore be
present in some noncholinergic neurons,
and ChAT is a more specific marker for
cholinergic neurons. Nevertheless, the
presence of AChE as a neuronal marker
should be of value in itself. For example,
AChE in the absence of ChAT could
signify a neuron postsynaptic to a cholin-
ergic neuron. In this case, the coexis-
tence of AChE and SOM could indicate
that cortical somatostatinergic neurons
are innervated by cholinergic neurons,
with the deficiencies seen in AD/SDAT
reflecting loss of both the presynaptic
and postsynaptic elements. Acetylcho-
line has been shown to stimulate the
neuronal release of SOM in similar cul-
tures of rat cerebral cortex (23). Al-
though muscarinic cholinergic receptors
are not reduced in the cortex of patients
with AD (34, 35), those receptors present
on the relatively small population of so-
matostatinergic neurons could represent
only a small fraction of the total number
of muscarinic receptors.

In summary, we have demonstrated
the coexistence of AChE and SOM-LI in
neurons derived from mammalian cere-
bral hemispheres. As far as we are
aware, these findings constitute the first
neuroanatomical association of a cholin-
ergic marker and SOM within mammali-
an central nervous system neurons. The
absence of a demonstrable coexistence
of AChE and CCK-8-LI suggests some
specificity for the relationship between
AChE and SOM-LI. The most immedi-
ate importance of these findings is in
relation to the known diminution of both
cholinergic innervation and of SOM lev-
els of brains of persons affected by AD/
SDAT. It is not known if SOM and
ACHhE also coexist in cerebral neurons in
vivo, or if AChE in these neurons repre-
sents a cholinergic neuron or a neuron
receiving cholinergic input. The implica-
tions of the coexistence of AChE and
SOM-LI in the same cerebral neurons
are that these systems may be both ana-
tomically and physiologically linked, and
that this association may be important in
understanding the pathophysiology of
processes such as AD/SDAT and the
functioning of the normal brain.
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Gene Product of v-fgr onc: Hybrid Protein Containing a

Portion of Actin and a Tyrosine-Specific Protein Kinase

Abstract. The nucleotide sequence of the region of Gardner-Rasheed feline
sarcoma virus (GR-FeSV) encoding its primary translation product, p70%&%®" has
been determined. From the nucleotide sequence, the amino acid sequence of this
transforming protein was deduced. Computer analysis indicates that a portion of
P70%% " has extensive amino acid sequence homology with actin, a eukaryotic
cytoskeletal protein. A second region of P7088® is closely related to the tyrosine-
specific kinase gene family. Thus, the v-fgr oncogene appears to have arisen as a
result of recombinational events involving two distinct cellular genes, one coding for
a structural protein and the other for a protein kinase.

Gardner-Rasheed feline sarcoma virus
(GR-FeSV) is a replication-defective,
acute transforming retrovirus that was
isolated from a cat fibrosarcoma (7). This
virus arose by recombination of the non-
defective helper feline leukemia virus
(FeLV) and cellular sequences present
within the normal cat genome (2). Analy-
sis of a DNA clone containing the provi-
ral genome of GR-FeSV revealed the
presence of 1.7 kilobase pairs (kbp) of
cell-derived sequences that are flanked
by a partial gag gene at the 5’ end and
partial env gene at the 3’ end (2). These
cell-derived sequences, termed v-fgr, ap-
pear to code for the oncogenic potential
of the viral genome. Cells transformed
by GR-FeSV express a 70,000-dalton
protein, which is recognized by antibod-
ies to the helper virus structural protein
pl5 but not by antibodies to other helper
virus proteins (2, 3). Thus the primary

translational product of GR-FeSV,
called P70%%¢¥#¢", is a hybrid molecule,
containing at least a portion of FeLV p15
as well as FeLV-unrelated component
coded by v-fgr sequences (2, 3). The
hybrid P70¢%¢¢" has a closely associated
kinase activity with specificity for tyro-
sine residues (3). In an effort to under-
stand the mechanism of action of the v-
fgr oncogene and its relationship to other
cell-derived genes, we have undertaken
primary DNA sequence analysis of the
region of GR-FeSV encoding P708%¢7&"
(7). The nucleotide sequence of the en-
tire region coding for the P708%872" g
determined by the procedures of Maxam
and Gilbert (4), is shown in Fig. 1.

The v-fgr nucleotide sequence. Since
the v-fgr onc gene product contains gag-
gene determinants, we compared the se-
quence in Fig. 1 with that of the Snyder-
Theilen feline sarcoma virus gag-gene
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(5). Such a comparison revealed exten-
sive nucleic acid and protein sequence
homology between the two genes from
nucleotide 1 to nucleotide 354. Down-
stream of this position, no sequence ho-
mology was observed between the two
viral genes, thus localizing the point of
recombination between the helper viral
gag and cell-derived sequences. Beyond

30

this point of recombination in GR-FeSV,
the open reading frame extended for an
additional stretch of 1635 bases terminat-
ing with a TAA codon. This open reading
frame has the coding capacity for a poly-
peptide of 663 amino acids having a
molecular size of 70,000 daltons. This is
in good agreement with that observed for
the gag-fgr hybrid protein synthesized

60

by GR-FeSV transformed cells. These
results demonstrate the P705%7%" protein
consists of 118 amino acids of FeLV p15
region followed by 540 amino acids that
are specific to the v-fgr region. In order
to determine the 3’ v-fgr helper virus
junction, we compared the nucleotide
sequence shown in Fig. 1 with that of the
FeLLV envelope gene (6). This compari-
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Fig. 1. Nucleotide sequence of GR-FeSV proviral genome coding for gag-fgr polyprotein. The sequence proceeding in the 5’ to 3’ direction has
the same polarity as GR-FeSV genomic RNA. Position 1 corresponds to the ATG codon at the amino terminus of the gag gene. The amino acid
sequence deduced from the open reading frame is given below the nucleotide sequence. Bracketed numbers at the end of each line indicate the
amino acid positions. Cleavage sites for some of the important restriction enzymes are also indicated. Termination codon is designated by ***,
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son revealed that the two sequences are
identical beyond position 1976. Thus the
recombination at the 3’ end occurred
within the envelope gene, altering the
reading frame which created the termina-
tor codon for P70847%",

In an effort to understand the nature
and possible structural relation between
the v-fgr onc gene with other cellular
genes of known sequence, we used the
computer homology search programs of
Wilbur and Lipman (7). This analysis
revealed that v-fgr consists of portions of
at least two distinct cellular genes, one of
which is an actin, a cytoskeleton protein
of 375 amino acid residues. Starting from
amino acid position 141, we observed
extensive homology between the v-fgr
product and cytoplasmic actins derived
from mammalian cells (8) (Fig. 2A). The
sequence homology was greater than 98
percent with only two mismatches out of
128 amino acids. Four of these mis-
matched amino acids occurred at the
amino terminal end of the actin gene,
which appears to vary from one type of
actin to the other. Beyond the 268th
amino acid, the homology between these
two proteins became statistically insig-
nificant.

Immediately downstream of the actin-
like sequence, the v-fgr onc gene prod-
uct was found to be highly homologous
to the onc moiety of P905“¢7¢*, the pri-
mary translational product of the Y73
avian sarcoma virus (v-yes) (9). Thus,
starting from amino acid position 269 and
extending to 657, we observed an 80
percent amino acid sequence homology
between these two polyproteins, with
311 out of 388 amino acids matching
(Fig. 2B). The v-fgr encoded protein
showed similar homology with the prod-
ucts of v-src, v-abl, v-fes, and v-fps (5, 8,
9). Thus, the v-fgr protein shared 288,
162, 156, and 155 amino acids with src-,
abl-, fes-, and fps-coded transforming
proteins, respectively (5, 9, 10). A re-
duced degree of homology was observed
between v-fgr and v-mos coded gene
products (/1, 12), one of which was
shown to be a protein kinase (13). A
single site for tyrosine phosphorylation
has been detected within p60°™ (14). This
residue has been located precisely at
amino acid position 416 of the p60**
coded by the Prague strain of Rous sar-
coma virus (7). The location of the phos-
phate acceptor tyrosine residue in p60°"©
is ‘homologous to the tyrosine residue at
amino acid position 553 of P70¢ee2"
shown in Fig. 1. This tyrosine residue is
preserved in all the tyrosine-specific ki-
nases for which amino acid sequences
are available (5, 10).

A stretch of 22 amino acids from posi-
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tion 118 to position 140 of P70ses/e"
exhibited no sequence homology with
the FeLV gag gene, actin génes, or any
retrovirus onc gene. The origin of these
sequences is not clear. It is possible that
this region represents the 5' leader se-
quence of the actin gene which was
incorporated during the recombination
process that led to GR-FeSV. Since none
of the actin genes from the cat has been
sequenced, this possibility is not yet
testable. Alternatively, this region may
represent an upstream exon of c-fgr, in
which case the recombination involving
actin sequences occurred within c-fgr.
The analysis of c-fgr (cat) locus will aid
in the resolution of this question.

Within the v-fgr, the nucleotide se-
quence between 807 and 825 was found
to contain sequence homology with both
actin and v-yes genes (Fig. 3). It is possi-
ble that this sequence homology has al-
lowed homologous recombination in this
region. Such homologies also occur be-
tween helpér virus and ¢-onc gene se-
quences in Moloney murine sarcoma vi-
rus, simian sarcoma virus, Abelson mu-
rine leukemia virus, and myelocytomato-
sis virus (12, 15). These findings have led
to the speculation of homologous recom-
bination between cell-derived proto-on-
cogenes and helper virus sequences dur-
ing the generation of acute transforming
viruses.

110 120 130 140 150 160 170
(fgr) LPPPKPPTSLPQPHSPQPARALCRPAVCRP RPLPPLPPTAMEEEVAALV IDNGSGMCKAGF AGDDAPRAVFPS IV
(y-Actin) MEEE TAALY IDNGSANGKAGE AGDDAPRAVEPS 1V
10 20 30
180 190 200 210 220 230 240 250
(fgr) GRPRHQGVMVGMGOKDSYVGDEAQSKRG ILTLKYP IEHG IVTNWDDMEK IWHHTFYNEL RVAPEEHPVLLTEAPLN
(y-Actin) GRPRHQGVMVGMGQKDSYVGDEAQSKRG ILTLKYP IEHG IVTNWDDMEK IWHHTFYNEL RVAPEEHPVLLTEAPLN
40 50 60 70 80 90 100 110
260 270 280 290
(fgr) PKANREKNTQIMFETFNIPSNYVAPVDS IQAEEWYFGK IGRKDAERQLL
(y-Actin) PKANREKMTQ INFETFNTPAMYVA- - -~ 1QAVLSLYASGRTTG IVMDSG A
120 130 140 150
270 280 290 300 310 320 330 340
(fgr)  IPSNYVAPVDSIQAEEWYFGK IGRKDAERQLLSPGNARGAFLVRESETTKGAYSLSIRDWDEARGDHVKHYK IRKL
(yes)  IPSNYVAPADS IEAEEWYFGKMGRKDAERLLLNPGNQRGIFLVRESETTKGAYSLSIRDWDEVRGONVKHYK IRKL
420 430 440 450 460 470 480 490
350 360 370 380 390 400 410 420
(fgr)  DTGGYYITTRAQFNSVQELVQHYVEVNDGLCHLLTAACTTMKPQTMGLAKDAWE ISRSS ITLQRRLGTGCFGDVHL
(yes) DNGGYYITTRAQFESLQKLVKHSREHAééLéﬁKLiTVCPTVKPoToGLAKDAwEIPRESLRLEVKLGQGéEéEVQM
— 500 510 520 530 540 550 560
430 440 450 460 470 480 490
(fgr)  GMWNGSTKVAVKTLKPGTMSPKASLEEAQIMKLLRHDKLVQLYAVVPEEP 1Y IVTEFMCHGSLLEFLKDQEGQDLT
(yes) GTﬁﬁéTik@AlkiLkLé%MMéEAFLQéAdiﬁkxiéﬁékLQPL?Aéﬁsééﬁi?iViéﬁerééLLoﬁLKEGEGKFLK
570 580 590 600 610 620 630 640
500 510 520 530 540 550 560 570
(£gr)  LPQLVDMAAQVAEGMAYMERNDY THRDLRAANILVGERLVCK IADFGLARL IEDNEYNPROGAKFP IKNTAPEAAL
(yes) LﬁéiﬁbﬁAAéIADéMA?léﬁﬁu?iﬁhbihAA&iLVéDNLVékiAbFéLA&Liéé&é?TAkbéAkﬁéikﬁ%AﬁéAAL
— 650 660 670 680 690 700 710
580 590 600 610 620 - 630 640
(fgr) FGRFTIKSDVHSFGILLTEL ISKGRVPYPGHNNREVLEQVEHGYHNPCPPGCPASLYEAMEQTHRLDPEERPTFEYL
(yes) YGRFTIKSOVHSFGILL TELVTKGRYPYPGNVNREVL EQVE RGY RMPCPQGCRE SLHELMKLCHKKDRDE RPTFEY T
730 740 750 760 770 780 790
660
(fgr) QSFLEDYFNGPQQN
(yes) QSFLEDYFTAAEPSGY B
800 810

Fig. 2. Similarities between the deduced amino acid sequences of (A) v-fgr and actin gene
products and (B) v-fgr and v-yes gene products. The amino acid sequences are aligned to give
the maximal homology. For this purpose the computer methods described by Wilbur and
Lipman (7) were used. A K-tuple size of 1, window size of 20, and gap penalty of 3 were used in

this analysis. Dots indicated identical amino acids. A, Ala; C, Cys; D

, Asp; E, Glu; F, Phe; G,

Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro: Q, Gln; R Arg; S, Ser; T, Thr; V,
val; W, Trp; Y, Tyr.
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Fig. 3. Sequence homology between v-fgr,
actin, and v-yes genes. The v-fgr sequence
corresponds to the nucleotide positions 808 to
825 presented in Fig. 1. The actin sequence is
from (8) and v-yes sequence is from (9). Sirice
the v-yes sequence shown in this figure is

Actin: CCA GCC ATG TAC G':’(la ?ﬁ
(1
v-fgr: CCC AGC AAC TAC GTG GCC
T LET 1l
v-yes: CCA AGC AAT TAT GTA GCT

fier.i‘vgd from chicken genome, there is considerable mismatching in the third base position of
individual codons. The c-fgr (from the cat) sequences would be expected to show better

homology in these positions.

Fig. 4. Summary of the major «bp r
structural features of the GR- o
FeSV genome. Important fea-

tures of GR-FeSV genome in-
cluding the open reading
frame, important restriction
enzyme cleavage sites, and the
region of homology with
FeLV plS, actin, and v-yes

al li Bam Hi
LTR [v-for] < LTR
; N

I I T |
2 3 4 5

GR-FeSV

p7o 92g-far

gene products are indicated.
LTR, long terminal repeat;
kbp, kilobase pairs.

Nucleotide sequence analysis of the
proviral genome of GR-FeSV disclosed
several important features concerning
the genomic molecular organization (Fig.
4). Many of the acute transforming virus-
es appear to synthesize their transform-
ing protein by means of a gag-onc hybrid
molecule, the amino termini of which
contain at least a portion of their respec-
tive gag structural proteins. In the case
of GR-FeSV, the first 118 amino acids of
the gag-fgr hybrid protein are derived
from the FeLV plS and the next 540
amino acids are coded by v-fgr. The last
five amino acids of P708%¢2" are coded
by the FeLV envelope gene. Howev-
er, the recombinational event occurred
within the envelope gene, altering the
reading frame and creating a terrinator
codon. Thus, the transforming protein
utilized the helper viral sequences for the
initiation afid termination of its synthe-
sis. This appears to be a common feature
of many retroviral transforming genes
and, in fact, may be essential for the
activation of these genes (9—12).

A most interesting aspect of v-fgr re-
lates to the finding that this oncogene
contains two distinct domains, one de-
rived from an actin gene and thé other
from a gene belonging to the tyrosine-
specific kinase gene family, the latter
being a constituent of a number of retro-
virus-transforming genes. These findings
imply that GR-FeSV arose ds a result of
interaction between helper virus DNA
and two distinct cellular genes. Similar
double recombinations seem to have oc-
curred during the generation of Harvey
arid Kirsten murine sarcoma viruses
(Ha-MuSV and Ki-MuSV), avian eryth-
roblastasis virus (AEV), and avian MH,
virus (16). In the case of Ha-MuSV, the
viral genome arose by independent re-
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combination of the Mo-MuLV with the
rat c-Ha-ras gene and sequences from a
replication defective, endogenous virus-
like genome of rats (rat VL 30) (/6). In
the case of AEV, there is convincing
evidence that this virdl oncogene arose
by recombination with two distinct loci
of chicken cellular genome designated c-
erb-A and c-erb-B (16). It therefore ap-
pears that some acute transforming ret-
roviruses consist of two distinct cellular
genes, suggesting their cooperative ef-
fect in the transformation process. In the
case of GR-FeSV, we have been able to
identify the biochemical nature of both
genes involved in the genesis of its trans-
forming gene.

The presence of actin sequences near
the amino terminal region of P70%%7¢"
raises interesting questions. Actin is a
highly conserved and abundant structur-
al protein and is present in all eukaryotic
cells. Six actin isoforms are known in
vertebrates: four muscle types and two
nonmuscle types (/7). Each muscle-type
actin is functionally involved in muscle
contraction and is expressed only in par-
ticular muscle tissues. Conversely, cyto-
plasmic actins participate in a variety of
functions, such as cell motility, mitosis,
and maintenance of the cytoskeleton,
and are expressed in all cell types. Stable
alterations of cell shape and motility
have been considered as one of the phe-
notypic characteristics of  transformed
cells. In fact, human cells transformed
by chemical carcinogens have been
shown to express an aberrant form of -
actin (/8). This aberrant form was found
to contain a point mutation that was
accompanied by subtle reduction in the
incorporation of the of variant B-actin
into the cytoskeleton of HuT 14 cells
(18). There also appears to be some

correlation between the appearance of
the variant actins and increased ability of
these cells to produce tumors in nude
mice. It is therefore possible that the
P708%¢#2" which contains 134 out of ac-
tin’s 375 amino acids represents an aber-
rant form of this protein which interferes
with the formation of proper cytoskeletal
structure in cells transformed by GR-
FeSV. Alternatively, the actin moiety of
P708%¢8" may serve to direct the tyrosine
kinase to a limited set of targets in the
cytoskeleton which would not normally
be accessible for phosphorylation. The
availability of molecular clones contain-
ing the GR-FeSV genome should make it
possible to determine how the actin se-
quence of v-fgr relates to the biological
activity of this virus.
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