Reports

Ethane Ocean on Titan

Abstract. It is proposed that Saturn's satellite Titan is covered by an ocean one to several kilometers deep consisting mainly of ethane. If the ocean is in thermodynamic equilibrium with an atmosphere of 3 percent (mole fraction) methane, then its composition is roughly 70 percent ethane, 25 percent methane, and 5 percent nitrogen. Photochemical models predict that ethane is the dominant end product of methane photolysis so that the evolving ocean is both the source and sink for continuing photolysis. The coexisting atmosphere is compatible with Voyager data.

The Voyager 1 radio occultation experiment placed a probable upper limit on the abundance of methane in the lower atmosphere of Titan of 3 mole percent (1), a value well below the 10 percent obtained by assuming the atmosphere to be in equilibrium with a pure CH₄ liquid surface at 94 K. The nearsurface temperature gradient inferred from the data is 1.38 ± 0.1 K/km, essentially that of an unsaturated N₂ adiabat over a solid surface. Thus a predominantly CH_4 ocean is very unlikely (2, 3). However, the present abundance of CH₄ in the atmosphere will be consumed by photochemical processes in a time on the order of 10^7 years. An almost pure N₂ atmosphere is compatible with the presence of an ocean if the dominant oceanic constituent is less volatile than CH₄ and substantially depresses the CH₄ vapor pressure. Photochemical modeling suggests a natural candidate-ethane. A C_2H_6 -rich ocean containing ~ 25 percent CH₄ is not only consistent with the occultation data but also provides a longlived ($\ge 10^9$ year) source for CH₄ photolysis. The idea of an ocean in which the CH₄ vapor pressure is depressed by the presence of higher hydrocarbons has been suggested independently by Flasar (2, 4).

Methane is readily photolyzed in the mesosphere of Titan by absorption of sunlight shortward of 1450 Å to yield the radicals ¹CH₂, CH₂, and CH, which can react to produce C_2H_4 and C_2H_2 (5). The net result can be summarized as

$$2CH_4 \rightarrow C_2H_4 + 2H + H_2$$
$$2CH_4 \rightarrow C_2H_2 + 3H_2 \text{ (or } H_2 + 4H)$$

With rapid loss of hydrogen by escape, conversion of CH₄ into the heavier hydrogen-poor hydrocarbons is extremely

16 DECEMBER 1983

efficient (> 95 percent per CH₄ dissociation) and irreversible. The most likely fate of C_2H_4 in the mesosphere is dissociation to C₂H₂. Since there are no effective permanent sinks for C_2H_2 in the mesophere, the molecule flows down to the stratosphere and is ultimately removed by condensation at the tropopause.

Photochemistry in the stratosphere is initiated by absorption of photons be-

atmospheric

temperature

tures.

km.

Altitude

tween 1450 and 2000 Å by C₂H₂, resulting in the photosensitized dissociation of CH₄, and ultimately the production of C_2H_6 . The net result can be summarized as

$$2CH_4 \rightarrow C_2H_6 + H_2$$
$$2CH_4 \rightarrow C_2H_6 + 2H$$

where C_2H_2 plays the role of a catalyst (6). With the formation of C_4H_2 (diacetylene) it is possible to drive the photosensitized dissociation of CH4 with photons as soft as 2300 Å. Since the solar flux increases drastically from 1450 to 2300 Å, the rate of C_2H_6 production in the atmosphere can be much larger than that of C_2H_2 . Once it is formed, C_2H_6 is stable against photolysis in part because of shielding by CH₄ and C₂H₂. Stratospheric C₂H₆ is lost primarily by condensation at the tropopause.

The column-averaged mixing ratios for stratospheric H₂, C₂H₆, C₂H₄, C₂H₂, and C₃H₈ predicted by the model (and compared with observed values shown in parentheses) are, respectively. $2.1 \times$ 10^{-3} (2 × 10⁻³), 1.7 × 10⁻⁵ (2 × 10⁻⁵), 3.3×10^{-8} (4 × 10⁻⁷), 4 × 10⁻⁶ (2 × 10^{-6}), and 7.9×10^{-7} (2 to 4×10^{-6}); the predicted values compare favorably with the observed values (7). In the

1229

current epoch, CH₄ is being destroyed in the atmosphere at the rate of 1.5×10^{10} $cm^{-2} sec^{-1}$ and converted into C_2H_6 , C_2H_2 , and C_3H_8 at the rates 5.8×10^9 , 1.2×10^9 , and 1.4×10^8 cm⁻² sec⁻¹. The rates of H and H_2 escape from the exosphere are 5.5×10^9 and 7.2×10^9 $cm^{-2} sec^{-1}$. Over the age of the solar system then, a kilometer-deep primarily ethane liquid surface layer in coexistence with CH_4 and N_2 has accumulated. This depth is compatible with limits derived by Sagan and Dermott (8) from a study of the tidal damping of Titan's orbital eccentricity.

Thermodynamic data on the C₂H₆-CH₄-N₂ system is restricted to temperatures above 110 K (9); however, there are lower temperature data on the binary end-members of this ternary, and we have estimated equilibrium abundances of the three components for the present conditions at the surface of Titan. In the C_2H_6 -CH₄ binary (10), the C_2H_6 vapor pressure at 94 K, Titan's surface temperature, is only $\sim 10^{-5}$ bars. If we require the CH₄ mixing ratio at the base of the atmosphere to be constrained between 1.6 and 3 percent, as suggested by Voyager data, then the CH₄ mole fraction of the liquid is between 13 and 25 percent (11). To estimate the N_2 content of the ocean, N₂-CH₄ and N₂-C₂H₆ solubility data (12) were used to estimate the Henry's law constant for N_2 in the C_2H_6 -CH₄ mixture (13). Assuming the ternary system to be ideal, we find an N_2 mole fraction in the ocean of $X(N_2) \approx$ 0.05 (14). The presence of at least several percent propane dissolved in the liquid, as implied by the Voyager data, does not alter substantially the CH₄ and N₂ mixing ratios derived above.

At the present temperature of Titan's surface, C₂H₂ is a solid. We estimate its solubility in the ocean at 94 K to be ≤ 3.1 \times 10⁻⁴ (15). The ocean floor should be covered with a solid C₂H₂ layer 100 to 200 m thick (16) plus a small amount of heavier organic debris (17).

We turn now to the atmospheric structure and meteorology above an C₂H₆-CH₄ ocean. A rising parcel of gas, expanding adiabatically, forms C₂H₆-rich droplets and follows a temperature path defined by a "wet" adiabat. Since the relevant vapor pressure is predominantly that of C_2H_6 , the resulting lapse rate is found to be about 1.4 K/km, essentially indistinguishable from the dry N₂ adiabat or the radio occultation result of 1.38 \pm 0.1 K/km(1). This should be contrasted with the expected wet adiabatic lapse rate of 0.6 K/km for a CH₄ ocean (18). Despite the small amount of condensation, it is possible to have significant scattering optical depth: the condensation of a few tens of microbars of C₂H₆ into 0.1-µm droplets gives an optical depth in excess of unity. This may affect the radiative-convective transport in the lower atmosphere, which could be relevant to understanding the transition from adiabatic to subadiabatic conditions at 3.5 km, as inferred from the radio occultation data.

At successively higher levels in the atmosphere, droplet condensation still occurs; the composition of the droplets becomes more CH₄-rich, as dictated by the rapidly decreasing C₂H₆ vapor pressure and nearly constant CH4 gas mixing ratio. At about 80 K, at an altitude of about 15 km, two condensates are formed-a CH4-rich solid and a very small amount of liquid that grades with decreasing temperature to a eutectic composition of about 35 percent C_2H_6 at 77 K (19). This defines the predominant region of CH₄ condensation and haze formation in the troposphere.

The structures of ocean and atmosphere are illustrated in Fig. 1. The ocean contains the equivalent of at least one Titan atmosphere of CH₄, sufficient to maintain photolysis for $\geq 10^9$ years, and at least one-half Titan atmosphere of N_2 , a significant buffer of the present atmosphere. The most important observational tests of our model are (i) verification of the presence of CH₄ clouds as an opacity source in the lower atmosphere (20); (ii) detection of C_2H_6 saturation or near saturation in the lower troposphere; and (iii) evidence (from radar or other sources) of an essentially global ocean, since the expected depth exceeds nearly all probable elevation differences for an icy satellite such as Ganymede.

> JONATHAN I. LUNINE DAVID J. STEVENSON

YUK L. YUNG

Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena 91125

References and Notes

- 1. G. F. Lindal et al., Icarus 53, 348 (1983). Methane as the predominant hydrocarbon mole Cule above the trooppause was verified by the Voyager IRIS experiment [see R. Hanel *et al.*, *Science* 212, 192 (1981)].
 F. M. Flasar, *Science* 221, 55 (1983).
 V. R. Eshleman, G. F. Lindal, G. L. Tyler, *Althouse and the second second*
- 3.
- *ibid.*, p. 53 4, F, M, Flasar (2) and J. Pearl proposed a 50-50 mixture for the ethane-methane ocean as report-ed in *Science News* [124, 28 (1983)].
- ed in Science News [124, 28 (1983)]. The essential aspects of mesospheric chemistry of CH₄ were described by D. F. Strobel [J. Atmos. Sci. 30, 489 (1973); Icarus 21, 466 (1974)]. Laboratory studies which produced substantial amounts of C_2 and C_3 hydrocarbons from CH₄ dissociation were reported by A. C. Lasaga et al. [Science 174, 53 (1971)], T. Scat-tergood and T. Owen [Icarus 30, 780 (1977)], S. Chang et al. [Rev. Geophys. Space Phys. 11. Chang et al. [Rev. Geophys. Space Phys. 17,

1923 (1979)], A. Bar-Nun and M. Podolak [Ica-rus 38, 115 (1979)], and S. Gupta et al. [Nature (London) 293, 725 (1981)].

- The possibility of photosensitized dissociation of CH₄ and subsequent stratospheric chemistry was first proposed by M. Allen, J. P. Pinto, and Y. L. Yung [Astrophys. J. Lett. 242, L125 (1980)]. Recent laboratory investigations of the (1960). Recent laboratory investigations of the photochemistry and chemical kinetics of C_2H_2 by H. Okabe [*J. Chem. Phys.* **75**, 2772 (1981); *ibid.* **78**, 1312 (1983)] put the theory of stratospheric chemistry on a solid basis.
- The complete model is referred to Y. L. Yung, M. Allen, and J. P. Pinto [Astrophys. J. Suppl. Ser., in press]. The column-averaged mixing ratio is defined as the ratio of the column-Tailor is defined us that of the other second seco (London) 292 (20 August 1981); J. Geophys. Res. 87 (1 March 1982)]. Integrated production
- rates and fluxes refer to the surface. C. Sagan and S. F. Dermott, *Nature (London)* **300**, 731 (1982). 8.
- 9. R. T. Ellington et al., in Thermodynamic and Transport Properties of Gases, Liquids and Sol-Iransport Properties of Gases, Liquids and Sol-ids, Y. S. Touloukian, Ed. (McGraw-Hill, New York, 1959), p. 180; S-D. Chang and B.C-Y Lu, Chem. Eng. Prog. Symp. Ser. 63, 18 (1967). Estimated from R. C. Miller and L. A. K.
- 10.
- Estimated from R. C. Miller and L. A. K. Staneley, in Advances in Cryogenic Engineer-ing, K. D. Timmerhaus and D. H. Weitzel, Eds. (Plenum, New York, 1976), vol. 21, p. 493. If the CH₄ is not perfectly mixed, its surface mixing ratio could be as high as \sim 9 percent (2). This yields an ocean with as much as \sim 70 percent CH₄. If the ocean is more CH₄-rich, then it can only be deeper than our estimated 1 then it can only be deeper than our estimated 1 km since the total C_2H_6 in the ocean is bounded below by photochemical considerations.
- 12. H. Cheung and D. I-J. Wang, Ind. Eng. Chem. Fundam. 3, 355 (1964).
- J. M. Prausnitz, Molecular Thermodynamics of Fluid-Phase Equilibria (Prentice-Hall, Engle-wood Cliffs, N.J., 1969), p. 373.
 A miscibility gap is possible with an N₂-CH4
- layer separating above a primarily $C_2H_6-CH_4$ layer (9). An approximate extrapolation of the
- 111 K data down to 94 K, suggests that the miscibility gap requires $X(N_2) \ge 0.15$. Calculated from data in J. M. Prausnitz (13, p. 385) and G. T. Preston and J. M. Prausnitz [Ind. Eng. Chem. Process Des. Dev. 9, 264 (1970)]. 15.
- 16. The density at 94 K of the liquid mixture is 0.61 Ine density at 94 K of the liquid mixture is 0.61 g/cm³ [R. D. Goodwin, H. M. Roder, G. C. Straty, *Nat. Bur. Stand. (U.S.) Tech. Note* **684**, 64 (1976); R. D. Goodwin, *ibid.* **653**, 136 (1974); R. T. Jacobsen and R. B. Stewart, J. Phys. Chem. Ref. Data 2, 757 (1973)]. A density of 0.78 g/cm³ at 94 K for solid acetylene was extrapolated from R. G. Amamchyan and A. I. Margo IT. Vaces Naraba evolution for the Kielow. Moroz [Tr. Vses. Nauchno-Issled. Inst. Kislor-odn. Mashinostr. 10, 150 (1965)].
- We also examined the solubility of minor con-stituents in the ocean. The CO_2 is sufficiently soluble that an amount equal to the inferred atmospheric abundance of CO [B. L. Lutz, C. de Bergh, T. Owen, *Science* **220**, 1374 (1983)] may be discluded The CO could be are polytically 17. may be dissolved. The CO and H₂ are relatively insoluble. Because the ocean is capable of dis-solving large amounts of Ar and Kr it will control their atmospheric abundances. The Kr/Ar ratio over the ocean can be predicted and
- KI/AF ratio over the occan can be predicted and is thus diagnostic of the evolution of Titan.
 18. Calculated from a generalized form of an equa-tion described by J. S. Houghton [*Physics of Atmospheres* (Cambridge Univ. Press, Cam-bridge, 1977), p. 19]. G. F. Lindal *et al.* (1), in computing the saturated adiabat for CH4, used an arrangement that omitted a tarm involving the an expression that omitted a term involving the change of vapor pressure with temperature and
- hence found a value of 0.3 K/km. The temperature and composition at which the 19. solid-liquid boundary is crossed depends on the surface CH_4 mole fraction, assumed to be 3 percent. Eutectic composition estimated from F. Pavese [J. Chem. Thermodyn. 10, 369 (1978)] and other data (15)
- 20. Models that support the presence of methane clouds are those of R. Courtin [*Icarus* 51, 466 (1982)] and R. E. Samuelson [*ibid.* 53, 364 (1983)].
- (1985)].
 We thank J. Pearl, D. M. Hunten, and C. Sagan for helpful discussions and R. E. Samuelson and F. M. Flasar for detailed reviews of the manu-script. Supported by NASA grants NSG 7376 and NAGW 185. Contribution number 3933 from the Division of Geological and Planetary Sciences. California Institute of Techology. 21 Sciences, California Institute of Technology.

30 June 1983: accepted 27 September 1983