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one or a few fragments introduces an 
unacceptably large error which biases 
the measurements toward spuriously low 
fragment numbers. Further, interphase 
cells inevitably contaminate the synchro- 
nized mitotic populations used to induce 
PCC and these must be identified to 
avoid scoring the wrong fusion products. 

We overcame this problem (6) by us- 
ing a relatively simple technique based in 
principle on the Giemsa staining proper- 
ties of 5-bromodeoxyuridine (BrdU)- 
substituted chromosomes, discovered by 
Perry and Wolff (7). The mitotic cells 
used to induce PCC were derived from 
cultures grown continuously in BrdU, 
and the fusion products were stained 
with Giemsa, after treatment with 
Hoechst 33258 dye and exposure to near 
ultraviolet light. With this procedure the 

BrdU-substituted mitotic chromosomes 
stained very lightly while the PCC's from 
the interphase (GI) cells (which did not 
contain BrdU) stained a dark blue or 
magenta color (Fig. 1A). Thus, the 
PCC's and their fragments were much 
easier to score than when conventional 
Giemsa staining was used (Fig. 1B). 

Using this technique we measured the 
frequency of breaks produced in noncy- 
cling GI cells immediately after x-irradia- 
tion, over a range of doses from 10.9 to 
600 rad (0.109 to 6.00 Gy). We also 
compared the rejoining rate of x-ray- 
induced GI chromosome breaks with the 
rate of repair of potentially lethal damage 
(PLD). 

Normal human fibroblast-derived 
AG1522 cells (NIA Cell Repository) 
were chosen for these experiments be- 
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glucose, and chilled to 0°C; 75 HAU of 4 8 12 
ultraviolet-inactivated Sendai virus Time after irradiation (hours) 
was then added. The samples, still at 
P C ,  were irradiated with x-rays generated at 280 kV (dose-rate: 59 radlmin; HVL = 0.3 mm 
Cu) and then were immediately placed in a 37°C water bath to allow cell fusion and PCC to 
occur. The cell fusion technique (6) resulted in approximately 25 percent of the G I  AG1522 cells 
successfully fusing with one or more mitotic HeLa cells, and PCC was induced in virtually all 
such fusions. Slides were prepared as described elsewhere (6). Data points represent the mean 
of the total number of PCC's and fragments. Vertical bars are standard errors (20). Between 25 
and 80 cells were scored for each sample. For slopes and intercepts see text. The mean number 
of PCC's per cell for unirradiated samples was 45.8. The inset shows a magnification of the 
dose-response curve in the lower dose region. (B) The percentage of initial GI  chromosome 
breaks (net fragments) remaining as a function of incubation time after 330- or 600-rad x-rays 
[beam characteristics; same as (A)]. Plateau phase AG1522 cells were irradiated and incubated 
at 37°C for various time periods up to 14 hours, after which they were removed by trypsinization 
and fused with mitotic HeLa cells for PCC analysis as described in (A). A two-component 
exponential curve of the form F = Ae" + Bed' was fitted to the data. The best fit parameters 
were A = 0.934 i. 0.054, B = 0.081 i. 0.058, c = -0.0073 t- 0.0007, and d = 0.00005 * 
0.00104. For the 600-rad series, parallel samples were also plated to assay for survival by colony 
formation (see C). (C) Break rejoining data for the G, chromosomes exposed to 600 rad shown 
in (B) were replotted on linear-linear coordinates, together with results from the parallel cell 
survival measurements. 
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cause they are relatively homogeneous 
with respect to chromosome number 
(2n = 46) and because they show "con- 
tact inhibition" in monolayers (6). A 
large spread in chromosome number per 
cell would lead to a large statistical un- 
certainty in determining whether breaks 
had been produced in a given cell or 
whether that cell contained more chro- 
mosomes to begin with. The second 
point is important because populations 
of cycling cells would be heterogeneous 
with respect to the radiosensitivity of 
individual cells (8). Noncycling cells 
have been used by others for the study of 
break rejoining in PCC's after treatment 
by drugs (9) or x-rays (10). 

The frequency of total PCC's and frag- 
ments per cell, measured immediately 
after irradiation, for doses ranging from 
10.9 to 600 rad, is shown in Fig. 2A. The 
data were fitted by least squares regres- 
sion to a straight line having a slope of 
0.0599 F 0.0003 fragments (breaks) per 
cell per rad and an intercept of 
45.92 0.08 fragments. The line fitted 
to the low dose data alone is shown in 
the inset and has a slope of 
0.0627 t 0.0002 fragments per cell and 
an intercept of 45.78 i 0.01 fragments. 
This break frequency per rad is of the 
same order as that reported for log phase 
GI HeLa cells by Waldren and Johnson 
after doses of 200 to 1800 rad. Hittleman 
and Rao (5) found that the break frequen- 
cy per rad is much lower in G2 PCC's, 
which agrees well with the lower x-ray 
sensitivity to cell killing in early to mid- 
Gz reported by Griffiths and Tolmach 
(9). 

We measured the frequency of meta- 
phase chromosome aberrations after pla- 
teau phase AG1522 cells were given 330- 
rad x-rays, immediately subcultured, 
and allowed to progress to mitosis. Cells 
were collected with Colcemid over 6- 
hour intervals between 24 and 48 hours 
after irradiation. During this first wave of 
cell division only 20 percent of the cells 
reached mitosis compared to approxi- 
mately 50 percent for unirradiated con- 
trols. The total frequency of chromo- 
some-type aberrations per cell ranged 
from 1.3 at the earliest collection interval 
to 0.83 at the last collection interval. 
Virtually no chromatid-type aberrations 
were seen. This same dose produced 
approximately 20 breaks per cell as mea- 
sured by PCC analysis, immediately af- 
ter irradiation. 

Our data for breaks in PCC's were 
obtained by scoring 25 to 80 cells per 
sample. The difference in means for the 
0- and 10.9-rad samples (0.72 net frag- 
ments) was highly significant ( X 2  = 15.09; 
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P < 0.005). Assuming breaks are pro- 2000 rad, Johnson and co-workers (14) 
found an initial rejoining half-time of 
about 2.5 hours for cycling G I  HeLa 
cells, also accompanied by a slower 

tant, not only as a guide toward estab- 
duced randomly, that the break frequen- 
cy per rad is 0.063, and a distribution of 
PCC's per cell for zero dose controls 
similar to that measured in these experi- 

lishing sound biophysical models for pre- 
dicting risks from low level radiation 
exposure, but also for what it may reveal 

component at later times. Hittleman and 
Pollard (15) observed no decrease in 
chromatid gaps or breaks in cycling GZ 
CHO cells during the first 30 minutes 

about processes involved jn radiation 
ments, we used a Monte Carlo approach 
to calculate theoretical PCC + fragment 
distributions. The results indicate that 
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chromosome breakage could be detected 
for doses as low as 3 to 5 rad by scoring 
about 250 cells per sample. If the dose- 

after 312 rad, then a decrease to about 
half the initial value after a total of 60 
minutes. The increase in AG1522 cell 

response were linear above 3 rad, it may survival as a function of incubation time 
in plateau phase monolayers after 600 
rad is shown in Fig. 2C. Also shown are 

not be necessary to measure the re- 
sponse for doses much lower than this. A References and Notes 
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