
Fig. 2 have each been explicitly associat- 
ed with the formation of cyclones in both 
hemispheres (26). 

Identification of westerly wind bursts 
in the central equatorial Pacific before El 
NiAo events of the past does not improve 
our capability to  predict future El NiAo 
events, beyond what can already be ac- 
complished from monitoring the south- 
ern oscillation (27, 28). The strong zonal 
wind bursts near the date line are neither 
necessary (for example, there were no 
bursts before the 1963 El Niho, and very 
weak bursts occurred before the 1976 El  
Nifio) nor sufficient (for example, strong 
bursts in 1974 and 1977 were not fol- 
lowed by significant El NiAo events) for 
the existence of El NiAo. Other factors, 
beyond the fluctuations of equatorial 
winds near the date line, must be influ- 
encing the onset and development of El 
NiAo. 
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Fluoride Directly Stimulates Proliferation and Alkaline 
Phosphatase Activity of Bone-Forming Cells 

Abstract. Fluoride is one of the most potent but least well understood stim~llators 
of bone formation in vivo. Bone formation was shown to arise from direct efects on 
bone cells. Treatment with sodium fluoride increased proliferation and alkaline 
phosphatase activity of bone cells in vitro and increased bone formation in 
embryonic calvaria at concentrations that stimulate bone formation in vivo. 

Fluoride is essential in the diet and is 
thought to be required for normal dental 
and skeletal growth (I).  The recommend- 
ed allowance of fluoride is 1 to 4 mg per 
day. Doses of 20 to 100 mg per day, or 
more, usually cause abnormal increases 
in skeletal mass, even to the point of 
sclerosis (2). This may represent an ex- 
aggerated physiological response or a 
new and unrelated action, but because 
the effect of excess fluoride is selective 
for bone, it has therapeutic applications. 
Clinical studies have shown that N a F  is 
the most potent agent for increasing 
bone volume in patients with osteoporo- 
sis (3, 4). Although the mechanism is 
unknown, the skeletal response to sup- 
plemental N a F  is characterized by in- 
creases in (i) the rate of bone formation 
(4, 5); (ii) the number of osteoblasts, or 
bone-forming cells (4, 6); and (iii) the 
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Fig. 1. Dose-response curve for fluoride. Cal- 
varial cell proliferation estimated as ["Hlthy- 
midine incorporation, shown as percent of 
control (no fluoride), versus NaF concentra- 
tion. Values represent the mean k S.E.M. of 
six replicates. Dashed line indicates the mean 
of the control values. A single asterisk indi- 
cates a significant difference from controls 
at P < 0.05; a double asterisk indicates 
P < 0.005. 

serum activity of skeletal alkaline phos- 
phatase (ALP) (7-9), an osteoblastic iso- 
enzyme. 

To  discover the mechanism whereby 
fluoride stimulates bone formation, we 
sought (i) to determine whether any of 
the characteristic skeletal responses to  
N a F  could be attributed to direct effects 
on cells in the osteoblast line and (ii) to  
examine the interactions between NaF 
and two other bone cell mitogens-para- 
thyroid hormone (PTH) and human skel- 
etal growth factor (hSGF) (10-13). To  
these ends we have examined the effects 
of N a F  on embryonic chick bone cells in 
vitro and on embryonic chick bone in 
organ culture (14, 15). 

Bone cells for these studies were pre- 
pared from the calvaria of 15-day embry- 
onic chicks by sequential collagenase 
digestion and were cultured in serum- 
free Fitton-Jackson modified BGJh medi- 
um (16). Histological analysis of the cal- 
varia before digestion has shown that 
essentially all of the cells available for 
release were members of the osteoblast 
cell line. Even in monolayer culture 
these cells maintained the following 
characteristics of osteoblasts and osteo- 
blast progenitors: expression of a skele- 
tal-type ALP activity; response to PTH 
with an increased adenosine 3'3'-mono- 
phosphate (cyclic AMP) production (11); 
conversion of 25-hydroxyvitamin D3 to 
more polar metabolites (17); and re- 
sponse to a bone-derived mitogen 
(hSGF) that is specific for skeletal tis- 
sues (12, 13). 

To  estimate cell proliferation we incu- 
bated the calvarial cells overnight and 
then exposed them to effectors (such as 
NaF and hSGF) for an additional 18 to 24 
hours [this corresponds to the cell cycle 
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time and allows for an optimal response 
to hSGF (13).] Cell proliferation was 
assessed by the incorporation of [3H]thy- 
midine into DNA during the final 2 hours 
of the incubation (16). [3HlThymidine 
incorporation was increased by exposure 
to N a F  (Fig. 1). The pool size of [ 3 ~ ] -  
thymidine was not affected by fluoride 
(18, 19). Cell number was increased to 
162 ? 7 percent of control values after 
36 hours of exposure to 10 FM N a F  
(P < 0.005) (20). The increase in cell 
number, which was also observed after 
exposure to 2.5 y M  and 25 FM N a F  
(data not shown), and the absence of 
effect of N a F  on the pool size of [3H]thy- 
midine strongly suggest that the ob- 
served increase in [ 3 ~ ] t h y m i d i n e  incor- 
poration reflects, at least in part, an 
increased rate of cell proliferation. The 
effect of N a F  on [3~] thymidine  incorpo- 
ration was confined to a narrow concen- 
tration range (2 to 50 FM), which corre- 
sponds closely to the serum levels of 
N a F  recommended for increased bone 
formation in vivo (21). Half-maximal 
stimulation of [3H]thymidine incorpo- 
ration was seen with 3 to 4 y M  NaF.  The 
mitogenic effect was specific for bone 
cells. Incorporation of [3H]thymidine 
was not affected by N a F  in identically 
treated cultures of embryonic chick skin, 
muscle, kidney, liver, o r  intestinal cells 
(22). The effect of N a F  on calvarial cells, 
which was not observed with other halo- 
gens (NaBr or  NaI), was apparently in- 
ductive. Cells exposed to 2.5 y M  N a F  
for the first 4 hours of an 18-hour incuba- 
tion (they were rinsed twice and changed 
to NaF-free medium after a 4-hour expo- 
sure) showed an increase in [3H]thymi- 
dine incorporation after 18 hours [I62 
t 9.5 percent of control ( P  < 0.005)l. 

0 2 4 6 8 1 0  
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Fig. 2. Interaction of fluoride and PTH. Cal- 
varial cell proliferation ([3H]thymidine incor- 
poration), shown as percent of control (no 
fluoride, no PTH), versus NaF concentration 
for cells incubated with ( e )  or without (A) 0.1 
nM PTH. Values represent the mean t 
S.E.M. of six replicates. A single asterisk 
indicates a significant difference from controls 
at P < 0.05; a double asterisk indicates 
P < 0.005. Values for I ,  2.5, and 10 pM NaF 
with added PTH are significantly different 
from values without added PTH (P  < 0.05). 

Table 1. Effects of NaF in vitro. Effects are shown as mean percent of control 2 S.E.M., with 
N = 6 for calvarial cells and N = 9 to 16 for calvaria. Absolute values (mean t S.E.M.) for 
control activities were as follows. Cells: ['Hlthymidine incorporation, 1223 t 44 countlmin per 
well; cell number, 7064 i 351 per well; ALP activity, 0.107 t 0.005 U per milligram of protein. 
Bones: 45Ca deposition, 93,322 t 5238 countlmin per milligram of dry weight; ['Hlhydroxypro- 
line incorporation, 1240 t 103 countlmin per milligram of dry weight. References for method- 
ologies are given in the text. 

NaF Effect 

Concen- Expo- (percent Parameter tested . L- P 
tration sure 01 

(PM) (hours) 

[3H]Thymidine incorporation 
Cell number 
ALP activity 

[3H]Thymidine incorporation 
ALP activity 
45Ca deposition 
[3H]Hydroxyproline incorporation 

Cells 
10 18 163 t 14 < 0.005 
10 36 162 t 17 < 0.005 
10 144 435 t 33 < 0.001 
Bones 

25 72 146 t 10 < 0.01 
2.5 144 156 t 14 < 0.01 
2.5 144 131 & 6 < 0.002 
2.5 144 152 t 14 < 0.01 

Exposure to N a F  during the final 4 hours 
of the 18-hour incubation had no such 
effect. These results indicate that NaF 
can have direct effects on cells in the 
osteoblast line. 

Exposure to N a F  also increased ALP 
activity in the cultured calvarial cells and 
in the surrounding serum-free medium 
[see (23) for assay methodology]. After 
144 hours of exposure to 10 FM NaF,  
ALP activity in the medium was in- 
creased to 262 t 11 percent of control 
( P  < 0.001) and the ALP activity in the 
cells was increased to 435 2 33 percent 
of control (P < 0.005). (All ALP values 
are adjusted for variation in protein con- 
centration.) Since ALP activity is more 
abundant in populations of differentiated 
osteoblasts than in populations of osteo- 
blast precursors, our results suggest that 
N a F  stimulates both the ~roliferation 
and the differentiation of embryonic 
chick cells in the osteoblast cell line, and 
this occurs at doses that stimulate bone 
formation in vivo. We have not yet de- 
termined whether the number of ALP- 
positive cells or the amount of ALP per 
positive cell is increased by exposure to 
NaF.  

The NaF-induced increase in [%]thy- 
midine incorporation in calvarial cells in 
vitro was enhanced by coincubation with 
PTH or with partially purified hSGF. 
With an 18-hour incubation, 0.1 nM PTH 
did not affect [3H]thymidine incorpo- 
ration, but it did increase the stimulation 
seen with 2 p M  NaF,  from 125 to 155 
percent of control (P < 0.01 for the dif- 
ference). A N a F  dose-response curve 
obtained in the presence of 0. I nM PTH 
(Fig. 2) confirmed an increased response 
at lower concentrations of NaF,  but 
showed no increase in the maximum 
response (that is, the concentration of 
N a F  required for half-maximal stimula- 

tion was decreased, but the maximum 
effect was unchanged). The fact that 
PTH also reduced the response to 10 y M  
N a F  suggests that PTH may amplify the 
activity of NaF,  effectively shifting the 
biphasic dose-response curve to lower 
N a F  concentration (compare Fig. 1 with 
the curve in Fig. 2 for NaF plus PTH.) 
There was also a positive interaction of 
hSGF with NaF. The maximal response 
of the calvarial cells to N a F  was in- 
creased by hSGF (Fig. 3). The concen- 
tration of N a F  required for half-maximal 
stimulation was not affected by hSGF. 
These data show that the mechanisms of 
NaF- and hSGF-stimulated cell prolif- 
eration do not share a common rate- 
determining step. Our results will not 
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Fig. 3. Interaction of fluoride and hSGF. 
Calvarial cell proliferation (['Hlthymidine 
incorporation), shown as percent of control 
(no fluoride, no hSGF), versus fluoride con- 
centration for cells with (A, upper curve) or 
without (e) added hSGF (2 pglml). (Bovine 
serum albumin has no effect at concentrations 
less than 20 pglml.) Values represent the 
mean t S.E.M. of six replicates. Dashed line 
indicates the mean of the control values. 
A single asterisk indicates a significant dif- 
ference from controls without fluoride at 
P < 0.05; a double asterisk indicates P < 
0.005. 
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permit a similar distinction between the 
mechanism of NaF- and PTH-stimulated 
cell proliferation, since the effects of 
these agents were not additive. 

To  ensure that these apparently direct 
effects of N a F  on embryonic chick cal- 
varial cells were not peculiar to mono- 
layer culture, we examined the respons- 
es  of embryonic chick bone to N a F  in an 
organ culture system. Half-calvaria 
(frontal and parietal bones) were dissect- 
ed from 13-day embryonic chicks and 
cultured in serum-free BGJb medium as 
described (24). After overnight incuba- 
tion the medium was changed and N a F  
was added. After an additional 18 hours, 
either [3H]proline or  45Ca was also add- 
ed. The medium was changed at 36- to 
48-hour intervals, but the exposure to 
N a F  and the radioisotopes was continu- 
ous. After incubation, the bones were 
individually extracted with butanol to 
release membrane-bound ALP activity 
(23), and the ALP activity and protein 
concentration were measured in each 
extract. The extracted bones were dried, 
weighed, and hydrolyzed in acid (24), 
and radioactivity was determined in por- 
tions of the hydrolyzates. For  bone la- 
beled with [3H]proline, [3H]hydroxypro- 
line (in counts per minute per milligram 
of dry weight) was determined as an 
index of collagen synthesis (24). Colla- 
gen production, Ca  deposition, and A L P  
activity were all increased in the calvaria 
by exposure to N a F  (Table 1). These 
results were consistent with our earlier 
results with calvarial cells. Additional 
studies revealed that the incorporation of 
[3H]thymidine into DNA (25) was also 
increased in half-calvaria cultured for 72 
hours in the presence of 25 F M  N a F  
:I46 * 13 percent of control; P < 0.01); 
this is consistent with the interpretation 
trlat the increased bone formation was 
mediated, at least in part, by an increase 
in osteoblast number. 

The effect of N a F  on the ALP content 
of the bones was dose-dependent and 
saturable. Exposure to  10 p M  N a F  for 72 
hours increased ALP activity to a max- 
imum of 215 percent of control 
(P < 0.001), and half of this maximal 
effect was seen with 2 to 3 LLM NaF. This 
dose of fluoride agrees with that required 
from half-maximal stimulation of calvar- 
ial cell proliferation (3 to  4 pM). Be- 
cause, in other systems, most of the 
biochemical effects of N a F  require milli- 
molar concentrations (26), bone cells 
would appear to be unusually sensitive 
to this agent. Furthermore, our observa- 
tions on cell specificity suggest that N a F  
is affecting activities that are unique to 
bone cells or are particularly sensitive in 
bone cells (27). 

In summary, we have shown for the 
first time in vitro that N a F  can (i) in- 
crease the proliferation rate of bone 
cells, as assessed by [3H]thymidine 
incorporation, both in monolayer culture 
and in organ culture; (ii) increase the 
ALP content of bone cells and of embry- 
onic bone; and (iii) enhance the growth 
and mineralization of embryonic bone. 
Furthermore, we have shown that the 
effects of N a F  on [3H]thymidine incor- 
poration can be modulated by PTH and 
by hSGF. Since N a F  increases osteo- 
blast number and ALP activity in vivo, 
these data suggest that the increased 
bone formation seen with N a F  results, at 19. 

least in part, from direct effects on bone 
cells in the osteoblast cell line. 20. 
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micromolar concentrations that stimulate bone 
formation [see (19) for assay methodology]. 
Similarly, although NaF, at millimolar concen- 
trations, can increase cyclic AMP production 
(24). and although bone cells have hormone- 
specific adenylate cyclase systems, NaF did not 
affect cyclic AMP production in our assay sys- 
tem at do.;es that increased bone formation. 
NaF was incubated with confluent cultures of 
calvarial cells at doses ranging from I p.M to 1 
mM for 15 minutes at 37"C, and cyclic AMP 
production was determined by a radioreceptor 
assay (28). PTH was included as a positive 
control. 

28. A.  Gilman. Proc. Ntrtl. Aceid. Sci. U . S . A .  67. 
305 (1970). 
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