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Free Cupric Ion Activity in Seawater: Effects on 
Metallothionein and Growth in Crab Larvae 

Abstract. Crab zoeae (Rhithropanopeus harrisii) were exposed during their devel- 
opment to a range of free cupric ion activities regulated in seawater by use of 
a copper chelate buffer system. Most cytosolic copper was found to be associated 
with metallothionein. Copper-thionein could be related to free cupric ion activity, 
and a shift in copper-thionein accumulation was correlated with inhibition of larval 
growth. These data reveal predictable relations between cupric ion activity in 
seawater and processes at the cellular and organismic levels. 

The biological impact of increases in 
trace metal concentrations in the oceans 
has become a major concern (I). Trace 
metals such as copper at nanomolar con- 
centrations similar to those in natural 
seawater inhibit nutrient uptake in both 
phytoplankton (2) and bacteria (3). How- 
ever, numerous chemical species of cop- 
per are present in natural seawater (4), 
and chemical speciation often varies 
considerably between samples (3). The 
biological availability and toxicity of 
copper appear to be related to free cupric 
ion activity, {Cu2+), rather than to total 
copper concentration or the concentra- 
tion of copper complexes (3, 5). Since 
most copper toxicity studies have related 
cellular or organismic responses to total 
copper added to seawater (6), the biolog- 
ical availability of the metal, even on a 
relative scale, is usually unknown. 

The cysteine-rich metal-binding pro- 
tein metallothionein serves as a major 
intracellular metal-binding ligand whose 
synthesis can be induced by metals, in- 
cluding copper, cadmium, zinc, and mer- 
cury (7). Metallothioneins are widely dis- 
tributed and have been isolated from 
various vertebrates, invertebrates, and 
higher plants (8, 9). These proteins have 

Fraction number 

Fig. 1. Cytosolic distribution of copper in crab 
larvae (R. harrisii) exposed to free cupric ions 
in seawater (13). HMW, MT, and LMW repre- 
sent high molecular weight, metallothionein, 
and low molecular weight pools, respectively. 

been associated with metal uptake, me- 
tabolism, and detoxification (7). The pri- 
mary structure of crab thionein is ho- 
mologous to both mammalian and fungal 
thioneins, and its synthesis is induced by 
copper, zinc, and cadmium (9, 10). 

Research on the mechanisms of cop- 
per toxicity has focused on either bio- 
chemical responses (for example, metal- 
lothionein synthesis) or physiological ef- 
fects at the population level (for exam- 
ple, growth rate), but not at both 
biological levels simultaneously (6). As a 
consequence, the relations between met- 
al exposures, metallothionein synthesis, 
and population effect remain unclear. 
Correlating the amount of biologically 
available copper in seawater with cellu- 
lar and molecular data and with the im- 
pact on organisms and populations is 
even more difficult. However, predic- 
tions of the ecological consequences of 
increased copper in seawater and of sub- 
sequent copper accumulation and sub- 
cellular distribution will be possible only 
if they can be related to population ef- 
fects. In this study we have used a 
copper-nitrotriacetic acid (NTA) buffer 
system (11) to control free cupric ion 
activity, and have examined the relations 
between {Cu2+) in seawater, cytosolic 
copper, copper-thionein accumulation, 
and growth in crab larvae. Our data 
indicate that copper-thionein can be re- 
lated to {Cu2+} in seawater and that a 
shift in copper-thionein accumulation is 
correlated with inhibition of larval 
growth. 

Newly hatched larvae of the mud crab 
Rhithropanopeus harrisii were exposed 
to a range of {Cu2+) values for the dura- 
tion of zoeal development (12). The lar- 
vae were sampled immediately after they 
had molted to the megalopa stage. Sur- 
vival, time to megalopa, and dry weights 
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were determined for each value of observed in R.  harrisii larval growth in thionein and larval growth; the hyperbol- 
{cu2+). Replicate samples were pooled, response to petroleum hydrocarbons and ic equation used to describe the accumu- 
homogenized, and centrifuged, and the a cyclic temperature regime (17). Mega- lation data also provides a reference 
resultant cytosol was fractionated by lopa weight decreased rapidly at higher point, the half-saturation constant, k ,  
high-performance liquid chromatogra- {cu2+} and was significantly lower at beyond which {Cu2+} in seawater ad- 
phy (HPLC). Cytosolic copper accumu- activities greater than approximately versely affects growth (Fig. 2). 
lation and subcellular distribution were 2 x 10-"M. These activities are similar Our data relate {Cu2+) in seawater to 
subsequently determined by atomic ab- to those at which algal growth is inhibit- cellular responses and to processes that 
sorption spectrophotometry (13). ed (2) and approach estimated ranges of affect the population. These data indi- 

Three major peaks of copper binding {cu2+} in seawater [10-"M (3)l. Fur- cate that metallothionein is the major 
were observed upon fractionation of the thermore, we found a quantifiable rela- cytosolic copper-binding ligand and is 
cytosol (Fig. 1): (i) a high molecular tion between accumulation of copper- involved in cytosolic copper accumula- 
weight peak, which eluted just behind tion in crab larvae. Copper-thionein con- 
the void volume and contained most centration can be related to the {Cu2+) in 
of the soluble enzymes (molecular 250  ' the seawater by a saturation equation. 
weight %- 20,000); (ii) a metallothionein This equation provides a quantitative 
peak, which had an apparent molecular representation of shifts in copper metab- 
weight of 10,000 to 12,000 (14); and (iii) a olism that are correlated with adverse 
low molecular weight peak, which in- - effects on growth. 
cluded all molecules too small to be BRENDA M. SANDERS 
resolved by the column (molecular Duke University Marine Laboratory, 
weight < 5000). 5 150 - - Beaufort, North Carolina 28516 

Most (47 to 82 percent) of the cytosolic ; KENNETH D. JENKINS 
copper was associated with the metal- Molecular Ecology Institute and 
lothionein pool over the entire range of 0 Department of Biology, California 
cupric ion exposures, with copper-thion- loo - State University, Long Beach 90840 
ein most prominent (72 to 82 percent) at WILLIAM G. SUNDA 
lower {Cu2+) (Figs. 1 and 2). Both copper- ,X National Marine Fisheries Service, 
thionein and cytosolic copper were rela- NOAA, Southeast Fisheries Center, 
tively independent of external free cu- Beaufort Laboratory, 
pric ion activity at low {Cu2+}, increased 
above this range, and approached satura- 

Beaufort, North Carolina 28516 
A JOHN D. COSTLOW 

tion at high {Cu2+). These data suggest I , Duke University Marine Laboratory 
that crab larvae can regulate cytosolic 13 12 1 ' 1  1'0 
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our objective. 
Assume that the glacier has been 

steady-that is, its geometry and veloci- 
Catch a Falling Star: Meteorites and Old Ice ty have not changed with time. Then the 

shape of the glacier, the rates of accumu- 
Abstract. A model for the process of meteorite concentration in blue ice regions of lation or ablation at the surface, and ice 

the Antarctic ice sheet is proposed based on data from near the Allan Hills and the movement are related to one another by 
assumptions that both meteorite influx and glacial flow have been constant. The continuity. In our case we need consider 
meteorite influx is calculated to be 60 x kilogram per square kilometer per only the ablation zone 
year, and the age of the exposed ice to be 0 to 600,000 years, varying with distance - 

from the Allan Hills. These results are in line with other estimates of influx rate and dr 
Z - = - l ( Z ; , + A b ) d x  ( 2 )  

with measurements of the terrestrial ages of the meteorites, providing support for the dt 

assumption of steady flow and meteorite influx. This may be the oldest sequence of where x represents distance from the 
ice in stratigraphic order yet discovered, and the results imply that this part of the lower end of the glacier (the snout), Z(x) 
east Antarctic ice sheet has been approximately steady during this time interval. ice thickness, and & the strain rate for 

flow-line spreading (positive) or conver- 
There are places on the Antarctic ice or age since we take both f and A, as gence (negative) - in map view. Both the 

sheet where meteorites are found in large constant in both time and position. Thus - velocity, dxldt, and the lateral spreading, 
numbers. Ordinarily meteorites become the meteorites are uniformly distributed i,, are expressed as means through the 
buried in the snow, incorporated in the inside the ice sheet along the flow line ice thickness, but Eq. 1 calls for surface 
ice, carried to the edge of the continent leading to the ablation zone. values. The surface velocity, dxldt,, and 
(I), and discharged into the sea. In spe- Three mechanisms concentrate mete- surface spreading, E,,, are larger 
cia1 places, however, the ice does not 
reach the sea but evaporates or other- 
wise ablates at the surface, and the mete- 
orites are exposed. These collect at the 
ablating surface where they are joined by 
direct falls. Compressive ice flow, char- Fig. 1. Profile of an ice sheet '\ A 

acteristic of ablation zones, further con- and mechanisms for cOncen- snow a c c u m , , l a t i o n  tration of meteorites. (A) Me- centrates meteorites. Equ~llbrium l ~ n e -  
teorites fall into the snow ac- 

Steady-state meteorite fall rate and cumulation zone and are trans- 
steady-state glacial flow are assumed. ported to the ablation zone by 
Meteorites that fall onto the accumula- ice flow; (B) meteorites fall 

tion zone (Fig. I) attain a concentration ::ic:$ ~ ~ ~ p r ~ ~ ~ ~ ? ~ ~ c ~ ~ ~  

inside the ice given by y = $'A,, where f ..crowdsM meteorites togeth- 
represents the meteorite infall rate (mass er. Vertical exaggeration, ap- 
per unit area per unit time) and A, the proximately ~ 5 0 .  
snow accumulation rate expressed in 
meters of ice equivalent per year. This 
concentration does not depend on depth 
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