
Century-Old Math Problem Solved 

An outstanding problem in number 
theory that has challenged mathemati- 
cians for more than a century has now 
been solved. The problem involves fam- 
ilies of number systems, and what is 
surprising and significant about the proof 
is that it uses elliptic curves, an entirely 
different type of mathematical object. In 
the end, the solution to this problem may 
be a major step toward linking the analy- 
sis of elliptic curves and number theory 
of these curves. 

The proof was recently announced by 
Don Zagier of the University of Mary- 
land and the Max Planck Institute in 
Bonn and Benedict Gross of Brown Uni- 
versitv. The two mathematicians have 
published a brief note announcing their 
result but are still in the process of 
writing their 300-page manuscript de- 
scribing the details of their proof. Math- 
ematicians have complained that such 
long proofs can be nearly impossible to 
check because they frequently require 
that the reader somehow assimilate enor- 
mous amounts of information and verify 

An incredibly indirect proof resolves an old problem 
and links two seemingly unrelated areas of mathematics 

complicated logical connections. But, 
despite the unwieldy size of their proof, 
Gross believes that it is understandable 
and, he says, he has "absolutely no 
doubt" that it is correct. "It is more 
explicit than most mathematical proofs 
and less prone to error," he remarks. 
Other mathematicians agree. "I believe 
it," says Dorian Goldfeld of the Univer- 
sity of Texas at Austin, who is visiting 
this semester at Harvard University. 

Zagier and Gross worked for several 
years to get this result, but they felt after 
they got started that success was inevita- 
ble. "Results in arithmetic are so tight 
that it can be very hard to make prog- 
ress," says Gross. "But once you are on 
the right track, you know it will work." 
Gross says he and Zagier are "delight- 
ed" that they proved the theorem. 

The theorem that Gross and Zagier 
proved dates back to Karl Fredrich 
Gauss, the 19-century mathematician 
who was one of the giants in the field of 
number theory. Gauss began by general- 
izing the notion of a whole number. His 
idea was to look at numbers of the form 
a i- b m ,  where a and b are integers. 
Those numbers, which are called Gauss- 
ian integers, form a grid in the complex 
plane and when two Gaussian integers 
are added together you get a third. You 
also can multiply Gaussian integers and 

get as a product another Gaussian inte- 
ger. But, an essential question was, Are 
the usual laws of number theory valid in 
the Gaussian integers? For example, in 
the ordinary integers there is the notion 
of a prime, meaning a number that is 
divisible only by itself and 1, and the 
unique factorization theorem which 
states that any number can be expressed 
uniquely as a product of primes. The 
number 10, for example, can be ex- 
pressed as a product of 2 times 5. The 
answer to the number theory question- 
and Gauss himself proved it-is that 
there are "primes" and a unique factor- 
ization theorem in the Gaussian integers. 

One reason this sort of work in sys- 
tems like the Gaussian integers is signifi- 
cant, says Barry Mazur of Harvard Uni- 
versity, is that many difficult questions 
about ordinary integers are easier to 
solve if they are first rephrased in terms 
of Gaussian integers. For example, it is 
easy to find which prime numbers can be 

"It is more explicit than 
most mathematical proofs 
and less prone to error." 

expressed as a sum of two squares if you 
first translate the problem into one in- 
volving the Gaussian integers. 

Gauss also generalized the idea of 
Gaussian integers by looking at the sys- 
tem of all numbers of the form 
a + b a  where a and b are fixed 
integers and d can vary through all the 
integers. (The only slight complication to 
this rule, mathematicians have discov- 
ered, occurs when d has a remainder of 3 
when divided by 4. Then the number 
systems are impoverished and must be 
slightly enlarged by allowing a and b to 
be half integers as well as whole num- 
bers.) When d is 1, you are back to the 
Gaussian integers. But when d is not 1, 
you have other number systems. Can 
you do number theory comfortably in 
any one of these? Is there, for example, a 
unique factorization theorem? 

A major problem, then, became one of 
deciding for which values of d a unique 
factorization theorem holds. It was 
known in Gauss's time that it holds for d 
equal to 1 ,2 ,  3.7, 11, 19,43,67, and 163. 
But no one knew if there were other 

values of d that worked. By the 1920's 
mathematicians made some progress on 
the problem. They knew that there was 
no more than one case in addition to the 
nine already discovered and that this 
additional d, if it existed, must be astro- 
nomically large. 

About 15 years ago, Harold Stark of 
the Massachusetts Institute of Technolo- 
gy and Alan Baker of Trinity College in 
Cambridge, England, working indepen- 
dently and with entirely different meth- 
ods, proved that there is no tenth d. 
Then they decided to look back in the 
literature to see what else had been done 
with this problem. They found a paper, 
written in the 1950's, by Kurt Heegner, a 
retired Swiss scientist who did math as a 
hobby. In this paper, Heegner purported 
to prove that there can only be nine d's 
for which unique factorization holds, but 
the consensus in the mathematical com- 
munity was that Heegner was wrong. 
"It's a hard paper to read," says Stark. 
"It's written in the most horrible style 
that you can think of." Nonetheless, 
when Stark and Baker went back and 
examined Heegner's paper, they decided 
that his proof was correct and that it was 
an absolutely wonderful proof. 

The next question was, if you don't 
have prime factorization in one of these 
number systems, how close to prime 
factorization can you get? Here, once 
again, Gauss had a theory. He proposed 
something called the class number that 
can be associated with any of the number 
systems derived from the d's. "The class 
number," says Mazur, "is a measure of 
by how wide a margin the unique factor- 
ization theorem fails." If the class num- 
ber is 1, then there is unique factoriza- 
tion. If it is 2, then the systemjust misses 
having unique factorization. Class num- 
bers can go all the way up to but not 
include infinity, and the larger they are, 
the more ways there are to factor num- 
bers in the system into primes. 

With the nine d's, mathematicians had 
a complete list of all the class 1 number 
fields. In addition, Baker and Stark were 
able to list all the fields with class num- 
ber 2. But what about the rest? Math- 
ematicians were stumped by this prob- 
lem which had first been posed by 
Gauss: For any number k,  find the larg- 
est d whose number system has class 
number k. 

About 6 years ago, Goldfeld thought 
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he nearly had the answer. "I was 
working on the class number problem for 
4 or 5 years," he says, "and I thought 
I was almost there." What Goldfeld 
found was that he could provide the 
class number list to anyone who could 
provide him with a particular mathemati- 
cal object-an elliptic curve with certain 
properties. 

It sounded easy. Everyone, including 
Goldfeld, thought they would polish off 
the problem in short order. "It seemed 
very simple, but we soon realized it was 
way beyond our knowledge," says 
Gross. The mathematical object they 
were looking for has to do with the 
theory of elliptic curves, which are ex- 
pressed by cubic equations of the form 
xf + y3 = z3 .  

Mathematicians associate a function, 
called an L-function, to elliptic curves 
and these L-functions are conjectured to 
tell how many rational points the curves 
have. Mathematicians look for what is 
known as the order of vanishing of these 
L-functions at a specific point in the 
complex plane to determine how many 
rational points are on the elliptic curves. 
Goldfeld proposed that if anyone can 

find an elliptic curve whose L-function 
has an order of vanishing that is greater 
than or equal to 3, he can solve the class 
number problem. 

For 6 years, mathematicians worked 
on the problem. "Not only did it sound 
easy, but, if our conjectures were right, 
we thought we knew some elliptic curves 
that had that order of vanishing," says 
Mazur. "We thought we had gone from 
an easier theory, the order of vanishing, 
to a harder one, the class number prob- 
lem. But the theory of vanishing turned 
out to be much harder than anyone ex- 
pected." 

What Gross and Zagier finally did was 
to link the arithmetic of elliptic curves to 
the theory of vanishing. They found that 
special points on elliptic curves have the 
property that if they are nonzero, the 
order of vanishing is precisely 1. If they 
are 0, the order of vanishing is greater 
than 1. They also know whether the 
order of vanishing is even or odd. Thus 
they can find curves with orders of van- 
ishing greater than or equal to 3 by 
finding curves that have odd orders of 
vanishing and whose special points have 
zero values. Gross and Zagier call these 

special points H, in honor of Heegner 
who used them in his long-neglected 
proof that there are only nine d's. 

The proof itself, says Gross, consists 
of a horrendous equation. "To calculate 
both sides of the equation takes 100 
pages. Then you have to pair up terms on 
each side of the equation and prove the 
two sides of the equation are the same. 
It's a mess." The proof, then is by no 
means elegant. "I still have hope that it 
will be tremendously simplified," says 
Stark. 

But what truly impresses mathemati- 
cians is the idea behind the proof. "The 
proof is surprisingly indirect. What they 
are doing is using an elliptic curve to 
somehow govern the structure of this 
infinite family of number systems," says 
Mazur. "The full gamut of these number 
systems is governed by a single mathe- 
matical object." Mathematicians might 
na~vely think there is no connection be- 
tween an elliptic curve and these families 
of number systems. But the recent proof 
shows instead, Mazur remarks, that 
"here there is every connection." Gross 
agrees, adding, "that connection is real- 
ly quite extraordinary. "-GINA KOLATA 

'I 

A Step Toward Artificial Chromosomes 
In their continuing efforts to relate the behavior of synthetic chromosomes were transferred into yeast cells, 

chromosomes during cell division to their structure investi- they did not behave like the natural chromosomes, Murray 
gators have turned to the construction of artificial chromo- says. There were too many copies per cell, and they were 
somes. For example, in the 15 September issue of Nature, lost very quickly when the cells divided. 
Andrew Murray and Jack Szostak of the Dana-Farber In a paper that was published earlier this summer,* 
Cancer Institute of Harvard Medical School report that Ginger Martin Dani and Virginia Zakian of the Hutchinson 
they have made artificial chromosomes that behave in Cancer Research Center in Seattle, reported similar find- 
yeast much like the natural ones do, although not perfectly ings for small linear chromosomes that they had construct- 
SO. ed. 

Over the past few years, investigators from several Larger artificial chromosomes work better. Murray and 
laboratories have made considerable progress in isolating Szostak went on to test constructs containing about 50,000 
and characterizing sequences from the yeast genome that bp. "These show some of the properties of normal chromo- 
appear to be needed for chromosome activities. These somes," Murray says. "They were more stably inherited, 
functional elements include, in addition to the genes them- passed through meiosis, and were present in only a few 
selves, the centromeres, to which the fibers that pull the copies per cell. But they are still quite a long way from 
chromosomes apart during mitosis and meiosis are at- behaving like real chromosomes." In particular, although 
tached; the autonomously replicating sequences, which they are inherited in a more stable fashion than the smaller 
may be the origins for chromosome replication; and the artificial chromosomes, they are still lost about two orders 
telomeres, the chromosome ends that are needed to com- of magnitude faster than natural chromosomes. 
plete chromosome replication. The problems may be caused by incorrect spacing be- 

Murray and Szostak wanted to know whether these tween the different functional elements or because even the 
elements are sufficient for chromosome function. "If these longer artificial chromosomes are not long enough. Alter- 
are the only elements required for chromosome function it natively, all the structural elements needed for normal 
should be possible to assemble them artificially and show chromosome function may not yet have been identified. 
that the products act like a real chromosome," Murray Nevertheless, when investigators can make synthetic chro- 
explains. mosomes that behave generally as the natural ones do, they 

In their first efforts, the Harvard workers constructed have come a long way toward understanding how chromo- 
artificial chromosomes that were only 10,000 to 15,000 base somes work.-JEAN L. MARX 
pairs (bp) in length' For the yeast *G. M. Dan1 and V. A. Zak~an,  Proc. Natl Acad Scr. U S.A. 80, 3406 
chromosome is about 150,000 bp in length. When the short (1983) 
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