
activity is correlated with normal behav- 
ior. It combines the selectivity of intra- 
cellular approaches with the noninvasi- 
veness of extracellular approaches and 
provides a direct link between electro- 
physiological procedures used to moni- 
tor and manipulate neuronal activity in 
intact animals and procedures used in 
reduced preparations. Selective stimula- 
tion and recording provide two addition- 
al methods for assessing the behavioral 
function of an identified neuron in an 
intact animal that complement recently 
developed techniques (2) for selectively 
destroying individual identified nerve 
cells (10). 
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Auditory Intensity Discrimination at High 

Frequencies in the Presence of Noise 

Abstract. Over a wide range of intensities, subjects were able to detect small 
differences in the intensity of a high-frequency band of noise that was presented with 
a relatively intense, complementary band-reject noise. This indicates that neither of 
two possible mechanisms for peripheral intensity coding, those based on timing and 
on spread of excitation, is necessary for the large dynamic range of human hearing. 
It is shown that the information available in the firing rate of a small number of nerve 
fibers can account for these data. 

A striking and fundamental property 
of hearing is the enormous range of in- 
tensities over which the auditory system 
can operate. The loudness of a pure tone 
increases over a 130-dB range; more 
important, relatively small changes in 
intensity, approximately 1 dB, can be 
perceived over at least a 110-dB range 
(1). The dynamic range demonstrable in 
such psychophysical situations contrasts 
sharply with the 30- to  50-dB dynamic 
range of typical fibers in the auditory 
nerve (2). Clearly, usable intensity infor- 
mation over at  least a 110-dB range is 
coded in the nerve; how it is coded is not 
known. 

One general coding scheme, that 
based on the firing rate of a group of 
fibers, has been discounted primarily be- 
cause it has been thought unlikely that 
enough unsaturated fibers are available 
to signal intensity changes at  high inten- 
sities (3). A plausible alternative scheme, 
that based on information available in 
the timing of spike discharges, is exam- 
ined here. It is shown that a large psy- 
chophysical dynamic range is maintained 
at  frequencies for which a timing code is 
extremely unlikely. Thus timing informa- 
tion, specifically temporal synchrony to 
waveform fine structure, is not neces- 
sary for a large dynamic range. It is also 
shown, using a detection theory analysis 
of recent physiological data, that the 
information available in the firing rate 
of a very small number of fibers is, in 
fact, sufficient to  account for the experi- 
mental results, that is, a rate-based in- 
tensity code is a t  least theoretically pos- 
sible. 

The possibility that intensity can be 
coded temporally over a wide intensity 

range is suggested by recent data on the 
synchronization of the firing pattern of 
primary fibers to  the fine structure of 
complex waveforms (4). Of particular 
interest is the observation that the func- 
tion relating degree of synchronization to 
intensity, which for single components 
has a dynamic range comparable to  that 
of the rate-intensity function, can be 
rigidly shifted to higher intensities by the 
addition of a second component (5). The 
effect of the second component on syn- 
chronization to the first component can 
be approximately described as attenua- 
tive, that is, the reduction or suppression 
in synchrony is similar to  reducing the 
intensity of the first component by a 
constant proportion, independent of its 
actual intensity. This characteristic of 
synchrony suppression is similar to the 
effect of adaptation in the visual system 
and, as  in vision, may be the mechanism 
that permits a large dynamic range, a t  
least for complex stimuli. 

The experiment reported here exam- 
ined intensity discrimination of a band of 
noise that was presented with a relative- 
ly intense band-reject noise whose spec- 
tral notch corresponded to the passband 
of the signal. The experiment is similar 
to previous intensity discrimination ex- 
periments with band-reject noise (6), 
with the important difference that the 
frequency range over which the intensity 
changes occur is 6 to  14 kHz and is 
above that for which primary fibers pre- 
serve temporal synchrony to waveform 
fine structure (7). The use of band-reject 
noise minimizes the possibility that in- 
tensity changes are signaled by unsatu- 
rated fibers that are activated or  "re- 
cruited" by the intensity-dependent 
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spread of excitation along the cochlear 
partition. Thus, markedly elevated dis- 
crimination thresholds should be ob- 
served if either temporal synchrony or 
spatial spread of excitation mediates in- 
tensity coding. 

Intensity discrimination thresholds for 
200-msec bursts of bandpass noise were 
measured by using a two-interval, 
forced-choice tracking procedure (6). 
During each trial, two noise bursts with 
spectrum levels of No and No + So were 
presented in random order 500 msec 
apart. The subject's task was to  indicate 
which burst was more intense. The value 
of the intensity increment (So) varied 
over trials, and an estimate of the value 
of So necessary for 71 percent correct 
responses was obtained (8). 

Thresholds were measured as  a func- 
tion of No under three conditions: with 
no masker, with a band-reject noise 
masker, and with a spectrally uniform 
noise masker. The spectrum level of the 
masker was always 10 dB greater than 
No. The masker was gated simultaneous- 
ly with the bandpass noise. Cutoff fre- 
quencies for both the band-reject noise 
and the bandpass signals were 6.0 and 
14.0 kHz and the attenuation rates in the 
relevant frequency regions were in ex- 
cess of 100 dB per octave (9). The audi- 
tory stimuli were presented binaurally 
and in phase through headphones that 
were chosen for their extended high- 
frequency response and their ability to  
produce very high levels with low distor- 
tion (10). Three male subjects with nor- 
mal hearing were tested individually in a 
sound-attenuating chamber. 

The average relative thresholds for the 
three subjects are shown in Fig. 1. The 
lowest curve, obtained with no masking 
noise, shows that as No increased above 
detection threshold (arrow), there was a 
very slight decrease in threshold, ap- 
proximately 3 dB over an 80-dB range. 
This deviation from constant relative 
threshold has been dubbed the near-miss 
to  Weber's law and has been observed 
for intensity discrimination of band-lim- 
ited signals at lower frequencies. When a 
uniform masking noise was present (up- 
per curve), the thresholds at  low No were 
raised by the expected 10 dB. There was 
a trend for the thresholds to increase 
slightly with increasing No. A similar 
trend was observed in the band-reject 
condition (middle curve). The thresholds 
with the band-reject noise were some- 
what larger, particularly at high No, than 
those obtained with no masker. This is 
attributable to a reduction produced by 
masking in the effective bandwidth of 
excitation. 

The important result shown in Fig. 1 is 
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Fig. 1. Intensity discrimination thresholds for 
a 6- to 14-kHz bandpass noise with spectrum 
level No. The ordinate is equivalent to 10 log 
AIIZ, where I is the total power in the noise 
band. Symbols: (0) spectrally uniform mask- 
er with spectrum level 10 dB greater than No,  
(U) band-reject masker with the 6- to 14-kHz 
region rejected and with a spectrum level in 
the passband 10 dB greater than No, and (A) 
no masking noise. The arrow indicates abso- 
lute threshold for the noise band. 

that the thresholds in the band-reject 
condition were consistently lower than 
those with the uniform masker. This 
indicates that the subjects used informa- 
tion from the 6- to 14-kHz band in detect- 
ing intensity differences and that recruit- 
ment of unsaturated fibers by spread of 
excitation along the cochlear partition 
did not mediate intensity discrimination. 
Furthermore, since the frequency range 
over which the intensity changes were 
detected was above that for which tem- 
poral synchrony is preserved, intensity 
discrimination could not have been 
based on temporal synchrony. 

These findings indicate that neither 
temporal synchrony nor spread of exci- 
tation is necessary for the auditory sys- 
tem to maintain a large dynamic range. 
Although it cannot be concluded that 
these mechanisms are never necessary, 
it seems reasonable to  consider schemes 
other than synchrony and spread of exci- 
tation as the basis for a general intensity 
code. Clearly, a code that can describe 
the data from the band-reject condition 
would be a likely candidate for describ- 
ing intensity coding in other situations, 
including that of pure tones in isolation. 

An alternative mechanism for periph- 
eral intensity coding that a t  least is not 
inconsistent with these results involves 
recruitment in a restricted spatial region 
of unsaturated fibers with different 
thresholds. This "staggered-threshold" 
notion has had a long and uneven history 
in the study of audition (11). Recent 
experiments indicate, however, that 
among primary fibers with similar char- 
acteristic frequencies (CF's) a t  least two 

populations can be distinguished on the 
basis of threshold and spontaneous ac- 
tivity; thresholds for the population with 
low spontaneous firing rates (approxi- 
mately 10 percent) are 20 to 80 dB higher 
than those with high spontaneous rates 
(12). Also, a small proportion of primary 
fibers, generally with low spontaneous 
rates, have extended dynamic ranges 
(13). 

These physiological results suggest 
that a group of fibers with similar CF's 
can code intensity over a range compara- 
ble to  that shown psychophysically. 
However, for this hypothesis to  be ten- 
able it must be shown that the number of 
unsaturated fibers is sufficient to  account 
for the psychophysical thresholds ob- 
served at  high intensities. On the basis of 
the available data, it appears that sur- 
prisingly few primary fibers are neces- 
sary for the psychophysical thresholds: 
one to  six unsaturated fibers could ac- 
count for the thresholds measured at  the 
highest intensity in the band-reject con- 
dition (14). This is less than 0.1 percent 
of the fibers estimated to innervate the 6- 
to 14-kHz region of the human cochlea. 
For  comparison, approximately 5 per- 
cent of primary fibers in the cat have 
dynamic ranges for C F  tones in excess of 
70 dB (13). This proportion almost cer- 
tainly would provide enough fibers to  
account for the 75-dB range shown in the 
band-reject condition, even without in- 
volving variation in primary fiber thresh- 
olds. Thus, it appears that the informa- 
tion available in the firing rate of primary 
fibers with similar CF's  is adequate to  
code intensity over a range of intensities 
comparable to  the dynamic range of hu- 
man hearing. 
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Fig. 1 .  Frames from the videotape of one of the actor's performance of the fear prototype instructions: (A) "raise your brows and pull them 
together," (B) "now raise your upper eyelids," (C) "now also stretch your lips horizontally, back toward your ears." 
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